文档库 最新最全的文档下载
当前位置:文档库 › 《结构力学习题集》(下)-结构的动力计算习题及答案

《结构力学习题集》(下)-结构的动力计算习题及答案

《结构力学习题集》(下)-结构的动力计算习题及答案
《结构力学习题集》(下)-结构的动力计算习题及答案

第九章 结构的动力计算

一、判断题:

1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。

2、仅在恢复力作用下的振动称为自由振动。

3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。

4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。

5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。

(a)(b)

6、图示组合结构,不计杆件的质量,其动力自由度为5个。

7、忽略直杆的轴向变形,图示结构的动力自由度为4个。

8、由于阻尼的存在,任何振动都不会长期继续下去。

9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题:

10、图示梁自重不计,求自振频率ω。

EI l

W l/4

11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k,求自振频率ω。

EI

W o o

l/2l/2

k 12、求图示体系的自振频率ω。

m l EI EI

l

0.5l

0.5

2

13、求图示体系的自振频率ω。EI = 常数。

m

l

l0.5

14、求图示结构的自振频率ω。

m

l l l l

EI=常数

15、求图示体系的自振频率ω。EI =常数,杆长均为l 。

m

16、求图示体系的自振频率ω。杆长均为l 。

EA=o o

EI

m

EI

EI

17、求图示结构的自振频率和振型。

m

m

EI EI EI l /2

l /2

l /2

18、图示梁自重不计,W EI ==??2002104kN kN m 2

,,求自振圆频率ω。

EI W

A

B

C

2m

2m

19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。

h

EI

EI

W

20、图示刚架横梁∞=EI 且重量W 集中于横梁上。求自振周期T 。

h

EI

EI

W

EI 2

21、求图示体系的自振频率ω。各杆EI = 常数。

m

a a

a

2

22、图示两种支承情况的梁,不计梁的自重。求图a 与图b 的自振频率之比。

m

l /2

l /2EI

EI

(a)

m

l /2

l /2

EI

EI

(b)

23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。求水平自振周期T 。

C

3W m 3m

4m

24、忽略质点m 的水平位移,求图示桁架竖向振动时的自振频率ω。各杆EA = 常数。

m

m 4m

4m

3

25、图示体系E P W I =?====-2102052048004kN /cm s kN, kN, cm 214

,,θ。求质点处最大动位移和最大动弯矩。

W

EI 4m

m

2sin θP t

26、图示体系EI k =??==2102035kN m s 2-1,,θ×1055N /m, P =×N 103

kN W 10=。求质点处最大动位移和最大动弯矩。

m

2W

k

m

2sin θP t

27、求图示体系在初位移等于l/1000,初速度等于零时的解答。θωω=020

.( 为自振频率),不计阻尼。

sin θP t

m EI

EI

EI =1o o l

l

28、图示体系受动力荷载作用,不考虑阻尼,杆重不计,求发生共振时干扰力的频率θ。

m

EI EI =1l

/3

l P t

sin( ) θo o

29、已知:m P ==38t, kN ,干扰力转速为150r/min ,不计杆件的质量,EI =??6103kN m 2。求质点的最大动力位移。

2sin θP t

m

2m

m

EI EI

30、图示体系中,电机重kN 10=W 置于刚性横梁上,电机转速n r =500/min ,水平方向干扰力为) sin(kN 2)(t t P θ?=,已知柱顶侧移刚度kN/m 1002.14

?=k ,自振频率ω=-100s 1

。求稳态振动的振幅及最大动力弯矩图。

( )

P t W

m

4

31、图示体系中,kN 10=W ,质点所在点竖向柔度917.1=δ,马达动荷载P t t ()sin()=4kN θ,马达转速n r =600/min 。求质点振幅与最大位移。

W

P t ()

32、图示体系中,W =8kN ,自振频率ω=-100s 1

,电机荷载P (t ) = 5kN ·sin(θt ),电机转速n = 550r/min 。求梁的最大与最小弯矩图。

W 2m

2m

P t ()

33、求图示体系支座弯矩M A 的最大值。荷载P t P t (),.==004sin θθω 。

l l /2

m

/2

P t ()

