文档库 最新最全的文档下载
当前位置:文档库 › 初中平面几何四个重要定理

初中平面几何四个重要定理

初中平面几何四个重要定理
初中平面几何四个重要定理

初中数学知识重点整理

-平面几何四个重要定理

四个重要定理:

梅涅劳斯(Menelaus)定理(梅氏线)

△ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、

R共线的充要条件是。

塞瓦(Ceva)定理(塞瓦点)

△ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的

充要条件是。

托勒密(Ptolemy)定理

四边形的两对边乘积之和等于其对角线乘积的充要条件是该

四边形内接于一圆。

西姆松(Simson)定理(西姆松线)

从一点向三角形的三边所引垂线的垂足共线的充要条件是

该点落在三角形的外接圆上。

例题:

1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证:

【分析】CEF截△ABD→(梅氏定理)

【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。

2.过△ABC的重心G的直线分别交AB、AC于E、F,

交CB于D。

求证:。

【分析】连结并延长AG交BC于M,则M为BC的中

点。

DEG截△ABM→(梅氏定理)

DGF截△ACM→(梅氏定理)

∴===1

【评注】梅氏定理

3. D、E、F分别在△ABC的BC、CA、AB边上,

,AD、BE、CF交成△LMN。

求S△LMN。

【分析】

【评注】梅氏定理

4.以△ABC各边为底边向外作相似的

等腰△BCE、△CAF、△ABG。求证:AE、BF、

CG相交于一点。

【分析】

【评注】塞瓦定理

5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。

【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则

CD=DA=AB,AC=BD。

由托勒密定理,

AC·BD=AD·BC+CD·AB。

【评注】托勒密定理

6.已知正七边形A 1A2A3A4A5A6A7。

求证:。(第21届全苏数学竞赛)

【分析】

【评注】托勒密定理

7.△ABC的BC边上的高AD的延长线交

外接圆于P,作PE⊥AB于E,延长ED交

AC延长线于F。

求证:BC·EF=BF·CE+BE·CF。

【分析】

【评注】西姆松定理(西姆松线)

8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比

为AM:AC=CN:CE=k,且B、M、N共线。

求k。(23-IMO-5)

【分析】

【评注】面积法

9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

求证:(1)a·R a≥b·d b+c·d c;

(2) a·R a≥c·d b+b·d c;

(3) R a+R b+R c≥2(d a+d b+d c)。

【分析】

【评注】面积法

10.△ABC中,H、G、O分别为垂心、

重心、外心。

求证:H、G、O三点共线,且HG=2GO。

(欧拉线)

【分析】

【评注】同一法

11.△ABC中,AB=AC,AD⊥BC于

D,BM、BN三等分∠ABC,与AD

相交于M、N,延长CM交AB于E。

求证:MB//NE。

【分析】

【评注】对称变换

12.G是△ABC的重心,以AG为

弦作圆切BG于G,延长CG交圆

于D。求证:AG2=GC·GD。

【分析】

【评注】平移变换

13.C是直径AB=2的⊙O上一点,P在△ABC内,若

PA+PB+PC的最小值是,求此时△ABC的面积S。

【分析】

【评注】旋转变换

费马点:

已知O是△ABC内一点,∠AOB=∠BOC=∠COA=120°;

P是△ABC内任一点,求证:PA+PB+PC≥OA+OB+OC。(O

为费马点)

【分析】将C C‘,O O’, P P‘,连结OO’、PP‘。则△B OO’、△B PP‘都是正三角形。

∴OO’=OB,PP‘=PB。显然△BO’C‘≌△BOC,△BP’C‘≌△BPC。

由于∠BO’C‘=∠BOC=120°=180°-∠BO’O,∴A、O、O‘、C’四点共线。

∴AP+PP‘+P’C‘≥AC’=AO+OO‘+O’C‘,即PA+PB+PC≥OA+OB+OC。

14.(95全国竞赛) 菱形ABCD的内切圆O与各边

分别交于E、F、G、H,在弧EF和弧GH上分别作

⊙O的切线交AB、BC、CD、DA分别于M、N、P、Q。

求证:MQ//NP。

【分析】由AB∥CD知:要证MQ∥NP,只需证

∠AMQ=∠CPN,

结合∠A=∠C知,只需证

△AMQ∽△CPN

←,AM·CN=AQ·CP。

连结AC、BD,其交点为内切圆心O。设MN与⊙O切于K,连结OE、OM、OK、ON、OF。记∠ABO=φ,∠MOK=α,∠KON=β,则

∠EOM=α,∠FON=β,∠EOF=2α+2β=180°-2φ。

∴∠BON=90°-∠NOF-∠COF=90°-β-φ=α

∴∠CNO=∠NBO+∠NOB=φ+α=∠AOE+∠MOE=∠AOM

又∠OCN=∠MAO,∴△OCN∽△MAO,于是,

∴AM·CN=AO·CO

同理,AQ·CP=AO·CO。

【评注】

15.(96全国竞赛)⊙O1和⊙O2与ΔABC的三边所在直线

都相切,E、F、G、H为切点,EG、FH的延长线交于P。

求证:PA⊥BC。

【分析】

【评注】

16.(99全国竞赛)如图,在四边形ABCD中,对角

线AC平分∠BAD。在CD上取一点E,BE与AC相交

于F,延长DF交BC于G。求证:∠GAC=∠EAC。

证明:连结BD交AC于H。对△BCD

用塞瓦定理,可得

因为AH是∠BAD的角平分线,由角

平分线定理,

可得,故

过C作AB的平行线交AG的延长线于I,过C作AD的平行线交AE的延长线于J。

则,

所以,从而CI=CJ。

又因为CI//AB,CJ//AD,故∠ACI=π-∠BAC=π-∠DAC=∠ACJ。

因此,△ACI≌△ACJ,从而∠IAC=∠JAC,即∠GAC=∠EAC。

已知AB=AD,BC=DC,AC与BD交于O,过O的任意

两条直线EF和GH与四边形ABCD的四边交于E、F、

G、H。连结GF、EH,分别交BD于M、N。求证:

OM=ON。(5届CMO)

