文档库 最新最全的文档下载
当前位置:文档库 › 水泥的水化热作用

水泥的水化热作用

水泥的水化热作用
水泥的水化热作用

水泥的水化热作用

水泥的水化作用是放热反应。矿物成分产生溶解热,某些水化物产生沉淀热;此外,水分吸附在水化物土也将产生物理吸附热(约占水化热总量的1/4)。这几种热量的总和构成了水泥在各龄期的水化热。

水泥的水化热大部分是在硬化的最初几天放出的,以后放出的热量则不大。水化热对于大体积混凝土是有害的,它会使混凝土的温度上升到30~50℃,甚至更高。由于混凝土热传导性较小,外层散热快,因此使内外温度不一致,胀缩现象不平衡,导致产生拉应力,造成混凝土发生裂缝,影响工程质量。所以在大体积混凝土工程中,需采用低热水泥。

水化热的产生对于混凝土的冬季施工是有利的,可以提高混凝土硬化过程中的温度,促进强度发展。

水泥水化热的大小与水泥的矿物组成、玻璃体含量、细度、受潮程度、水灰比、环境温度等都有关系。要了解水化热的情况,应当通过试验进行实测。

水化热的试验方法很多,一般采用蓄热法,此外还有溶解热法和绝热温升法。

(1)蓄热法。将水泥胶砂试样放在保温瓶中,然后置保温瓶于恒温水槽内,根据水泥胶砂的温度升高、各种材料的比热容与质量,计算出水化热。但用此法试验,最多只能测得7d的水化热。由于试验过程中的散热,因此测得的水化热与大体积混凝土的实际观测值比较,是偏低的。

关于采用蓄热法测试水泥水化热的具体操作仪器、步骤在此不拟详逑。

(2)溶解热法。测定干水泥与经一定龄期水化的水泥在硝酸与氢氟酸混合液中的溶解热,两个溶解热的差值就是水泥在该龄期的水化热。但是,对于掺加掺合料的水泥,由于不能全部溶解,因此还存在一定的问题。

水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析 2.1 概论 2.1.1 大体积混凝土定义 目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。 由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。 2.1.2 大体积混凝土温度裂缝成因 施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。 因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。 2.1.3 本章研究的主要内容 (一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿 真水化热计算。 (二)对其水化热进行参数分析。

水泥水化热试验方法(直接法)

水泥水化热试验方法(直接法) 本标准适用于测定水泥水化热。 本标准是在热量计周围温度不变条件下,直接测定热量计内水泥胶砂温度的变化,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7天内的水化热(单位是卡/克)。 注:水泥水化7天今期的水化热可按附录方法推算,但试验结果有争议时,以实测法为准。 一、仪器设备 1.热量计 (1)保温瓶:可用备有软木塞的五磅广口保温瓶,内深约22厘米,内径为8.5厘米。 (2)截锥形圆筒:用厚约0.5毫米的铜皮或白铁皮制成,高17厘米,上口径7.5厘米,底径为6.5厘米。 (3)长尾温度计:0-50℃,刻度精确至0.1℃。 2.恒温水槽 水槽容积可根据安放热量计的数量及温度易于控制的原则而定,水槽内水的温度应准确控制在20±0.1℃,水槽应装有下列附件: (1)搅拌器。 (2)温度控制装置:可采用低压电热丝及电子继电器等自动控制。 (3)温度计:精确度为±0.1℃。 (4)固定热量计用的支架与夹具。 二、准备工作 3.温度计:须在15、20、25,30、35及40℃范围内,用标准温度计进行校核。 4·软木塞盆:为防止热量计的软木塞盖渗水或吸水,其上、下走向及周围应用蜡涂封。较大孔洞可先用胶泥堵封,然后再涂蜡。封蜡前先将软木塞中心钻一插温度计用的小孔并称重,底面封蜡后再称其重以求得蜡重,然后在小孔中插入温度计。温度计插入的深度应为热量计中心稍低一些。离软木塞底面约12厘米,最后再用蜡封软木塞上表面以及其与温度计间的空隙。 5.套管:温度计在插入水泥胶砂中时,必须先插入一端封口的薄玻璃营管或铜套管,其内径较温度计大约2毫米,长约12厘米,以免温度计与水泥胶砂直接接触。 6.保温瓶、软木塞、截锥形圆筒、温度计等均需编号并称量,每个热量计的部件不宜互换,否则需重新计算热量计的平均热容量。 三、热量计热容量的计算 7.热量计的平均热容量C,按下式计算: g g1 C=0.2×── +0.45×── +0.2×g2+0.095×g3+0.79×g4+0.4×g5 2 2 +0.46×V 式中:C──不装水泥胶砂时热量计的热容量,卡/℃; g──保温瓶重,克; g1──软木塞重,克; g2──玻璃管重,克(如用铜管时系数改为0.095); g3──铜截锥形圆筒重,克(如用白铁皮制时系数改为0.11); g4──软木塞底面的蜡重,克; g5──塑料薄膜重,克; V──温度计伸人热量计的体积,厘米[3](0.46是玻璃的容积比热,卡/厘米[3]·℃)。 式中各系数分别为所用材料的比热(卡/克·℃)。 四、热量计散热常数的测定