A

34、求图示体系的运动方程。

l

l

m

0.50.5EI

P t sin( )

θ

35、求图示体系稳态阶段动力弯矩幅值图。θωω=05

.( 为自振频率),EI = 常数,不计阻尼。

l

l

m

l

sin( ) θP t

36、图示体系分布质量不计,EI = 常数。求自振频率。

m 22

a

a

m 1

37、图示简支梁EI = 常数,梁重不计,m m m m 122==,,已求出柔度系数()δ123718=a EI /。求自振频率及主振型。

2

a

a

1

a

m 1m 2

38、求图示梁的自振频率及主振型,并画主振型图。杆件分布质量不计。

2

a

a

1

a

m m EI= 常 数

39、图示刚架杆自重不计,各杆EI = 常数。求自振频率。

m 2m

m

2m

2m

12

40、求图示体系的自振频率和主振型。EI = 常数。

l l m

l m

/3

/3

/3

41、求图示体系的自振频率及主振型。EI = 常数。

m

l /2l /2m

l /2l /2

42、求图示体系的自振频率及相应主振型。EI = 常数。

m

/2l 2l

m

/2l /2l /2

l

43、求图示结构的自振频率和主振型。不计自重。

l /2l /2

m

l

EI= 常 数

44、求图示体系的自振频率和主振型。不计自重,EI = 常数。

m m a

1

2

a

a

45、求图示体系的第一自振频率。

m

m

l /2

l /2

l /2

l /2

EI

=常 数

46、求图示体系的自振频率。已知:m m m 12== 。EI = 常数。

m m 2

1

m

1.51m

1.5m

1m

1m

47、求图示体系的自振频率和主振型,并作出主振型图。已知:m m m 12==,EI = 常数。

2m

m 1

m 2

4m 4m

48、求图示对称体系的自振频率。EI = 常数。

l l m

l l m

/2

/2

/2

/2

49、图示对称刚架质量集中于刚性横粱上,已知:m 1=m ,m 2=2m 。各横梁的层间侧移刚度均为k 。求自振频率及主振型。

m 1

m 2

2

1

50、求图示体系的自振频率并画出主振型图。

m o

o E I =1EI

EI

m o

o E I =1EI

EI

6m

6m

51、求图示体系的自振频率和主振型。EI = 常数。

m m l l

l

l

1

2

EI 0=o o

EI 0=o o EI

EI

EI

EI

52、用最简单方法求图示结构的自振频率和主振型。

m

m

EI= l l

l

l

常 数

53、求图示体系的频率方程。

l

l

m

m

EI= 常 数

54、求图示体系的自振频率和主振型。

EI =常数。

m

2a a

a

55、求图示体系的自振频率和主振型。不计自重,EI = 常数。

m

m a /2

a /2

a /2

a /2

12

56、求图示体系的自振频率。设 EI = 常数。

m

l

l

57、图示体系,设质量分别集中于各层横梁上,数值均为m 。求第一与第二自振频率之比ωω12:。

m m l

l

EI 0

2EI

EI

o o

EI

2EI

EI 0

o o

58、求图示体系的自振频率和主振型。

l

l

l

m m 2EI =∞ EI =∞ EI

1

EI 1

2EI 1

2EI 1

59、求图示体系的自振频率和主振型。m m m m 122==,。

l

l

m 1m

2

EI

EI 2EI

2

60、求图示桁架的自振频率。杆件自重不计。

W

m 3m

3EA

EA

m

4

61、求图示桁架的自振频率。不计杆件自重,EA = 常数。

m

m m

m

334

62、作出图示体系的动力弯矩图,已知:θ=082567

3

.EI

ml 。 0.5l

0.5l

EI EI 1

2

m m ()

P t sin θ

63、作图示体系的动力弯矩图。柱高均为h ,柱刚度EI =常数。

l l

m

1

2

θ=13257

.EI

mh

30.50.5EI 0=∞

EI 0=∞

m

2P t

sin θ

64、绘出图示体系的最大动力弯矩图。已知:动荷载幅值P =10kN ,θ=-209441.s ,质量m =500kg ,a =2m ,EI =??48

1062.N m 。 m

m

()P t sin

θ()P t sin θa

4a

65、已知图示体系的第一振型如下,求体系的第一频率。EI = 常数。

振型101618054011 ..???????