证明:作△EOH△E’OH‘,则只需证E’、

M、H‘共线,即E’H‘、BO、GF三线共点。

记∠BOG=α,∠GOE’=β。连结E‘F交BO于K。只需证=1(Ceva逆定理)。

===1

注:筝形:一条对角线垂直平分另一条对角线的四边形。

对应于99联赛2:∠E’OB=∠FOB,且E‘H’、GF、BO三线共

点。求证:∠GOB=∠H‘OB。

事实上,上述条件是充要条件,且M在OB延长线上时结论仍然

成立。

证明方法为:同一法。

蝴蝶定理:P是⊙O的

弦AB的中点,过P点

引⊙O的两弦CD、EF,

连结DE交AB于M,连

结CF 交AB 于N 。求证:MP=NP 。

【分析】设GH 为过P 的直径,F

F’F,显然‘∈⊙O。又P∈GH,∴PF’=PF。∵PF PF‘,PA PB ,∴∠FPN=∠F’PM,PF=PF‘。

又FF’⊥GH,AN⊥GH,∴FF‘∥AB。∴∠F’PM+∠MDF‘=∠FPN+∠EDF’

=∠EFF‘+∠EDF’=180°,∴P、M 、D 、F‘四点共圆。∴∠PF’M=∠PDE=∠PFN。 ∴△PFN≌△PF‘M,PN=PM 。

【评注】一般结论为:已知半径为R 的⊙O 内一弦AB 上的一点P ,过P 作两条相交弦CD 、EF ,连CF 、ED 交AB 于M 、N ,已知OP=r ,P 到AB 中点的距离为a ,则

。(解析法证明:利用二次曲线系知识)

--面积问题和面积方法

基础知识

1.面积公式

由于平面上的凸多边形都可以分割成若干三角形,故在面积公式中最基本的是三角形的面积公式.它形式多样,应在不同场合下选择最佳形式使用.

设△ABC ,c b a ,,分别为角C B A ,,的对边,a h 为a 的高,R 、r 分别为△ABC 外接圆、内切圆的半径,)(21c b a p ++=

.则△ABC 的面积有如下公式: (1)a ABC ah S 21=

?; (2)A bc S ABC sin 2

1=? (3)))()((c p b p a p p S ABC ---=

? (4)pr c b a r S ABC =++=

?)(21 (5)R

abc S ABC 4=? (6)C B A R S ABC sin sin sin 22=?

(7))

sin(2sin sin 2C B C B a S ABC +=?

(8))(21a c b r S a ABC -+=

? (9))2sin 2sin 2(sin 2

12C B A R S ABC ++=? 2.面积定理

(1)一个图形的面积等于它的各部分面积这和;

(2)两个全等形的面积相等;

(3)等底等高的三角形、平行四边形、梯形(梯形等底应理解为两底和相等)的面积相等;

(4)等底(或等高)的三角形、平行四边形、梯形的面积的比等于其所对应的高(或底)的比;

(5)两个相似三角形的面积的比等于相似比的平方;

(6)共边比例定理:若△PAB 和△QAB 的公共边AB 所在直线与直线PQ 交于M ,则QM PM S S QAB PAB ::=??;

(7)共角比例定理:在△ABC 和△C B A '''中,若A A '∠=∠或?='∠+∠180A A ,则C A B A AC AB S S C B A ABC '

'?''?='''??. 3.张角定理:如图,由P 点出发的三条射线PC PB PA ,,,设α=∠APC ,β=∠CPB ,?<+=∠180βαAPB ,则C B A ,,三点共线的充要条件是:

PC

PA PB )sin(sin sin βαβα+=+. 例题分析

例1.梯形ABCD 的对角线BD AC ,相交于O ,且m S AOB =?,n S COD =?,求ABCD S 例2.在凸五边形ABCDE 中,设1=====?????EAB DEA CDE BCD ABC S S S S S ,求此五边形的面积.

例3.G 是△ABC 内一点,连结CG BG AG ,,并延长与AB CA BC ,,分别交于F E D ,,,△AGF 、△BGF 、△BGD 的面积分别为40,30,35,求△ABC 的面积.

例4.R Q P ,,分别是△ABC 的边BC AB ,和CA 上的点,且1====RC QR PQ BP ,求△ABC 的面积的最大值.

例5.过△ABC 内一点引三边的平行线DE ∥BC ,FG ∥CA ,HI ∥AB ,点I H G F E D ,,,,,都在△ABC 的边上,1S 表示六边形DGHEFI 的面积,2S 表示 △ABC 的面积.求证:213

2S S ≥. 例6.在直角△ABC 中,AD 是斜边BC 上的高,过△ABD 的内心与△ACD 的内心的直线分别交边AB 和AC 于K 和L ,△ABC 和△AKL 的面积分别记为S 和T .求证:

T S 2≥.

例7.锐角三角形ABC 中,角A 等分线与三角形的外接圆交于一点1A ,点1B 、1C 与此类似,直线1AA 与B 、C 两角的外角平分线将于一点0A ,点0B 、0C 与此类似.求证:

(1)三角形000C B A 的面积是六边形111CB BA AC 的面积的二倍;

(2)三角形000C B A 的面积至少是三角形ABC 的四倍.

例8.在△ABC 中,R Q P ,,将其周长三等分,且Q P ,在边AB 上,求证:9

2>??ABC PQR

S S . 例9.在锐角△ABC 的边BC 边上有两点E 、F ,满足CAF BAE ∠=∠,作AB FM ⊥,

AC FM ⊥(N M ,是垂足)

,延长AE 交△ABC 的外接圆于点D ,证明四边形AMDN 与△ABC 的面积相等.

三.面积的等积变换

等积变换是处理有关面积问题的重要方法之一,它的特点是利用间面积相等而进行相互转换证(解)题.

例10.凸六边形ABCDEF 内接于⊙O ,且13+===DC BC AB ,1===FA EF DE ,求此六边形的面积.

例11.已知ABC ?的三边c b a >>,现在AC 上取AB B A =',在BA 延长线上截取BC C B =',在CB 上截取CA A C =',求证:C B A ABC S S '''??>.