水泥水化热对混凝土早期开裂影响资料

水泥水化热对混凝土早期开裂影响 【来源:水泥工艺网】【2011年09月13日】 0 引言 对于预拌混凝土应用过程出现的早期开裂现象,有些混凝土专家归因于水泥比表面积太大和早期强度太高;而水泥界则认为,我国目前水泥的比表面积和早期强度并不比国外的高,混凝土的早期开裂主要是混凝土施工和养护不当所致。笔者认为,必须通过混凝土生产者和水泥生产商沟通,对早期裂缝的成因达成共识,在水泥生产、混凝土配制及施工养护等环节共同采取措施加以解决。“高强早强、高比表面积”及“水泥磨得太细”,这些都是表面现象,其本质是早期水化热太高及混凝土温度应力大的缘故。 1 水化热高是混凝土早期开裂的重要原因 混凝土早期开裂主要是由于初凝前后干燥失水引起的收缩应变和水化热产生的热应变所引起。关于混凝土的开裂,大家都已接受如下认识:抗拉强度越高,则混凝土开裂的危险性越小;弹性模量大、收缩大则开裂的危险性大;徐变大则开裂的危险性小。弹性模量越低,一定收缩量(或应变)产生的拉应力越小。混凝土处于塑性状态时弹性模量几乎为零,任何收缩或应变都不会产生拉应力,只有凝结固化具有一定强度后才有弹性模量,混凝土弹性模量随强度增加而增大。因此,混凝土强度的发展既有利于减少混凝土的开裂又因弹性模量增大而增加混凝土的开裂性。根据美国ACI建筑法规,混凝土弹性模量与标准圆柱体28d抗压强度的平方根成正比。混凝土徐变越大,应力松弛量越大,纯拉应力越小。因此,弹性模量低、徐变大及收缩小的混凝土开裂的危险小。高强混凝土因收缩

较大和徐变较小而较易开裂,而低强混凝土可能因收缩小和徐变大,而往往裂缝较少。关于干燥收缩及其避免或减少收缩的措施,大家都已达成共识,本文不拟赘述,但对于温度应变引起的应力往往认识不足。 温度应力是目前预拌混凝土早期开裂的一个很重要的因素。R.Springenschmid认为,混凝土的2/3应力来自于温度变化,1/3来自干缩和湿胀。水泥水化热是混凝土早期温度应力的主要来源。按照瑞典学者J.Byfors的观点,“混凝土拌和物成型的最初几个小时,还没有形成凝聚结构,此时主要表现为黏塑性。随着水化进行,塑性减少,弹性模量增大,成型后4~8h,弹性模量从10~102MPa迅速增长至104~105MPa,增加了3个数量级,而此期间抗压和抗拉强度以正常速度增长,因此极限抗拉应变由2h的4.0×10-3急剧下降至6~8h的0.04×10-3左右,即极限应变减小到原来的1/100,因此成型后6~8h极限抗拉应变达到最低值”。在混凝土终凝时,抗压强度只有0.7MPa,抗拉强度只有0.07MPa,混凝土弹性模量按1.0×104MPa计,只要产生大于0.07/(1.0×104)=7×10-6的应变即可使混凝土开裂。混凝土的热膨胀系数为10×10-6/℃,只要混凝土内外温差为1℃就足可使此时混凝土开裂。国外为使混凝土的早期不开裂,要求12h抗压强度不大于6MPa,相应的抗拉强度约0.6MPa,即使弹性模量仍按1.0×104MPa计,此时应变不应大于6×10-5,相当于内外温度梯度不大于6℃。而国内学者要求24h抗压强度不大于12MPa,相应的抗拉强度约1.2MPa,此时应变不应大于12×10-5,相当于内外温差不大于12℃。不幸的是,水泥的水化热释放主要集中在早期,水泥加水拌和后,立即出现放热(称为第一个放热峰),持续几分钟,这可能是铝酸盐和硫酸盐的溶解热。下一阶段是形成钙矾石所放出的热量,对于大部分

10水泥水化热操作规程

第二十六节水泥水化热测定仪作业指导书 一、原理、适用范围与技术参数 1、SHR-650型水泥水化热测定仪,主要用于测定水泥水化前后,在一定浓度的标准酸中的溶解热以二者之差来确定水泥在任何龄期的水泥水化热。水泥水化热测定仪产品符合 GB/T12959-2008《水泥水化热测定方法(溶解热法)》标准要求,选用高精度智能仪表,全程采用电脑信息采集处理器完成整个生产实验过程,具有操作简单,实验数据准确的优点。 2、水泥水化热测定仪,适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥等的任何水化龄期的水化热测定。其他水泥品种当指定采用溶解热法测定水化热时也可使用本仪器。 3、水泥水化热测定仪,溶解热法测定水化热是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。 水泥水化热测定仪主要技术参数: 1、真空瓶容积:650ml 2、真空瓶内径: 75㎜ 3、真空瓶深度:160㎜ 4、贝克曼温度计示差范围:5~6℃ 5、分度值:0.01℃ 6、水槽温度:20℃±0.1℃ 7、电源、功率:2500W/ AC220V/50Hz 8、净重:100kg 三、操作方法(溶解热法) (一)试验准备 在试验开始时,应将试验内筒从水槽内提升至水面以上位置固定好,打开试验内筒筒盖,将真空瓶、耐酸内衬、酸液搅拌棒放入内筒,将试验筒盖盖好,并拧紧蝶形螺母, 密封筒盖,再将内筒慢慢沉入水中固定。 将温度传感器插入水槽盖板上的插孔内并联接到控制仪,将其它各插件联接到控制仪 相应插口。接通电源,检查接地是否可靠,打开控制仪电源开关。 当水槽内水温高于20.1℃时,应慢慢地向水槽内放入冰块或冷水,待温度略底于20℃ 时即停止,此时,系统会自动将水温升至标准规定温度,并保持恒温。