?

?? /2

m

l

l

m

m l

1

2

3

第九章 结构的动力计算(参考答案)

1、(X)

2、(X)

3、(X)

4、(X)

5、(O)

6、(O)

7、(O)

8、(X)

9、(X)

10、ω=19253

EIg Wl / 11、()ω=4kg /W

12、)/(16,48/332311ml EI EI l ==ωδ

13、)5/(48,48/5323ml EI EI l ==ωδ

14、

3

3477.11124ml EI

ml EI ==

ω

15、)5/(3,3/5323ml EI EI l ==ωδ

16、3

2311

9,/9ml EI

l EI k =

=ω 17、()

06424 , 5

.123213231

=--=A l m A l m EI ml

EI

ωωω, 0)248(3 , 28

.423

213232=-+=A EI l m A l m ml

EI ωωω 振 型 1

1.1 1.1

1

0.45

1.11

0.45

振 型 2

18、1s 2.54-=ω

19、()

T Wh

EIg =263

π

/

20、()

T Wh

EIg =2483

π/

21、)/(889.23ma EI =ω

22、2:1:=b a ωω

23、)/(56.16EAg W T =

24、m EA m 5.10//1==δω

25、cm

Ystp Y M ml EI 3029.1,,127.3)/1/(1,s 25.24)2/8/(Max Mstp Dmax 22-1====-===μμωθμω

26、ωδ==+=-1143143416//(//).m m EI k s 1 μθω=-=11152222/(/).

m,

006.0stp max ==y Y D μ ,

m, kN 61.7Dmax ==stp M M μ

27、

),

sin(04167.1)sin(20833.0)cos(001.0,1000/ ,),cos()cos()sin(,04067.1 ,/st st st 2

2st t Y t Y t l Y l B Y A t m P

t B t A Y m P Y D

D D θωωω

θ

μ

θμωωωμω+-===+

+===

28、)/(273ml EI =θ

29、-1s 92.38=ω ,-1s 71.15=θ ,19.1=μ ,m 10/09.23max =y 30、,378.1 ,s 36.52-1==βθ

,mm 27.0 m,9610.1st 4st ===-y A y β

M

M F M D 756.2==β

31、,s 83.62 ,s 50.71-1-1==θω

;β=4389. ;A F ==βδ337.mm ;

m m 28.5)(max =+=δβF w y

32、θβ==575961496.,.s -1

,M F M M D ==β748. ,

{}M M M M T

D 52.0 48.15st max =+=

33、3

33 , 3l EI

k ml EI ==

ω,

运动方程: m

P

y y

k ky y m P 165, 21=+??=+ω 特征解y *

y P m t P m

t *sin .sin =

-

=51600595

2

2

2

ωθωθθ

11

()l P M t l P t l P l P Pl

l y

m M A A 0max 000*56.0, sin 56.0 sin )2

0595.0(2==+=+=θθ 34、 16)sin(533

t P y l EI y

m θ=

+

35、

))(sit (3,3/4,4/3st t EI

Pl

Y EI Pl Y θμ-=

== Pl P

13/24

Pl /12

36、{}EI

ma /1211.02123.3/1T

32==ωλ

)/(874.2,)/(558.03231ma EI ma EI ==ωω

37、{}EI ma /07350.0125984

.0/1T

32==ωλ

)/(|6886.3,)/(8909.03231ma EI ma EI ==ωω

954

.0/1/2111=Y Y ,()097.2/1/2212

-=Y Y

38、EI

a EI a 6/,3/231232211

===δδδ,

)/(414.1,)/(0954.13231ma EI ma EI ==ωω

{}λω==1561223

////ma EI T

,Y Y Y Y 112112221111//,//()==-

M 1M 2a

1

1

a

第 二 主 振 型

第 一 主 振 型

1

1

1

1

39、

EI EI EI 2834122211-===

δδδ,,,??????==779.0554.812

EI m ωλ

m EI

m EI 1328.1,3419

.021==ωω

40、对称:,162/53EI l =δ

,)/(69.52/131ml EI =ω

反对称:,/00198.03EI l =δ,)/(46.222/132ml EI =ω

41、EI

l EI l EI l 96/5,24/,48/532112322311

====δδδδ

3

231/054.9,/736.2ml EI ml EI ==ωω

1

1

1.766

0.565

{}[]Φ1105653=.,()