例12.C B A '''?在ABC ?内,

且ABC ?∽C B A '''?,求征:ABC AB C CA B BC A S S S S ?'?'?'?=++ 例13.在ABC ?的三边AB CA BC ,,上分别取点F E D ,,,使EA CE DC BD 3,3==,FB AF 3=,连CF BE AD ,,相交得三角形PQR ,已知三角形ABC 的面积为13,求三角形PQR 的面积.

例14.E 为圆内接四边形ABCD 的AB 边的中点,AD EF ⊥于F ,BC EH ⊥于H ,CD EG ⊥于G ,求证:EF 平分FH .

例15.已知边长为,,,c b a 的ABC ?,过其内心I 任作一直线分别交AC AB ,于N M ,点,求证:b

c a IN MI +≤. 例16.正△PQR ?正△R Q P ''',1a AB =,1b BC =,2a CD =,2b DE =, 3a EF =,3b FA =.求证:2

32221232221b b b a a a ++=++.

例17.在正ABC ?内任取一点O ,设O 点关于三边AB CA BC ,,的对称点分别为C B A ''',,,

则C C B B A A ''',,相交于一点P .

例18.已知CE AC ,是正六边形ABCDEF 的两条对角线,点N M ,分别内分ACCE ,且使

k CE

CN AC AM ==,如果N M B ,,三点共线,试求k 的值. 例19.设在凸四边形ABCD 中,直线CD 以AB 为直径的圆相切,求证:当且仅当BC ∥AD 时,直线AB 与以CD 为直径的圆相切. 训练题

1.设ABC ?的面积为102

cm ,F E D ,,分别是CA BC AB ,,边上的点,且,3,2cm DB cm AD ==若DBEF ABE S S =?,求ABE ?的面积.

2.过ABC ?内一点作三条平行于三边的直线,这三条直线将ABC ?分成六部份,其中,三部份为三角形,其面积为321,,S S S ,求三角形ABC ?的面积.

3.在ABC ?的三边CA BC AB ,,上分别取不与端点重合的三点L K M ,,,求证:AML ?,

CLK BKM ??,中至少有一个的面积不大于ABC ?的面积的4

1. 4.锐角ABC ?的顶角A 的平分线交BC 边于L ,又交三角形的外接圆于N ,过L 作AB 和

AC 边的垂线LK 和LM ,垂足是M K ,,

求证:四边形AKNM 的面积等于ABC ?的 面积. 5.在等腰直角三角形ABC 的斜边BC 上取一点D ,使BC DC 3

1=,作AD BE ⊥交AC 于E ,求证:EC AE =.

6.三条直线n m l ,,互相平行,n l ,在m 的两侧,且m l ,间的距离为2,n m ,间的距离为1,若正ABC ?的三个顶点分别在n m l ,,上,求正ABC ?的边长.

7.已知321P P P ?及其内任一点P ,直线P P i 分别交对边于i Q (3,2,1=i ),证明:在3

32211,,PQ P P PQ P P PQ P P 这三个值中,至少有一个不大于2,并且至少有一个不小于2. 8.点D 和E 分别在ABC ?的边AB 和BC 上,点K 和M 将线段DE 分为三等分,直线BK 和BM 分别与边AC 相交于点T 和P ,证明:AC TP 3

1≤. 9.已知P 是ABC ?内一点,延长CP BP AP ,,分别交对边于C B A ''',,,其中x AP =,w C P B P A P z CP y BP ='='='==,,,且3,23==++w z y x ,求xyz 之值.

10.过点P 作四条射线与直线l l ',分别交于D C B A ,,,和D C B A '''',,,,求证:

C B

D A D C B A BC AD CD AB '

'?''''?''=??. 11.四边形ABCD 的两对对边的延长线分别交L K ,,过L K ,作直线与对角线BD AC ,的延长线分别F G ,,求证:KG

LG KF LF =. 12.G 为ABC ?的重心,过G 作直线交AC AB ,于F E ,,求证:GF EG 2≤.

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高” A B C D F P

还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、 E 、 F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交于点P ,直线CP 交AB 于点D /,则据塞瓦定理有 / / 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

初中八年级数学几何定理符号语言

初中数学“图形与几何”内容 在中考中,几何解答题、几何证明题是热点内容,在解答过程中经常要用到定义、定理,而具体的过程需要用到符号语言表示,因此学生必须熟练掌握每个定理的几何表示法,下面就把初中阶段八年级涉及的所有几何定理的符号语言归纳出来:

初中数学“图形与几何”内容 八年级上册 20、全等三角形的性质:全等三角形的对应边、对应角相等。 F E D A B C 21、全等三角形的判定方法: (1)边边边:三边对应相等的两个三角形全等。(SSS ) 几何语言:如图所示 ∵AB=DE ,BC=EF ,AC=DF ∴△ABC ≌△DEF (2)边角边:两边和它们的夹角对应相等的两个三角形全等。(SAS ) 几何语言:如图所示 ∵AB=DE ,∠A=∠D ,AC=DF ∴△ABC ≌△DEF (3)角边角:两角和它们的夹边对应相等的两个三角形全等。(ASA ) 几何语言:如图所示 ∵∠A=∠D ,AB=DE ,∠B=∠E ∴△ABC ≌△DEF (4)角角边:两角和其中一个角的对边对应相等的两个三角形全等。(AAS ) 几何语言:如图所示 ∵∠A=∠D ,∠B=∠E ,BC=EF ∴△ABC ≌△DEF (5)斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。(H L ) 22、角平分线的性质:角的平分线上的点到角的两边的距离相等。 23、推论:角的内部到角的两边的距离相等的点在角的平分线上。 24、轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点连线的垂直平分线。 E F P A B C D

25 、线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等。 26、推论:与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。 27、轴对称: (1)由一个平面图形可以得到它关于一条直线成轴对称的图形,这个图形与原图形的形状、大小完全相同; (2)新图形式的每一点,都是原图形上的某一点关于直线的对称点; (3)连接任意一对对应点的线段被对称轴垂直平分。 28、用坐标表示轴对称: 点(x ,y)关于x 轴对称的点的坐标为(x ,-y); 点(x ,y)关于y 轴对称的点的坐标为(- x ,y)。 29、等腰三角形的性质: (1)等腰三角形的两个底角相等。(等边对等角) 几何语言: 如图所示,在△ABC 中 ∵AB =AC ∴∠B =∠C (等边对等角) (2)等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。 30、等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边) 几何语言: 如图所示,在△ABC 中 ∵∠B =∠C ∴AB =AC (等角对等边) N M A B C D C C C