溶解法测定水泥水化热试验操作技巧

溶解法测定水泥水化热试验操作技巧 摘要: GB/T 12959—1991《水泥水化热测定方法(溶解法)》规定了水泥的水化温度(20±1)℃,以便于测定水泥的恒温水化速度、水化热量尤其是长龄期水泥水化热量。其原理是:依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。由于本规范的各项要求都非常严格,实际操作中稍有不慎就可能使测试数据误差较大,导致测试结果作废。本文着重探讨减少操作误差的操作技巧。 1、仪器设备 1.1、广口保温瓶及贝克曼温度计 GB/T 12959—1991 第 3.1.4 规定:贝克曼差示温度计,插入酸液部分必须涂以石蜡或其他耐氢氟酸涂料;第6.1.1 规定:试验前保温瓶内壁用石蜡或其他耐氢氟酸腐蚀的涂料涂覆。实践中发现,保温瓶内壁和贝克曼温度计尾部涂上石蜡后,操作 5~10 次就有部分石蜡涂层脱落,尤其是保温瓶口和贝克曼温度计尾部,保温瓶口在塞入软木塞时以及贝克曼温度计尾部在插入时容易造成石蜡涂层脱落,往往造成刚刚标定好热量计,还没有进行水泥溶解热测试,所标定的热量计已经不准确了,必须重新涂蜡并标定,如果错过了设定的水泥水化龄期,还必须重新制作水泥试样,重新测定此时未水化水泥的溶解热。我们曾经 20 多次试验也未测出水泥的 3d、7d、28d整套水化热数据。我们采用 E- 44(6101)环氧树脂和低分子 650 聚酰胺树脂 1:1 混合搅匀,如果黏度太大就用丙酮稀释,均匀涂在广口保温瓶内壁、酸液搅拌器下部以及贝克曼温度计尾部,在常温下 24h后即可使用。还有就是广口保温瓶内壁口部 1cm 部分不涂,这部分一般接触不到酸液并且每次塞入软木塞时容易摩擦该部分的涂层。贝克曼温度计尾部的涂层要薄,多余的涂料必须在未固化时抹去,以免造成温度计尾部太粗,插不进相应的孔中。 1.2、分度吸量管 根据溶解热的测定原理可知,氢氟酸作为一种强酸对溶解热测试结果影响较大,所以加入的氢氟酸必须十分准确,GB/T12959—1991 没有规定怎样量取8mL 的 48%氢氟酸, 我们建议使用分度吸量管。分度吸量管一般由玻璃制成,玻璃的主要化学成分是硅,遇氢氟酸生成硅酸。所以氢氟酸很容易腐蚀玻璃分度吸量管,尤其是吸量管的尖嘴部分,而吸量管又不能作防腐层(作防腐层影响吸量管的精度),每次使用完毕后用蒸馏水清洗,一支吸量管连续使用 10 次,其尖嘴部分就有明显的腐蚀迹象。所以应该多准备几支分度吸量管。 1.3 、酸液搅拌棒

GBT1295991水泥水化热测定方法溶解热法

水泥水化热测定方法(溶解热法) 标准名称:水泥水化热测定方法(溶解热法) 标准类型:中华人民共和国国家标准 标准号:GB/T 12959-91 发布单位:国家技术监督局 标准名称(英) Test method for heat of hydration of cement-The heat of solution method 标准发布日期 1992-06-04批准 标准实施日期 1993-03-01实施 标准正文 1 主题内容与适用范围 本标准规定了用溶解热法测定水泥水化热试验的方法原理、仪器设备、试验步骤及结果计算等。 本标准适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥和其他指定采用本方法的水泥品种。 2 方法原理 本方法是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。 3 仪器设备 3.1 热量计:如下图所示。由保温水槽、内筒、广口保温瓶、贝克曼差示温度计、搅拌装置等主要部件组成。另配一个曲颈玻璃漏斗和一个直颈装酸漏斗。 3.1.1 保温水槽:水槽内外壳之间装有隔热层,内壳横断面为椭圆形的金属筒,横断面长长轴450mm,短轴300mm,深310mm,容积约30L。并装有控制水位的溢流管。溢流管高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中的酸液。 3.1.2 内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm筒内衬有软木层或泡沫塑料。筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧的孔分别安装加料漏斗和贝克曼差示温度计。 3.1.3 广口保温瓶:容积约为600mL,当盛满比室温高5℃的水,静置30min时,其冷却速度不得超过0.001℃/min·℃。 3.1.4 贝克曼差示温度计(以下简称贝氏温度计):精度为0.01℃,最大差示温度为5 ̄ 6℃,插入酸液

水泥水化热试验方法(20200511213548)