T

分{}[]Φ21

1766

3=-.()T

42、对称:,)/(191.2 ,24/52/132311

ml EI EI l ==ωδ

反对称:δδδ1132112348===l EI l EI /,/ ,δ223

48=l EI /,

,

)/(69.7,)/(5.02

/1322/131ml EI ml EI ==ωω

{}[]Y 1=1 0.03 -0.03T

,{}[]Y 2=0 1 1T

,,{}[]Y 3=1 -31.86 31.86T

43、ωω13

23

12

82==.,.,EI ml EI

ml 1

.01

,4.101,

16,382,482212211132112322311-======Y Y Y Y EI l EI l EI l δδδδ 44、

3

21321/2.397.0;/0975.007.1ma EI EI ma ??

????=??????=ωωλλ

61.3/;28.0/)

2(2)2(1)1(2)1(1+=-=A A A A

45、3

/48ml EI =ω

46、

),

/(7708.1,/)(4393.0),/(3189.0),/(1818.5),

/(6875.1),/(1),/(5.4212

121122211m EI m EI EI m EI m EI EI EI ====-====ωωλλδδδδ

47、

)

/(6664.2),/(6645.12)

3/(32),/(4),3/(142122211211EI m EI m EI EI EI ===-===λλδδδδ

5

.0:1:,2:1:)/(6124.0,)/(281.022********=ΦΦ-=ΦΦ==m EI m EI ωω 48、3

1/47.10ml EI =ω,,/86.1332

ml EI =ω

49、k k k k k k k 112212212====-,,

ωωω2

12228080219204682

15102=

??????==k m k m k

m

..,.,.

Y Y Y Y 112112221178110281

==-.,. 50、k i l k k i l k i l 11221122222

6630===-=/,/,/,

ω11/20146

=.(/)EI m ,2/12)/(381.0ml EI =ω,

{}[]{}[]T

T

4.24- 1,0.236 121=Φ=Φ

51、k EI l k EI l k EI l 113123223

1812998==-=/,/,/,

ωω132

316925245==.

,.EI m l EI

m l

52、利用对称性: 反对称:δω11

3

13366245===l EI

EI m l EI

m l ,. , 对称:δω113

23

3

9696737===l EI

EI m l EI

m l ,. 53、列幅值方程:

δωδωδωδω1121222122222222m x m y x m x m y y +=+=???,

2121

0211122

221112m m m m ωδδωωδδω--=, δδδδ11

312213223

3243====l EI l EI l EI

,, m

m x

ω2

m y

ω2

m x

ω2

x

y

1

1

δ11

δ21

δ12

δ22

54、对称:δω22323

0183333032==.,.a EI EI

ma

反对称:δω11313

407071==a EI EI

ma ,. 55、对称:

1

1

δ113

24=a EI /(),ω1324=

EI ma /()

反对称:

1

1

δ113

7768=a EI /(),ω137687=EI ma /()

56、ωω132********==./,./EI ml EI ml

57、

设k EI l =243

/ 频率方程:

()()()

22,024,03222422

2

2

±=

=+-=---m

k

k km m k

m k m k ωωωωω

828.5:11:1716.0:21==ωω

58、ωω14

24

1248=

=EI

ml EI

ml ,,ΦΦΦΦ11211222051==-., 59、k EI l k EI l k EI

l 113123223

3351=

=-=,, []M m EI ml EI

ml =???

??

?==100216735071323

,.,. ωω,[]Φ=-??????1114020132.. 60、W EAg W EAg /506.0,/379.021==ωω

61、ωω12034048==././EA m EA m , 62、

EI

Pl A A EI l EI

l EI l 3

213223

123111397.00531.0348524??