平面几何基本定理

. 一.平面几何 1. 勾股定理(毕达哥拉斯定理)(广义勾股定理)(1)锐角对边 的平方,等于其他两边之平方和,减去这两边中的一边和另一边在这边上的射影乘积的两倍. (2)钝角对边的平方等于其他两边的平方和,加上这两边中的一边与另一边在这边上的射影乘积的两倍. 2. 射影定理(欧几里得定理) 3. 中线定理(巴布斯定理)设△ABC 的边BC 的中点为P ,则 有)(22222BP AP AC AB +=+; 中线长:2 222 22a c b m a -+= 4. 垂线定理:2 2 2 2 BD BC AD AC CD AB -=-?⊥ 高 线 长 : C b B c A a bc c p b p a p p a h a sin sin sin ))()((2===---= 5. 角平分线定理:三角形一个角的平分线分对边所成的两条线 段与这个角的两边对应成比例. 如△ABC 中,AD 平分∠BAC ,则AC AB DC BD =;(外角平分线定 理) 角平分线长:2 cos 2)(2A c b bc a p bcp c b t a +=-+= (其中 p 为周长一半) 6. 正弦定理: R C c B b A a 2sin sin sin ===, (其中R 为三角形外接圆半径) 7. 余弦定理:C ab b a c cos 2222 -+= 8. 张角定理:AB DAC AC BAD AD BAC ∠+∠=∠sin sin sin 9. 斯特瓦尔特(Stewart )定理:设已知△ABC 及其底边上B 、C 两点间的一点D ,则有AB 2 ·DC +AC 2 ·BD -AD 2 ·BC =BC ·DC ·BD 10. 圆周角定理:同弧所对的圆周角相等,等于圆心角的一 半.(圆外角如何转化?) 11. 弦切角定理:弦切角等于夹弧所对的圆周角 12. 圆幂定理:(相交弦定理:垂径定理:切割线定理(割线定 理):切线长定理:) 13. 布拉美古塔(Brahmagupta )定理: 在圆内接四边形ABCD 中,AC ⊥BD ,自对角线的交点P 向一边作垂线,其延长线必平分对边 14. 点到圆的幂:设P 为⊙O 所在平面上任意一点,PO =d ,⊙ O 的半径为r ,则d 2-r 2就是点P 对于⊙O 的幂.过P 任作 一直线与⊙O 交于点A 、B ,则PA ·PB = |d 2 -r 2 |.“到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线,如果此二圆相交,则该轨迹是此二圆的公共弦所在直线”这个结论.这条直线称为两圆的“根轴”.三个圆两两的根轴如果不互相平行,则它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点. 15. 托勒密(Ptolemy )定理:圆内接四边形对角线之积等于两 组对边乘积之和,即AC ·BD =AB ·CD +AD ·BC ,(逆命题成立) .(广义托勒密定理)AB ·CD +AD ·BC ≥AC ·BD 16. 蝴蝶定理:AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过 点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM . 17. 费马点:定理1等边三角形外接圆上一点,到该三角形较近 两顶点距离之和等于到另一顶点的距离;不在等边三角形外接圆上的点,到该三角形两顶点距离之和大于到另一点的距 离.定理2 三角形每一内角都小于120°时,在三角形内必存在一点,它对三条边所张的角都是120°,该点到三顶点距离和达到最小,称为“费马点”,当三角形有一内角不小于120°时,此角的顶点即为费马点 18. 拿破仑三角形:在任意△ABC 的外侧,分别作等边△ABD 、 △BCE 、△CAF ,则AE 、AB 、CD 三线共点,并且AE =BF = CD ,这个命题称为拿破仑定理. 以△ABC 的三条边分别向 外作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 1 、⊙ A 1 、⊙ B 1的圆心构成的△——外拿破仑的三角形,⊙ C 1 、 ⊙A 1 、⊙B 1三圆共点,外拿破仑三角形是一个等边三角形;△ABC 的三条边分别向△ABC 的内侧作等边△ABD 、△BCE 、△CAF ,它们的外接圆⊙C 2 、⊙A 2 、⊙B 2的圆心构成的△——内拿破仑三角形,⊙C 2 、⊙A 2 、⊙B 2三圆共点,内拿破仑三角形也是一个等边三角形.这两个拿破仑三角形还具有相同的中心 19. 九点圆(Nine point round 或欧拉圆或费尔巴赫圆):三角形 中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,九点圆具有许多有趣的性质,例如: (1)三角形的九点圆的半径是三角形的外接圆半径之半 (2)九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点 (3)三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕 20. 欧拉(Euler )线:三角形的外心、重心、九点圆圆心、垂心 依次位于同一直线(欧拉线)上. 21. 欧拉(Euler )公式:设三角形的外接圆半径为R ,内切圆半 径为r ,外心与内心的距离为d ,则d 2 =R 2 -2Rr . 22. 锐角三角形的外接圆半径与内切圆半径的和等于外心到各 边距离的和. 23. 重心:三角形的三条中线交于一点,并且各中线被这个点分 成2:1的两部分;)3 ,3(C B A C B A y y y x x x G ++++ 重心性质:(1)设G 为△ABC 的重心,连结AG 并延长交BC

初中几何定理大全之欧阳歌谷创编

初中几何概念、定理 欧阳歌谷(2021.02.01) 平面几何 1.两点之间的所有连线中,线段最短。 2.两点之间线段的长度叫做这两点之间的距离。 3.经过两点有一条直线,并且只有一条直线。 4.将一个角分成相等的两部分的射线叫做这个角的角平分线。 5.如果两个角的和是一个直角,这两个角叫做互为余角。简称 互余,其中的一个角叫做另一个角的余角。 6.如果两个角的和是一个平角,这两个角叫做互为补角。简称 互补,其中的一个角叫做另一个角的补角。 7.同角(或等角)的余角相等。 8.同角(或等角)的补角相等。 9.对顶角相等。 10.在同一平面内,不相交的两条直线叫做平行线。 11.经过直线外一点,有且只有一条直线与已知直线平行。