水泥水化热试验方法 标准适用于测定水泥水化热。 本标准是在热量计周围温度不变条件下,直接测定热量计内水泥胶砂温度的变化 ,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7 天内的水化热(单位是卡/ 克)。 注:水泥水化7 天今期的水化热可按附录方法推算,但试验结果有争议 时,以实测法 为准。 一、仪器设备 1 .热量计 (1)保温瓶:可用备有软木塞的五磅广口保温瓶,内深约22 厘米,内径为8.5 厘米。 (2)截锥形圆筒:用厚约0.5 毫米的铜皮或白铁皮制成,高 17 厘米,上口径7.5 厘米,底径为6.5 厘米。 (3)长尾温度计:0 —50C,刻度精确至0. 1C。 2 .恒温水槽 水槽容积可根据安放热量计的数量及温度易于控制的原则而定,水槽内水的温度应准 确控制在20±0. 1C,水槽应装有下列附件: (1 )搅拌器。 2)温度控制装置:可采用低压电热丝及电子继电器等自动控

(3)温度计:精确度为土0. 1C。 ( 4)固定热量计用的支架与夹具。 二、准备工作 3 .温度计:须在15、20、25, 30、35及40C范围内,用标准温度计进行校核。 4?软木塞盆:为防止热量计的软木塞盖渗水或吸水,其上、下走向及周围应用 蜡涂封。较大孔洞可先用胶泥堵封,然后再涂蜡。封蜡前先将软木塞中心钻一插 温度计用 的小孔并称重,底面封蜡后再称其重以求得蜡重,然后在小孔中插入温度计。温度计插入 的深度应为热量计中心稍低一些。离软木塞底面约12厘米,最后再用蜡封软木塞上表面以 及其与温度计间的空隙。 5.套管:温度计在插入水泥胶砂中时,必须先插入一端封口的薄玻璃营管或铜 套管,其内径较温度计大约2毫米,长约12厘米,以免温度计与水泥胶砂直接接触。 6 .保温瓶、软木塞、截锥形圆筒、温度计等均需编号并称量,每个热量计的部 件不宜互换,否则需重新计算热量计的平均热容量。 、热量计热容量的计算 7 .热量计的平均热容量C,按下式计算: g1 C = 0.2 X—— + 0.45 X—— + 0.2 X g2+ 0.095 X g3+

防止水化热的不利影响措施

防止水化热的不利影响措施 计划基础底板混凝土浇灌时间为一个日历天数。大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证基础底板大体积混凝土顺利施工。 1、材料选择 (1)水泥:考虑普通水泥水化热较高,特别是应用到大体积混凝土中,大量水泥水化热不易散发,在混凝土内部温度过高,与混凝土表面产生较大的温度差,便混凝土内部产生压应力,表面产生拉应力。当表面拉应力超过早期混凝土抗拉强度时就会产生温度裂缝,因此确定采用水化热比较低的矿渣硅酸盐水泥,标号为525#,通过掺加合适的外加剂可以改善混凝土的性能,提高混凝土的抗渗能力。 (2)粗骨料:采用碎石,粒径5-25mm,含泥量不大于1。选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。(3)细骨料:采用中砂,平均粒径大于0.5mm,含泥量不大于5。选用平均粒径较大的中、粗砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。 (4)粉煤灰:由于混凝土的浇筑方式为泵送,为了改善混凝土的和易性便于泵送,考虑掺加适量的粉煤灰。按照规范要求,采用矿渣硅酸盐水泥拌制大体积粉煤灰混凝土时,其粉煤灰取代水泥的最大限量为25%。粉煤灰对水化热、改善混凝土和易性有利,但掺加粉煤灰的混凝土早期极限抗拉值均有所降低,对混凝土抗渗抗裂不利,因此粉煤灰的掺量控制在10以内,采用外掺法,即不减少配合比中的水泥用量。按配合比要求计算出每立方米混凝土所掺加粉煤灰量。 (5)外加剂:设计无具体要求,通过分析比较及过去在其它工程上的使用经验,混凝土确定采用(减水剂),每立方米混凝土2kg,减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。2、混凝土配合比 (1)混凝土采用由搅拌站供应的商品混凝土,因此要求混凝土搅拌站根据现场提出的技术要求,提前做好混凝土试配。 (2)混凝土配合比应提高试配确定。按照国家现行《混凝土结构工程施工及验收规范》、《普通混凝土配合比设计规程》及《粉煤灰混凝土应用技术规范》中的有关技术要求进行设计。 (3)粉煤灰采用外掺法时仅在砂料中扣除同体积的砂量。另外应考虑到水泥的供应情况,以满足施工的要求。 3、现场准备工作 (1)基础底板钢筋及柱、墙插筋应分段尽快施工完毕,并进行隐蔽工程验收。 (2)基础底板上的地坑、积水坑采用组合钢模板支模,不合模数部位采用木模板支模。 (3)将基础底板上表面标高抄测在柱、墙钢筋上,并作明显标记,供浇筑混凝土时找平用。 (4)浇筑混凝土时预埋的测温管及保温随需的塑料薄膜、草席等应提前准备好。 (5)项目经理部应与建设单位联系好施工用电,以保证混凝土振捣及施工照明用。 (6)管理人员、施工人员、后勤人员、保卫人员等昼夜排班,坚守岗位,各负其责,保证混凝土连续浇灌的顺利进行。 三、大体积混凝土温度和温度应力计算 (计附后) 根据业主及设计要求,对基础底板混凝土进行温度检测;基础底板混凝土中部中心点的温升高峰值,该温升值一般略小于绝热温升值。一般在混凝土浇筑后3d左右产生,以后趋于稳定不在升温,并且开始逐步降温。规范规定,对大体积混凝土养护,应根据气候条件采取控温措施,并按需要测定浇筑后的混凝土表面和内部温度,将温差控制在设计要求的范围内;当设计无具体,要求时,温差不宜超过25度;本工程设计无具体要求,即按规范执行。表面温度的控制可采取调整保温层的厚度。