????=??????===,,

,δδδ 061332.Pl

0047612

.Pl

63、

结构力学计算题及标准答案

《结构力学》计算题61.求下图所示刚架的弯矩图。 a a a a q A B C D 62.用结点法或截面法求图示桁架各杆的轴力。 63.请用叠加法作下图所示静定梁的M图。 64.作图示三铰刚架的弯矩图。 65.作图示刚架的弯矩图。

66. 用机动法作下图中E M 、L QB F 、R QB F 的影响线。 1m 2m 2m Fp 1 =1m E B A 2m C D 67. 作图示结构F M 、QF F 的影响线。 68. 用机动法作图示结构影响线L QB F F M ,。 69. 用机动法作图示结构R QB C F M ,的影响线。 70. 作图示结构QB F 、E M 、QE F 的影响线。

71.用力法作下图所示刚架的弯矩图。 l B D P A C l l EI=常数 72.用力法求作下图所示刚架的 M图。 73.利用力法计算图示结构,作弯矩图。 74.用力法求作下图所示结构的M图,EI=常数。 75.用力法计算下图所示刚架,作M图。

76. 77. 78. 79. 80. 81. 82.

83. 84. 85.

答案 q A B C D F xB F yB F yA F xA 2qa3 2/ 2qa3 2/ q2a ()2/8 2qa3 2/ =/ qa2 2 取整体为研究对象,由0 A M=,得 2 220 yB xB aF aF qa +-=(1)(2分) 取BC部分为研究对象,由0 C M= ∑,得 yB xB aF aF =,即 yB xB F F =(2)(2分) 由(1)、(2)联立解得 2 3 xB yB F F qa ==(2分) 由0 x F= ∑有20 xA xB F qa F +-=解得 4 3 xA F qa =-(1分) 由0 y F= ∑有0 yA yB F F +=解得 2 3 yA yB F F qa =-=-(1分) 则222 422 2 333 D yB xB M aF aF qa qa qa =-=-=()(2分) 弯矩图(3分) 62.解:(1)判断零杆(12根)。(4分) (2)节点法进行内力计算,结果如图。每个内力3分(3×3=9分)63.解:

结构动力计算习题

160 结构动力计算习题 一.选择题 8-1 体系的动力自由度是指( )。 A .体系中独立的质点位移个数 B .体系中结点的个数 C .体系中质点的个数 D .体系中独立的结点位移的个数 8-2 下列说法中错误的是( )。 A .质点是一个具有质量的几何点; B .大小、方向作用点随时间变化的荷载均为动荷载; C .阻尼是耗散能量的作用; D .加在质点上的惯性力,对质点来说并不存在 8-3 图示体系EI =常数,不计杆件分布质量,动力自由度相同的为( )。 题8-3图 A .(a )、(b )、(c ) B .(a )、(b ) C .(b )、(c ) D .(a )、(c ) 8-4图示体系不计杆件分布质量,动力自由度相同的为( )。 (b ) (c ) 题8-4图 A .(a )、(b )、(c ) B .(a )、(b ) C .(b )、(c ) D .(a )、(c ) 8-5 若要提高单自由度体系的自振频率,需要( )。 A .增大体系的刚度 B .增大体系的质量 C .增大体系的初速度 D .增大体系的初位移 8-6 不计阻尼影响时,下面说法中错误的是( )。 A .自振周期与初位移、初速度无关; B .自由振动中,当质点位移最大时,质点速度为零; C .自由振动中,质点位移与惯性力同时达到最大值; D .自由振动的振幅与质量、刚度无关 8-7 若结构的自振周期为T ,当受动荷载)(P t F =t F θsin 0作用时,其自振周期T ( )。 A .将延长 B .将缩短 C .不变 D .与荷载频率 θ的大小有关 8-8 若图(a )、(b )和(c )所示体系的自振周期分别为a T 、b T 和c T ,则它们的关系为( )。 (a) (b) (c) 题8-8图 A .a T >b T >c T B .a T >c T >b T C .a T