12.如果两条直线都与第三条直线平行,那么这两条直线相互 平行。 13.如果两条直线相交成直角,那么这两条直线互相垂直。互 相垂直的两条直线的交点叫做垂足。 14.当两条直线互相处置时,其中一条直线叫做另一条直线的 垂线。 15.经过一点有且只有一条直线与已知直线垂直。 16.直线外一点到直线上各点连接的所有线段中,垂线段最 短。 17.直线外一点到这条直线的垂线段的长度,叫做点到直线的 距离。 18.同位角相等,两直线平行。 19.内错角相等,两直线平行。 20.同旁内角互补,两直线平行。 21.两直线平行,同位角相等。 22.两直线平行,内错角相等。 23.两直线平行,同旁内角互补。 24.在平面内,将一个图形沿着某个方向移动一定的距离,这 样的图形运动叫做图形的平移。平移不改变图形的形状、大小。 25.如果两条直线互相平行,那么其中一条直线上任意两点到 另一直线的距离相等,这个距离称为平行线之间的距离。

初中数学几何定理大全

初中数学公理和定理 一、公理(不需证明) 1、两直线被第三条直线所截,如果同位角相等,那么这两条 直线平行; 2、两条平行线被第三条直线所截,同位角相等; 3、两边和夹角对应相等的两个三角形全等; (SAS) 4、角及其夹边对应相等的两个三角形全等; (ASA) 5、三边对应相等的两个三角形全等; (SSS) 6、全等三角形的对应边相等,对应角相等. 7、线段公理:两点之间,线段最短。 8、直线公理:过两点有且只有一条直线。 9、平行公理:过直线外一点有且只有一条直线与已知直线 平行 10、垂直性质:经过直线外或直线上一点,有且只有一条 直线与已知直线垂直 以下对初中阶段所学的公理、定理进行分类: 一、直线与角 1、两点之间,线段最短。 2、经过两点有一条直线,并且只有一条直线。 3、同角或等角的补角相等,同角或等角的余角相等。 4、对顶角相等 二、平行与垂直 5、经过直线外或直线上一点,有且只有一条直线与已知直线垂直。 6、经过已知直线外一点,有且只有一条直线与已知直线平行。 7、连接直线外一点与直线上各点的所有线段中,垂线段最短。 8、夹在两平行线间的平行线段相等 9、平行线的判定: (1)同位角相等,两直线平行; (2)内错角相等,两直线平行; (3)同旁内角互补,两直线平行; (4)垂直于同一条直线的两条的直线互相平行. (5)如果两条直线都和第三条直线平行,那么这两条直线也平行 10、平行线的性质: (1)两直线平行,同位角相等。 (2)两直线平行,内错角相等。 (3)两直线平行,同旁内角互补。 三、角平分线、垂直平分线、图形的变化(轴对称、平称、旋转) 11、角平分线的性质:角平分线上的点到这个角的两边的距离相等. 12、角平分线的判定:到一个角的两边距离相等的点在这个角的平分线上. 13、线段垂直平分线的性质:线段的垂直平分线上的点到这条线段的两个端点的距离相等. 14、线段垂直平分线的判定:到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上. 15、轴对称的性质: (1)如果图形关于某一直线对称,那么连结对应点的线段被对称轴垂直平分. (2)对应线段相等、对应角相等。 16、平移:经过平移,图形上的每个点都沿着相同方向移动了相同的距离,平移后,新图形和原图形的形状和大小都没有发现改变,即它们是全等图形。即对应线段平行且相等,对应角相等,对应点所连的线段平行且相等 17、旋转对称: (1)图形中每一点都绕着旋转中心旋转了同样大小的角度(2)对应点到旋转中心的距离相等; (3)对应线段相等、对应角相等 18、中心对称: (1)具有旋转对称的所有性质: (2)中心对称图形上的每一对对应点所连成的线段都被对 称中心平分 四、三角形: (一)一般性质 19、三角形内角和定理:三角形的内角和等于180° 20、三角形外角的性质: ①三角形的一个外角等于与它不相邻的两个内角的和; ②三角形的一个外角大于任何一个与它不相邻的内角; ③三角形的外角和等于360° 21、三边关系: (1)两边之和大于第三边; (2)两边之差小于第三边 22、三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半. 23、三角形的三边的垂直平分线交于一点(外心),这点 到三个顶点的距离(外接圆半径)相等。 24、三角形的三条角平分线交于一点(内心),这点到三 边的距离(内切圆半径)相等。 (二)特殊性质: 25、等腰三角形、等边三角形 (1)等腰三角形的两个底角相等.(简写成“等边对等角”)(2)如果一个三角形有两个角相等,那么这两个角所对的 边也相等.(简写成“等角对等边”) (3)“三线合一”定理:等腰三角形的顶角平分线、底边 上的中线和底边上的高互相重合 (4)等边三角形的三个内角都相等,并且每一个内角都等 于60°. (5)三个角都相等的三角形是等边三角形。 (6)有一个角是60°的等腰三角形是等边三角形 26、直角三角形: (1)直角三角形的两个锐角互余; (2)勾股定理:直角三角形两直角边的平方和等于斜边的 平方; (3)勾股定理逆定理:如果一个三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形. (4)直角三角形斜边上的中线等于斜边的一半. (5)在直角三角形中,如果一个锐角等于30°,那么它所 对的直角边等于斜边的一半. (6)三角形一边的中线等于这边的一半,这个三角形是直 角三角形。 五、四边形 27、多边形中的有关公理、定理: (1)四边形的内角和为360° (2)N边形的内角和:( n-2)×180°. (3)任意多边形的外角和都为360° 28、平行四边形的性质: (1)平行四边形的对边平行且相等; (2)平行四边形的对角相等; (3)平行四边形的对角线互相平分。

(完整版)初中平面几何知识点汇总(一)

平面几何知识点汇总(一) 知识点一相交线和平行线 1.定理与性质 对顶角的性质:对顶角相等。 2.垂线的性质: 性质1:过一点有且只有一条直线与已知直线垂直。 性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。 3.平行公理:经过直线外一点有且只有一条直线与已知直线平行。 平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。 4.平行线的性质: 性质1:两直线平行,同位角相等。 性质2:两直线平行,内错角相等。 性质3:两直线平行,同旁内角互补。 5.平行线的判定: 判定1:同位角相等,两直线平行。 判定2:内错角相等,两直线平行。 判定3:同旁内角相等,两直线平行。 知识点二三角形 一、三角形相关概念 1.三角形的概念由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形要点:①三条线段;②不在同一直线上;③首尾顺次相接. 2.三角形中的三种重要线段 (1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线. (2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. (3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的限度叫做三角形的高线,简称三角形的高.