水泥水化热测定方法

《水泥水化热测定方法(溶解热法))GB /T 12959-91 1 主题内容与适用范围 本标准规定了用溶解热法测定水泥水化热试验的方法原理、仪器设备、试验步骤及结果计算等。 本标准适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥和其他指定采用本方法的水泥品种。 2 方法原理 本方法是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。 3 仪器设备 3.1 热量计:如图1所示。由保温水槽、内筒、广口保温瓶、贝克曼差示温度计、搅拌装置等主要部件组成。另配一个曲颈玻璃漏斗和一个直颈装酸漏斗。 3.1.1 保温水槽:水槽内外壳之间装有隔热层,内壳横断面为椭圆形的金属筒,横断面长轴450mm I短轴300mm,深310mm,容积约30L。并装有控制水位的溢流管。溢流管高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中的酸液。 3.1.2 内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm,筒内衬有软木层或泡沫塑料。筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧的孔分别安装加料漏斗和贝克曼差示温度计。 3.1.3广口保温瓶:容积药为600mL,当盛满比室温高约5℃的水,静置30min时,其冷却速度不得超过0.001℃/ min·℃。 3.1.4 贝克曼差示温度计(以下简称贝氏温度计):精度为0.01℃,最大差示温度为5~6℃,插人酸液部分须涂以石蜡或其他耐氢氟酸的涂料。

水泥水化热研究与分析

水泥水化热研究与分析 摘要: 在水泥较长的散热过程中,水泥浆会逐渐凝结和硬化。水泥内部物质处于高能状态,随着时间推移,水泥浆体性质将会趋向于稳定。针对于水泥水化热的研究,不仅可以保证结构物的施工质量,还能适当降低工程成本造价,本文首先介绍了影响水泥水化热大小的影响因素以及计算法方法,然后根据笔者经验讲述了几种降低水泥水化热的措施。 关键词:水泥水化热、措施、配合比、增加、热量 引言 随着国家经济的快速发展,越来越多的工程建筑拔地而起,市场对于水泥需求量也是越来越大。水泥在水化过程中产生的热量将会聚集在结构物内部不易散失出去,将会导致混凝土温度提高,随着混凝土龄期增加,绝热升温将会在2至4天内达到最高状态,在未受地基约束的部位,如果混凝土的内外温差过大,内部温度较高的混凝土约束外强度远大于其抗拉强度,将在混凝土的表层产生拉应力,若此时混凝土的抗拉强度不足以抵抗这种拉应力时就会产生表层温度裂缝。若养护不当,表面裂缝将会进一步发展成深层裂缝。在受地基约束的部位,将会产生较小的压应力。因混凝土的散热系数较小,它从最高温度降至稳定温度需要较长时间,在此期间,混凝土的变形模量有了很大的增长,较小的变形就能产生较大的应力。由于混凝土的早期体积变形,主要来自于水泥的水化热温升,并且降低水化热是防止混凝土早期开裂的有效途径,因此,我们有必要对水泥混凝土的水化热进行研究,以尽量避免温度裂缝的出现。 一、水化热的计算与分析 1、水泥水化热分析 水泥在水化时会发生温度变化,这主要源于几种无水化合物组分的溶解热和几种水化物在溶液中的沉淀热。这些热值的代数和就是水泥在任何龄期下的水化热。国家标准GB T 12959-2008规定了水泥水化热的测定方法,但是水泥水化热的测定较复杂,一般水泥厂都不会配备有这方面的仪器,有些水泥厂曾经添置过水泥水化热的测试仪器,但也没能很好地使用,关键是水化热测试对仪器和操作技术的要求较高,一般的工人难以熟练掌握该技术。水泥水化热大小与水泥内部矿物质成分有一定的关系,在同等量的水泥情况下,具有C3A的水泥水化热最大,其次是C3S,最后是C4AF。水化热越大,水泥浆体单位时间内放出热量也将会越多。工程实践中一般是通过增加三氧化二铁与氧化铁含量之比作为降低C3A的指标,为了达到更好的效果,可以在上述基础上,对C3S含量进一步降低。 2、我国水泥水化热情况分析 我国在很多水泥里面都会添加不同数量的材料,如何对水泥水化热过程中释