结构动力学心得汇总

结构动力学学习总结

通过对本课程的学习,感受颇深。我谈一下自己对这门课的理解: 一.结构动力学的基本概念和研究内容 随着经济的飞速发展,工程界对结构系统进行动力分析的要求日益提高。我国是个多地震的国家,保证多荷载作用下结构的安全、经济适用,是我们结构工程专业人员的基本任务。结构动力学研究结构系统在动力荷载作用下的位移和应力的分析原理和计算方法。它是振动力学的理论和方法在一些复杂工程问题中的综合应用和发展,是以改善结构系统在动力环境中的安全和可靠性为目的的。高老师讲课认真负责,结合实例,提高了教学效率,也便于我们学生寻找事物的内在联系。这门课的主要内容包括运动方程的建立、单自

由度体系、多自由度体系、无限自由度体系的动力学问题、随机振动、结构抗震计算及结构动力学的前沿研究课题。既有线性系统的计算,又有非线性系统的计算;既有确定性荷载作用下结构动力影响的计算,又有随机荷载作用下结构动力影响的随机振动问题;阻尼理论既有粘性阻尼计算,又有滞变阻尼、摩擦阻尼的计算,对结构工程最为突出的地震影响。 二.动力分析及荷载计算 1.动力计算的特点 动力荷载或动荷载是指荷载的大小、方向和作用位置随时间而变化的荷载。如果从荷载本身性质来看,绝大多数实际荷载都应属于动荷载。但是,如果荷载随时间变化得很慢,荷载对结构产生的影响与

静荷载相比相差甚微,这种荷载计算下的结构计算问题仍可以简化为静荷载作用下的结构计算问题。如果荷载不仅随时间变化,而且变化很快,荷载对结构产生的影响与静荷载相比相差较大,这种荷载作用下的结构计算问题就属于动力计算问题。 荷载变化的快与慢是相对与结构的固有周期而言的,确定一种随时间变化的荷载是否为动荷载,须将其本身的特征和结构的动力特性结合起来考虑才能决定。 在结构动力计算中,由于荷载时时间的函数,结构的影响也应是时间的函数。另外,结构中的内力不仅要平衡动力荷载,而且要平衡由于结构的变形加速度所引起的惯性力。结构的动力方程中除了动力荷载和弹簧力之外,还要引入因其质量产生的惯性力和耗散能量的阻尼力。而

结构力学计算题

三、计算题(共5小题,共70 分) = ∣qi (2 分) X ∣ 1 1 ∏2q'2ql (2 分) M A =0= Y2I 1 ql 2 =ql2 =丫 2 Jql (2 分) 2 =1 ql (2 分) 2 2、用机动法求图示多跨静定梁M B、R B、Q C的影响线。(12分)

P=1 P=I 3、求图示桁架结点 C 的水平位移,各杆 EA 相等。(15分) P 解:(1)求支座反力:H A= Py A = P,V B = P I- 3m M B 影响线: P=1 B JL 2m 夕冷 2m C D -≡≡M L B 2m 2m J r 3m C -O ---------- 2 2m 2m 2m 2m i A P h-Y- 3m B -H 2m 2m 2m 1 R B 影响线: 2m

N BC ~ 0 N BD P N BD=I P *N, Bn P (3)求 N AC 、N AD N AC ' N AD cos45 =P = N AC =° N AD Sin 45 =P= N A ^= 2P N CD N AD cos45 =°= N CD--P (2)求 N BC 、 N BD (4)求 N CD

A CH =送 N P N I l =丄 p*5 +J2P*(?*』2*5) =10(1 + EA EA 3、求图示结构B 点竖直方向的位移△ BV 。 ( 12分) q=10kN∕m 20k N 4m (5)外荷载作用下,各杆的轴力 N P 如下: (6) C 点水平单位荷载作用下,各杆的轴力 N 1如下: 4m El 2)PzEA

《结构力学习题集》(下)-结构的动力计算习题及答案

第九章 结构的动力计算 一、判断题: 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、仅在恢复力作用下的振动称为自由振动。 3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。 (a)(b) 6、图示组合结构,不计杆件的质量,其动力自由度为5个。 7、忽略直杆的轴向变形,图示结构的动力自由度为4个。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题: 10、图示梁自重不计,求自振频率ω。 EI l W l/4 11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k,求自振频率ω。 EI W o o l/2l/2 k 12、求图示体系的自振频率ω。 m l EI EI l 0.5l 0.5 2 13、求图示体系的自振频率ω。EI = 常数。 m l l0.5 14、求图示结构的自振频率ω。 m l l l l EI=常数