二、三角形三边关系定理 ①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b. ②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c, c>b-a. 注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可 三、三角形的稳定性 三角形的三边确定了,那么它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理. 四、三角形的内角 结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180° 结论2:在直角三角形中,两个锐角互余. 注意:①在三角形中,已知两个内角可以求出第三个内角 如:在△ABC中,∠C=180°-(∠A+∠B) ②在三角形中,已知三个内角和的比或它们之间的关系,求各内角. 如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数. 五、三角形的外角 1.意义:三角形一边与另一边的延长线组成的角叫做三角形的外角. 2.性质: ①三角形的一个外角等于与它不相邻的两个内角的和. ②三角形的一个外角大于与它不相邻的任何一个内角. ③三角形的一个外角与与之相邻的内角互补 六、多边形 ①多边形的对角线 2)3 ( n n条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°

专题平面几何的四个重要定理

专题平面几何的四个重 要定理 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

竞赛专题讲座06 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、 Q、R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点 的充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求 证:。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的 中点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、 BF、CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的 比为AM:AC=CN:CE=k,且B、M、N共 线。求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、 R b、R c表示O到A、B、C的距离。

平面几何60条著名定理

1、勾股定理(毕达哥拉斯定理) 2、射影定理(欧几里得定理) 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、三角形的三条高线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足为L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线(欧拉线)上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:r=(s-a)(s-b)(s-c)s,s为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC×BD 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

初中平面几何定理全套

直线、角、平行、垂直 (直线公理)经过两点有一条直线,并且只有一条直线。 注:简称“两点确定一条直线”。 (距离公理)在所有联结两点的线中,线段最短。 注:简称“两点之间线段最短”。 两条直线相交,只有一个交点。 同角(或等角)的余角相等。 同角(或等角)的补角相等。 对顶角相等。 经过一点有一条而且只有一条直线垂直于已知直线。 直线外一点与直线上各点联结的所有线段中,垂线段最短。 平行公理经过直线外一点,有一条而且只有一条直线和这条直线平行。 如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 (平行线判定) 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 注:简称“同位角相等,两直线平行”。课本作为公理。 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。 注:简称“内错角相等,两直线平行”。 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。 注:简称“同旁内角互补,两直线平行”。 (平行线性质) 两条平行线被第三条直线所截,同位角相等。 注:简称“两直线平行,同位角相等”。 两条平行线被第三条直线所截,内错角相等。 注:简称“两直线平行,内错角相等”。 两条平行线被第三条直线所截,同旁内角互补。 注:简称“两直线平行,同旁内角互补”。 如果一个角的两边分别平行于另一个角的两边,则那么这两个角相等或互补。 定理如果两条直线都和第三条直线垂直,那么这两条直线平行。 定理如果一条直线和两条平行线中的一条垂直,那么,这条直线也和另一条垂直。 三角形 定理(三角形不等式)三角形任何两边的和大于第三边。 推论三角形任何两边的差小于第三边。 三角形内角和定理三角形三个内角的和等于180°。 推论1 三角形的一个外角等于和它不相邻的两个内角的和。

第十九讲平面几何中的几个著名定理

第十九讲平面几何中的几个著名定理 几何学起源于土地测量,几千年来,人们对几何学进行了深入的研究,现已发展成为一门具有严密的逻辑体系的数学分支.人们从少量的公理出发,经过演绎推理得到不少结论,这些结论一般就称为定理.平面几何中有不少定理,除了教科书中所阐述的一些定理外,还有许多著名的定理,以这些定理为基础,可以推出不少几何事实,得到完美的结论,以至巧妙而简捷地解决不少问题.而这些定理的证明本身,给我们许多有价值的数学思想方法,对开阔眼界、活跃思维都颇为有益.有些定理的证明方法及其引伸出的结论体现了数学的美,使人们感到对这些定理的理解也可以看作是一种享受.下面我们来介绍一些著名的定理. 1.梅内劳斯定理 亚历山大里亚的梅内劳斯(Menelaus,约公元100年,他和斯巴达的Menelaus是两个人)曾著《球面论》,着重讨论球面三角形的几何性质.以他的名子命名的“梅内劳斯定理”现载在初等几何和射影几何的书中,是证明点共线的重要定理. 定理一直线与△ABC的三边AB,BC,CA或延长线分别相交于X,Y,Z,则 证过A,B,C分别作直线XZY的垂线,设垂足分别为Q,P,S,见图3-98.由△AXQ∽△BXP得

同理 将这三式相乘,得 说明(1)如果直线与△ABC的边都不相交,而相交在延长线上,同样可证得上述结论,但一定要有交点,且交点不在顶点上,否则定理的结论中的分母出现零,分子也出现零,这时定理的结论应改为 AX×BY×CZ=XB×YC×ZA, 仍然成立. (2)梅内劳斯定理的逆定理也成立,即“在△ABC 的边AB和AC上分别取点X,Z,在BC的延长线上取点Y,如果 那么X,Y,Z共线”.梅内劳斯定理的逆定理常被用来证明三点共线. 例1 已知△ABC的内角∠B和∠C的平分线分别为BE和CF,∠A的外角平分线与BC的延长线相交于D,求证:D,E,F共线. 证如图3-99有 相乘后得

初中平面几何四个重要定理

初中数学知识重点整理 -平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC的三边BC、CA、AB或其延长线上有点P、Q、R,则P、Q、 R共线的充要条件是。 塞瓦(Ceva)定理(塞瓦点) △ABC的三边BC、CA、AB上有点P、Q、R,则AP、BQ、CR共点的 充要条件是。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该 四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是 该点落在三角形的外接圆上。 例题: 1.设AD是△ABC的边BC上的中线,直线CF交AD于F。求证: 。