什么叫水泥的水化热

什么叫水泥的水化热?影响水化热的主要因素有哪些? 水泥与水作用放出的热,称为水化热,以焦/克(J/g)表示。 影响水泥水化热的因素很多,包括水泥熟料矿物组成、水灰比、养护温度、水泥细度、混合材掺量与质量等,但主要是决定于熟料矿物的组成与含量。水泥主要矿物中,完全水化放出的热量,最大的是C3A,其次是C3S,再次之是C4AF。因此,降低C3A含量对限制水泥的水化热是有利的。 水泥生产中"两磨一烧"是指什么? 因为水泥生产过程分为三个阶段,即石灰质原料、粘土质原料、以及少量的校正原料,(立窑生产还要加入一定量的煤)经破碎或烘干后,按一定比例配合、磨细,并制备为成分合适、质量均匀的生料,称之为第一阶段:生料粉磨;然后将生料加入水泥窑中煅烧至部分熔融,得到以硅酸钙为主要成分的水泥熟料,称之为第二阶段:熟料煅烧;熟料加入适量的石膏,有时还加入一些混合材料,共同磨细为水泥,成为第三阶段:水泥粉磨。所以大家把水泥生产过程简称为:"两磨一烧"。 什么是水泥混合材?加入混合材的作用是什么? 在水泥生产过程中,为改善水泥性能、调节水泥标号而加到水泥中的矿物质材料,称之为水泥混合材料。在水泥中掺加混合材料不仅可以调节水泥标号与品种,增加水泥产量,降低生产成本,而且在一定程度上改善水泥的某些性能,满足建筑工程中对水泥的特殊技术要求。此外,还可以综合利用大量工业废渣,具有环保和节能的重要意义。 水化热 指物质与水化合时所放出的热。此热效应往往不单纯由水化作用发生,所以有时也用其他名称。例如氧化钙水化的热效应一般称为消解热。水泥的水化热称为硬化热比较确切,因其中包括水化、水解和结晶等一系列作用。水化热可在量热器中直接测量,也可通过熔解热间接计算。 水化热高的水泥不得用在大体积混凝土工程中,否则会使混凝土的内部温度大大超过外部,从而引起较大的温度应力,使混凝土表面产生裂缝,严重影响混凝土的强度及其他性能。 水化热对冬季施工的混凝土工程较为有利,能提高其早期强度。 在使用水化热较高的水泥时,应采取措施来防止混凝土内部的水化热过高。 也称水合热、水和能...... 在大体积的混凝土工程当中,由于聚集在制品内部的水化热不容易散出,常使制品内部的水化热在50到60度,由于温度应力作用使水泥产生膨胀性的裂缝,为此可以采用工程措施减轻水化热 降低水泥水化热 混凝土配合比设计: 对配合比设计的主要要求是:既要保证设计强度,又要大幅度降低水化热,既要使混凝土具有良好的和易性、可靠性,又要降低混凝土中水泥和水的含量。经过与商品混凝土供应单位合作进行反复试验,通过几十组的混凝土试配,设计了较满意的配合比。 1)、充分利用混凝土的后期强度,减少每立方米混凝土中的水泥用量,选用京都P.0.425

水泥水化热试验方法

水泥水化热试验方法

标准适用于测定水泥水化热。 本标准是在热量计周围温度不变条件下,直接测定热量计内水泥胶砂温度的变化 ,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7天内的水化热(单位是卡/ 克)。 注:水泥水化7天今期的水化热可按附录方法推算,但试验结果有争议时,以实测法 为准。 一、仪器设备 1.热量计 (1)保温瓶:可用备有软木塞的五磅广口保温瓶,内深约22厘米,内径为8.5 厘米。 (2)截锥形圆筒:用厚约0.5毫米的铜皮或白铁皮制成,高17厘米,上口径7.5 厘米,底径为6.5厘米。 (3)长尾温度计:0-50℃,刻度精确至0.1℃。 2.恒温水槽 水槽容积可根据安放热量计的数量及温度易于控制的原则而定,水槽内水的温度应准 确控制在20±0.1℃,水槽应装有下列附件: (1)搅拌器。 (2)温度控制装置:可采用低压电热丝及电子继电器等自动控制。 (3)温度计:精确度为±0.1℃。

(4)固定热量计用的支架与夹具。 二、准备工作 3.温度计:须在15、20、25,30、35及40℃范围内,用标准温度计进行校核。 4·软木塞盆:为防止热量计的软木塞盖渗水或吸水,其上、下走向及周围应用 蜡涂封。较大孔洞可先用胶泥堵封,然后再涂蜡。封蜡前先将软木塞中心钻一插温度计用 的小孔并称重,底面封蜡后再称其重以求得蜡重,然后在小孔中插入温度计。温度计插入 的深度应为热量计中心稍低一些。离软木塞底面约12厘米,最后再用蜡封软木塞上表面以 及其与温度计间的空隙。 5.套管:温度计在插入水泥胶砂中时,必须先插入一端封口的薄玻璃营管或铜 套管,其内径较温度计大约2毫米,长约12厘米,以免温度计与水泥胶砂直接接触。 6.保温瓶、软木塞、截锥形圆筒、温度计等均需编号并称量,每个热量计的部 件不宜互换,否则需重新计算热量计的平均热容量。 三、热量计热容量的计算 7.热量计的平均热容量C,按下式计算: g g1 C=0.2×── +0.45×── +0.2×g2+0.095×g3+