【分析】CEF截△ABD→(梅氏定理) 【评注】也可以添加辅助线证明:过A、B、D之一作CF的平行线。 2.过△ABC的重心G的直线分别交AB、AC于E、F, 交CB于D。 求证:。 【分析】连结并延长AG交BC于M,则M为BC的中 点。 DEG截△ABM→(梅氏定理) DGF截△ACM→(梅氏定理) ∴===1 【评注】梅氏定理 3. D、E、F分别在△ABC的BC、CA、AB边上, ,AD、BE、CF交成△LMN。 求S△LMN。 【分析】 【评注】梅氏定理 4.以△ABC各边为底边向外作相似的 等腰△BCE、△CAF、△ABG。求证:AE、BF、 CG相交于一点。

【分析】 【评注】塞瓦定理 5.已知△ABC中,∠B=2∠C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。则 CD=DA=AB,AC=BD。 由托勒密定理, AC·BD=AD·BC+CD·AB。 【评注】托勒密定理 6.已知正七边形A 1A2A3A4A5A6A7。 求证:。(第21届全苏数学竞赛) 【分析】 【评注】托勒密定理 7.△ABC的BC边上的高AD的延长线交 外接圆于P,作PE⊥AB于E,延长ED交 AC延长线于F。 求证:BC·EF=BF·CE+BE·CF。 【分析】 【评注】西姆松定理(西姆松线) 8.正六边形ABCDEF的对角线AC、CE分别被内分点M、N分成的比 为AM:AC=CN:CE=k,且B、M、N共线。 求k。(23-IMO-5) 【分析】 【评注】面积法 9. O为△ABC内一点,分别以d a、d b、d c表示O到BC、CA、AB的距离,以R a、R b、R c表示O到A、B、C的距离。

认识平面几何的61个著名定理

【认识平面几何的61个著名定理,自行画出图形来学习,★部分要求证明出来】 ★1、勾股定理(毕达哥拉斯定理) ★2、射影定理(欧几里得定理) ★3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线和两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 ★6、三角形各边的垂直平分线交于一点。 ★7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC 的外心为O ,垂心为H ,从O 向BC 边引垂线,设垂足不L ,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 ★13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: ()()()s c s b s a s r ---=,s 为三角形周长的一半 ★14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC 的边BC 的中点为P ,则有AB 2+AC 2=2(AP 2+BP 2) 16、斯图尔特定理:P 将三角形ABC 的边BC 分成m 和n 两段,则有n×AB 2+m×AC 2=BC×(AP 2+mn ) 17、波罗摩及多定理:圆内接四边形ABCD 的对角线互相垂直时,连接AB 中点M 和对角线交点E 的直线垂直于CD 18、阿波罗尼斯定理:到两定点A 、B 的距离之比为定比m:n (值不为1)的点P ,位于将线段AB 分成m:n 的内分点C 和外分点D 为直径两端点的定圆周上 ★19、托勒密定理:设四边形ABCD 内接于圆,则有AB×CD+AD×BC=AC×BD

初中数学所有几何证明定理

初中数学所有几何证明定理 证明题的思路 很多几何证明题的思路往往是填加辅助线,分析已知、求证与图形,探索证明。对于证明题,有三种思考方式: (1)正向思维。对于一般简单的题目,我们正向思考,轻而易举可以做出,这里 就不详细讲述了。 (2)逆向思维。顾名思义,就是从相反的方向思考问题。在初中数学中,逆向思 维是非常重要的思维方式,在证明题中体现的更加明显。 同学们认真读完一道题的题干后,不知道从何入手,建议你从结论出发。 例如: 可以有这样的思考过程:要证明某两条边相等,那么结合图形可以看出,只要 证出某两个三角形相等即可;要证三角形全等,结合所给的条件,看还缺少什 么条件需要证明,证明这个条件又需要怎样做辅助线,这样思考下去……这样 我们就找到了解题的思路,然后把过程正着写出来就可以了。 (3)正逆结合。对于从结论很难分析出思路的题目,可以结合结论和已知条件认 真的分析。 初中数学中,一般所给的已知条件都是解题过程中要用到的,所以可以从已知 条件中寻找思路,比如给我们三角形某边中点,我们就要想到是否要连出中位线,或者是否要用到中点倍长法。给我们梯形,我们就要想到是否要做高,或 平移腰,或平移对角线,或补形等等。正逆结合,战无不胜。 证明题要用到哪些原理?

要掌握初中数学几何证明题技巧,熟练运用和记忆如下原理是关键。 下面归类一下,多做练习,熟能生巧,遇到几何证明题能想到采用哪一类型原理来解决问题。 一、证明两线段相等 1.两全等三角形中对应边相等。 2.同一三角形中等角对等边。 3.等腰三角形顶角的平分线或底边的高平分底边。 4.平行四边形的对边或对角线被交点分成的两段相等。 5.直角三角形斜边的中点到三顶点距离相等。 6.线段垂直平分线上任意一点到线段两段距离相等。 7.角平分线上任一点到角的两边距离相等。 8.过三角形一边的中点且平行于第三边的直线分第二边所成的线段相等。 9.同圆(或等圆)中等弧所对的弦或与圆心等距的两弦或等圆心角、圆周角所对的弦相等。 10.圆外一点引圆的两条切线的切线长相等或圆内垂直于直径的弦被直径分成的两段相等。 11.两前项(或两后项)相等的比例式中的两后项(或两前项)相等。 12.两圆的内(外)公切线的长相等。 13.等于同一线段的两条线段相等。 二、证明两个角相等 1.两全等三角形的对应角相等。 2.同一三角形中等边对等角。 3.等腰三角形中,底边上的中线(或高)平分顶角。

平面几何的几个重要定理--托勒密定理

托勒密定理:圆内接四边形中,两条对角线的乘积(两对角线所包矩形的面积)等于两组 对边乘积之和(一组对边所包矩形的面积与另一组对边所包矩形的面积之 和). 即:ABCD AB CD AD BC AC BD ?+?≥? 定理:在四边形中,有: ABCD 并且当且仅当四边形内接于圆时,等式成立; () ABCD E BAE CAD ABE ACD AB BE ABE ACD AB CD AC BE AC CD AB AE BAC EAD ABC AED AC AD BC ED AD BC AC ED AC AD AB CD AD BC AC BE ED AB CD AD BC AC BD E BD A B C ∠=∠∠=∠ ??∴=??=? =∠=∠∴?? ∴=??=? ∴?+?=?+ ∴?+?≥? 证:在四边形内取点,使, 则:和相似 又且和相似 且等号当且仅当在上时成立,即当且仅当、、、 一、直接应用托勒密定理 例1如图2,P是正△ABC外接圆的劣弧上任一点(不与B、C重合), 求证:PA=PB+PC. 分析:此题证法甚多,一般是截长、补短,构造全等三角形,均为 繁冗.若借助托勒密定理论证,则有PA·BC=PB·AC+PC·AB, ∵AB=BC=AC.∴PA=PB+PC. 二、完善图形借助托勒密定理 例2证明“勾股定理”:在Rt△ABC中,∠B=90°,求证:AC2=AB2+BC2 证明:如图,作以Rt△ABC的斜边AC为一对角线的矩形ABCD,显然ABCD是 圆内接四边形. 由托勒密定理,有AC·BD=AB·CD+AD·BC.① 又∵ABCD是矩形,∴AB=CD,AD=BC,AC=BD.② 把②代人①,得AC2=AB2+BC2. 例3如图,在△ABC中,∠A的平分线交外接∠圆于D,连结BD, 求证:AD·BC=BD(AB+AC). 证明:连结CD,依托勒密定理,有AD·BC=AB·CD+AC·BD. ∵∠1=∠2,∴BD=CD. 故AD·BC=AB·BD+AC·BD=BD(AB+AC). 三、构造图形借助托勒密定理 例4若a、b、x、y是实数,且a2+b2=1,x2+y2=1.求证:ax+by≤1. 证明:如图作直径AB=1的圆,在AB两边任作Rt△ACB和Rt△ADB, 使AC=a,BC=b,BD=x,AD=y. 由勾股定理知a、b、x、y是满足题设条件的. 据托勒密定理,有AC·BD+BC·AD=AB·CD. ∵CD≤AB=1,∴ax+by≤1. 四、巧变原式妙构图形,借助托勒密定理 例5已知a、b、c是△ABC的三边,且a2=b(b +c),求证:∠A=2∠B. 分析:将a2=b(b+c)变形为a·a=b·b+bc,从而联想到托勒密定理,进 而构造一个等腰梯形,使两腰为b,两对角线为a,一底边为c. 证明:如图,作△ABC 的外接圆,以A为圆心,BC为半径作弧交圆于 D,连结BD、DC、DA.∵AD=BC,ACD BDC =∴∠ABD=∠BAC. 又∵∠BDA=∠ACB(对同弧),∴∠1=∠2. 依托勒密定理,有BC·AD=AB·CD+BD·AC.① 而已知a2=b(b+c),即a·a=b·c+b2.② ∴∠BAC=2∠ABC. 五、巧变形妙引线 借肋托勒密定理 例6在△ABC中,已知∠A∶∠B∶∠C=1∶2∶4, 分析:将结论变形为AC·BC+AB·BC=AB·AC,把三角形和圆联系起 来,可联想到托勒密定理,进而构造圆内接四边形. 如图,作△ABC的外接圆,作弦BD=BC,边结AD、CD. 在圆内接四边形ADBC中,由托勒密定理, 有AC·BD+BC·AD=AB·CD 易证AB=AD,CD=AC,∴AC·BC+BC·AB=AB·AC, 1.已知△ ABC 中,∠ B=2∠ C。求证:AC2=AB2+AB·BC。 【分析】过A作BC的平行线交△ABC的外接圆于D,连结BD。 则CD=DA=AB,AC=BD。由托勒密定理,AC·BD=AD·BC+CD·AB。 2.ABC BC P BC AC AB PK PL PN BC AC AB PK PL PM ? =+ 由外接圆的弧上一点分别向边、与作垂线、和, 求证:

人教版初中数学几何定理大全

人教版初中数学几何定理大全 1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等 4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直 6.直线外一点与直线上各点连接的所有线段中,垂线段最短 7.平行公理:经过直线外一点,有且只有一条直线与这条直线平行 8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1 :直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) :有两边和它们的夹角对应相等的两个三角形全等 23角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) :有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) :有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 :在角的平分线上的点到这个角的两边的距离相等 28 定理2 :到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角) 31 推论1 :等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等

平面几何四大定理

- - - 平面几何四个重要定理 四个重要定理: 梅涅劳斯(Menelaus)定理(梅氏线) △ABC 的三边BC 、CA 、AB 或其延长线上有点P 、Q 、R , 则P 、Q 、R 共线的充要条件是 1RB AR QA CQ PC BP =??。 塞瓦(Ceva)定理(塞瓦点) △ABC 的三边BC 、CA 、AB 上有点P 、Q 、R ,则AP 、BQ 、CR 共点的充要条件是 1RB AR QA CQ PC BP =??。 托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 西姆松(Simson)定理(西姆松线) 该点落在三角形的外接圆上。 例题: 1. 设AD 是△ABC 的边BC 上的中线,直线CF 交AD 于F 。 求证: FB AF 2ED AE = 。 【分析】CEF 截△ABD → 1FA BF CB DC ED AE =??(梅氏定理) 【评注】也可以添加辅助线证明:过A 、B 、D 之一作CF 的平行 线。

DEG 截△ABM →1DB MD GM AG EA BE =??(梅氏定理) DGF 截△ACM →1DC MD GM AG FA CF =??(梅氏定理) ∴FA CF EA BE +=MD AG )DC DB (GM ?+?=MD GM 2MD 2GM ??=1 【评注】梅氏定理 3. D 、E 、F 分别在△ABC 的BC 、CA 、AB 边上, λ===EA CE FB AF DC BD ,AD 、BE 、CF 交成△LMN 。 求S △LMN 。 【分析】 【评注】梅氏定理 4. 以△ABC 各边为底边向外作相似的等腰△BCE 、△CAF 、 △ABG 。求证:AE 、BF 、CG 相交于一点。 【分析】 B

相关文档
相关文档 最新文档