如何降低水泥水化热

如何降低水泥水化热 一、选用合理配比: 对配合比设计的主要要求是:既要保证设计强度,又要大幅度降低水化热,既要使混凝土具有良好的和易性、可靠性,又要降低混凝土中水泥和水的含量。 1、在保证混凝土强度情况下,尽量多掺加粉煤灰,减少混凝土使用量。粉煤灰掺量在大体积砼中掺粉煤灰是减少水泥用量、降低水泥水化热的好方法。 2、选择良好级配的粗骨料,严格控制其含泥量,并加强混凝土的振捣,提高混凝土的密实度和抗拉强度,降低收缩变形,保证施工质量。 3、各种材料水泥、粉煤灰、外加剂含碱量均较低,砂石级配良好,并掺加相应的掺合料、减水剂,以改善混凝土和易性和降低水灰比,以达到减少水泥用量,降低水化热的目的。施工浇筑的混凝土塌落度严格控制在180±20mm。 二、合理安排施工程序: 1、分段(以后浇带为界限分开)分层(每50cm一层)浇筑,混凝土在浇筑过程中均匀上升,避免混凝土拌和物堆积造成过大的高差。 2、浇筑后及时排除表面积水(泌水),加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。 三、温度控制 1、降低混凝土浇筑温度: 根据《混凝土结构施工及验收规范》规定,混凝土浇筑温度不宜超过28℃,要求商品混凝土供应站混凝土的出罐温度不得高于25℃。现场对浇筑的混凝土每4h进行一次浇筑温度的测量,浇筑温度均控制在16℃-23℃,从而避免了产生较高的内部温度。 2、加强测温和温度监测: 根据《混凝土结构施工及验收规范》规定,当设计无具体要求时,混凝土内外温差不宜高于25℃,在施工过程中,我们进行了严密的测温,及时调整混凝土的保温及养护措施,使混凝土的温度梯度不致过大,从而有效地控制有害裂缝的出现。2m厚的混凝土内部最高温度控制在70℃左右,最大温差均控制在25℃以内。 3、控制混凝土降温速度,延缓降温速率: 在降温过程中,尤其是初期,降温不宜过快。降温速率一般控制在2~4%℃/d。减缓降温有利于混凝土强度增长,并充分发挥应力松弛效应,使混凝土不宜出现裂缝。

降低水泥水化热

降低水泥水化热 混凝土配合比设计: 对配合比设计的主要要求是: 既要保证设计强度,又要大幅度降低水化热,既要使混凝土具有良好的和易性、可靠性,又要降低混凝土中水泥和水的含量。经过与商品混凝土供应单位合作进行反复试验,通过几十组的混凝土试配,设计了较满意的配合比。 1)、充分利用混凝土的后期强度,减少每立方米混凝土中的水泥用量,选用京都P.0.425水泥,水泥用量仅为380kg/m3。而且选用的水泥质量稳定,而且泌水较少。 2)、在保证混凝土强度情况下,尽量多掺加粉煤灰,减少混凝土使用量。粉煤灰掺量为70kg/m3,占水泥用量的18%。在大体积砼中掺粉煤灰是减少水泥用量、降低水泥水化热的好方法。根据试验得出,每增加10kg水泥,其水化热将使混凝土的温度相应升降1℃。 3)、根据多方比较,选用祥业公司生产的PPT-P2泵送剂、EA-1膨胀剂作为掺加剂。 PPT-P2减水率17%,可有效减少泌水;EA-1掺量为水泥重量的7.9%,7天混凝土限制膨胀率3.3×10-4。掺膨胀剂的作用是补偿收缩。 4)、砂、石均选用B类集料:控制含泥量在允许范围内。 以上各种材料水泥、粉煤灰、外加剂含碱量均较低,砂石级配良好,并掺加相应的掺合料、减水剂,以改善混凝土和易性和降低水灰比,以达到减少水泥用量,降低水化热的目的。施工浇筑的混凝土塌落度严格控制在180±20mm。 (二)、提高混凝土的极限拉伸强度 1、选择良好级配的粗骨料,严格控制其含泥量,并加强混凝土的振捣,提高混凝土的密实度和抗拉强度,降低收缩变形,保证施工质量。 2、浇筑后及时排除表面积水(泌水),加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。 3、合理安排施工程序: 分段(以后浇带为界限分开)分层(每50cm一层)浇筑,混凝土在浇筑过程中均匀上升,避免混凝土拌和物堆积造成过大的高差。 本工程实际施工中主楼大体积混凝土中连续浇筑了5200m3。混凝土拌合物塌落度控制在163~200mm,和易性极好。保证了混凝土不离析、不堵管,基本上不泌水,混凝土强度都达到并高于了设计要求。 (三)、温度控制 混凝土降温收缩的程度取决于混凝土的降温差,平面尺寸和降温速度。 降温值= 浇筑温度+ 温升值—环境温度 其中温升值的影响因素主要有水泥品种和用量,用水量,大体积混凝土的散热条件(主要包括浇筑方法、混凝土厚度、混凝土的表面的散热能力和其它降温措等)。 合理地选择原材料,尽可能降低水泥用量,优化配合比,避免产生过大的水化热温升。提高粉煤灰掺量。以上措施有效地降低了水化热温升。使混凝土内部温度不致过高。 1、降低混凝土浇筑温度: 由混凝土内部温度计算公式(T max = Tj +△T;Tj为浇注温度)可以看出:浇筑温度与混凝土内部最高温度的大小

降低水泥水化热

降低水泥水化热.txt3努力奋斗,天空依旧美丽,梦想仍然纯真,放飞自我,勇敢地飞翔于梦想的天空,相信自己一定做得更好。4苦忆旧伤泪自落,欣望梦愿笑开颜。5懦弱的人害怕孤独,理智的人懂得享受孤独如何降低水泥水化热 【中国水泥网】作者: 单位: 【2008-06-17】 降低水泥水化热 混凝土配合比设计: 对配合比设计的主要要求是:既要保证设计强度,又要大幅度降低水化热,既要使混凝土具有良好的和易性、可靠性,又要降低混凝土中水泥和水的含量。经过与商品混凝土供应单位合作进行反复试验,通过几十组的混凝土试配,设计了较满意的配合比。 1)、充分利用混凝土的后期强度,减少每立方米混凝土中的水泥用量,选用京都P.0.425水泥,水泥用量仅为380kg/m3。而且选用的水泥质量稳定,而且泌水较少。 2)、在保证混凝土强度情况下,尽量多掺加粉煤灰,减少混凝土使用量。粉煤灰掺量为70kg/m3,占水泥用量的18%。在大体积砼中掺粉煤灰是减少水泥用量、降低水泥水化热的好方法。根据试验得出,每增加10kg水泥,其水化热将使混凝土的温度相应升降1℃。 3)、根据多方比较,选用祥业公司生产的PPT-P2泵送剂、EA-1膨胀剂作为掺加剂。 PPT-P2减水率17%,可有效减少泌水;EA-1掺量为水泥重量的7.9%,7天混凝土限制膨胀率3.3×10-4。掺膨胀剂的作用是补偿收缩。 4)、砂、石均选用B类集料:控制含泥量在允许范围内。 以上各种材料水泥、粉煤灰、外加剂含碱量均较低,砂石级配良好,并掺加相应的掺合料、减水剂,以改善混凝土和易性和降低水灰比,以达到减少水泥用量,降低水化热的目的。施工浇筑的混凝土塌落度严格控制在180±20mm。 (二)、提高混凝土的极限拉伸强度 1、选择良好级配的粗骨料,严格控制其含泥量,并加强混凝土的振捣,提高混凝土的密实度和抗拉强度,降低收缩变形,保证施工质量。 2、浇筑后及时排除表面积水(泌水),加强早期养护,提高混凝土早期或相应龄期的抗拉强度和弹性模量。 3、合理安排施工程序: 分段(以后浇带为界限分开)分层(每50cm一层)浇筑,混凝土在浇筑过程中均匀上升,避免混凝土拌和物堆积造成过大的高差。 本工程实际施工中主楼大体积混凝土中连续浇筑了5200m3。混凝土拌合物塌落度控制在163~200mm,和易性极好。保证了混凝土不离析、不堵管,基本上不泌水,混凝土强度都达到

水泥水化热测试方法

A A 附录A (规范性附录) 水泥水化热测试方法 A.1范围 本方法适用于掺加混凝土水化温升抑制剂的水泥水化热的测试。 A.2原理 本方法是依据热量计在恒定的温度环境中,直接测定热量计内水泥砂浆(因水泥水化产生)的温度变化,通过计算热量计内积蓄的和散失的热量总和,求得水泥不同龄期内的水化热。 A.3仪器设备 符合GB/T12959中直接法(代用法)的规定。 A.4试验条件 成型试验室温度应保持在(20±2)℃,相对湿度不低于50%;试验期间水槽内的水温应保持在(20±0.1)℃。应用于日均气温大于25℃炎热气候的产品检测时,宜将砂浆初始温度控制在(30±2)℃,试验期间水槽内的水温设置为(30±0.1)℃,或由供需双方商定。 A.5试验步骤 A.5.1热量计参数测定 热量计热容量的计算,热量计散热常数的测定,热量计散热常数的计算,热量计散热常数的规定符合GB/T12959中直接法(代用法)的规定。 A.5.2水泥水化热测定 除以下步骤,其它均应符合GB/T12959中直接法(代用法)的规定: a)试验砂浆水灰比为0.4; b)温度采集时间间隔不超过10min; c)总热容量、水泥水化热的结果计算,水泥质量和水质量按照实际质量进行计算,计算结果保留 至0.1J/g。 A.5.324h水化热计算 24h水化热计算按照以下步骤:

a)以水化热达到30.0J/g的时间作为时间起点,如果测试点中没有30.0J/g,则以放热量大于且 最接近30.0J/g的时间为准,并记录此时的热量值为。 b)取(+24)h时的热量值为。 c)24h水化热按照式(A.1)计算: ……………………………………………(A.1) 式中: ——24h水化热,单位为焦耳每克(J/g); ——(0t+24)h时水化热,单位为焦耳每克(J/g); ——时水化热,单位为焦耳每克(J/g)。 每个砂浆水化热试验用两套热量计平行试验,两次试验结果相差小于12.0J/g时,取平均值作为此砂浆样品水化热结果;两次结果相差大于12.0J/g时,应重做试验。 A.5.47d水化热计算 符合GB/T12959中直接法(代用法)的规定,从加水后7min开始计算7d龄期时的水化热。 每个砂浆水化热试验用两套热量计平行试验,两次试验结果相差小于12.0J/g时,取平均值作为此砂浆样品水化热结果;两次结果相差大于12.0J/g时,应重做试验。 _________________________________

相关文档
相关文档 最新文档