15、求图示体系的自振频率ω。EI =常数,杆长均为l 。 m 16、求图示体系的自振频率ω。杆长均为l 。 EA=o o EI m EI EI 17、求图示结构的自振频率和振型。 m m EI EI EI l /2 l /2 l /2 18、图示梁自重不计,W EI ==??2002104kN kN m 2 ,,求自振圆频率ω。 EI W A B C 2m 2m 19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。 h EI EI W

结构力学(2)习题库

15 结构的动力计算判断题 体系的振动自由度等于集中质量数。() 图示体系具有1个振动自由度。() 图示体系具有2个振动自由度。() 图示体系具有3个振动自由度。()

图示体系具有2个振动自由度。() 图示体系具有2个振动自由度。() 结构的自振频率除与体系的质量分布状况、杆件刚度有关外,还与干扰力有关。()自由振动是指不受外界干扰力作用的振动。() 自由振动是由初位移和初速度引起的,缺一不可。()

有阻尼单自由度体系的阻尼比越大,自振频率越小。() 临界阻尼现象是指起振后振动次数很少且振幅很快衰减为零的振动。()惯性力并不是实际加在运动质量上的力。() 计算一个结构的自振周期时,考虑阻尼比不考虑所得的结果要大。()临界阻尼振动时质点缓慢地回到平衡位置且不过平衡点。() 阻尼力总是与质点加速的方向相反。()

在某些情形下建立振动微分方程式时,不考虑重力的影响是因为重力为恒力。() 图示结构的自振频率为w,在干扰力P(t)=P sin qt作用下,不管频率q怎样改变,动位移y(t)的方向总是和P(t)的方向相同。() 计算图示振动体系的最大动内力和动位移时可以采用同一个动力系数。() 不论干扰力是否直接作用在单自由度体系的质量m上,都可用同一个动力系数计算任一点的最大动位移。() 单自由度体系受迫振动的最大动位移的计算公式y max=my j中,y j是质量m的重量所引起的静位

移。() 多自由度体系作自由振动,一般包括所有的振型,不可能出现仅含某一主振型的振动。()解得图(a)所示两个自由度体系的两个主振型为图(b)和图(c),此解答是正确的。() 图(a)与图(b)所示梁的自由振动频率w A、w B相比,w A>w B。() 填空题 动力荷载是指_____________________荷载。

结构力学题库答案

1 : 图 a 桁 架, 力 法 基 本 结 构 如 图 b ,力 法 典 型 方 程 中 的 系 数 为 :( ) 3. 2:图示结构用力矩分配法计算时,结点A 的约束力矩(不平衡 力矩)为(以顺时针转为正) ( ) 4.3Pl/16 3:图示桁架1,2杆内力为: 4. 4:连续梁和 M 图如图所示,则支座B 的竖向反力 F By 是:

4.17.07(↑) 5:用常应变三角形单元分析平面问题时,单元之间()。 3.应变、位移均不连续; 6:图示体系的几何组成为 1.几何不变,无多余联系; 7:超静定结构在荷载作用下的内力和位移计算中,各杆的刚度为() 4.内力计算可用相对值,位移计算须用绝对值 8:图示结构用力矩分配法计算时,结点A之杆AB的分配系数

μAB 为(各杆 EI= 常数)( ) 4.1/7 9:有限元分析中的应力矩阵是两组量之间的变换矩阵,这两组量是( )。 4.单元结点位移与单元应力 10:图示结构用位移法计算时,其基本未知量数目为( ) 4.角位移=3,线位移=2 11:图示结构,各柱EI=常数,用位移法计算时,基本未知量数 目是( ) 3.6 12:图示结构两杆长均为d,EI=常数。则A 点的垂直位移为( ) 4.qd 4/6EI (↓) 13:图示桁架,各杆EA 为常数,除支座链杆外,零杆数为:

1.四 根 ; 14:图示结构,各杆线刚度均为i,用力矩分配法计算时,分配 系数μAB 为( ) 2. 15:在位移法中,将铰接端的角位移,滑动支撑端的线位移作为基本未知量: 3.可以,但不必; 1:用图乘法求位移的必要条件之一是:( ) 2.结构可分为等截面直杆段; 2:由于静定结构内力仅由平衡条件决定,故在温度改变作用下静定结构将( ) 2.不产生内力 3:图示结构,各杆EI=常数,欲使结点B 的转角为零,比值P1/P2应 为( ) 2.1

《结构力学》期末考试试卷(A、B卷-含答案)

***学院期末考试试卷 考试科目《结构力学》考 试卷类型 A 答案试 考试形式闭卷成 考试对象土木本科绩 一、填空题( 20 分)(每题 2 分) 1.一个刚片在其平面内具有 3 个自由度;一个点在及平面内具有 2 自由 度;平面内一根链杆自由运动时具有3个自由度。 2.静定结构的内力分析的基本方法截面法,隔离体上建立的基本方程是平衡方程。 3.杆系结构在荷载,温度变化,支座位移等因素作用下会产生变形和位移。 4.超静定结构的几何构造特征是有多余约束的几何不变体系。 5.对称结构在对称荷载作用下,若取对称基本结构和对称及反对称未知力,则其 中反对称未知力等于零。 6.力矩分配法适用于没有侧移未知量的超静定梁与刚架。 7.绘制影响线的基本方法有静力法法和机动法法。 8.单元刚度矩阵的性质有奇异性和对称性。 9.结构的动力特性包括结构的自阵频率;结构的振兴型;结构的阻尼。 10. 在自由振动方程... 2 y(t) 0 式中, y(t ) 2 y(t )称为体系的自振频 率,称为阻尼比。

二、试分析图示体系的几何组成(10 分) (1)(2)答案: (1)答:该体系是几何不变体系且无余联系。 (2)答:该体系是几何不变体系且无多余联系。 三、试绘制图示梁的弯矩图(10分) ( 1)(2) 答案: (1)(2) M图 四、简答题( 20 分) 1.如何求单元等效结点荷载?等效荷载的含义是什么?答案: 2.求影响线的系数方程与求内力方程有何区别? 答案: 3.动力计算与静力计算的主要区别是什么? 答案:

4.自由振动的振幅与那些量有关? 答案 五、计算题( 40 分) 1、用图乘法计算如图所示简支梁 A 截面的转角 A 。已知EI=常量。(10分) 答案: 解:作单位力状态,如图所示。分别作出M p和 M 图后,由图乘法得: 2.试作图示伸臂量的F By M K的影响线。 答案: F By的影响线 M K的影响线

结构力学-习题集(含答案)

《结构力学》课程习题集 一、单选题 1.弯矩图肯定发生突变的截面是(D )。 A.有集中力作用的截面; B.剪力为零的截面; C.荷载为零的截面; D.有集中力偶作用的截面。 2.图示梁中C截面的弯矩是( D )。 4m2m 4m A.12kN.m(下拉); B.3kN.m(上拉); C.8kN.m(下拉); D.11kN.m(下拉)。 3.静定结构有变温时,(C)。 A.无变形,无位移,无内力; B.有变形,有位移,有内力; C.有变形,有位移,无内力; D.无变形,有位移,无内力。 4.图示桁架a杆的内力是(D)。 A.2P; B.-2P; C.3P; D.-3P。 5.图示桁架,各杆EA为常数,除支座链杆外,零杆数为(A)。 A.四根; B.二根; C.一根; D.零根。 l= a6 6.图示梁A点的竖向位移为(向下为正)(C)。 A.) 24 /( 3EI Pl; B.) 16 /( 3EI Pl; C.) 96 /( 53EI Pl; D.) 48 /( 53EI Pl。

P 7. 静定结构的内力计算与( A )。 A.EI 无关; B.EI 相对值有关; C.EI 绝对值有关; D.E 无关,I 有关。 8. 图示桁架,零杆的数目为:( C ) 。 A.5; B.10; C.15; D.20。 9. 图示结构的零杆数目为( C )。 A.5; B.6; C.7; D.8。 10. 图示两结构及其受力状态,它们的内力符合( B )。 A.弯矩相同,剪力不同; B.弯矩相同,轴力不同; C.弯矩不同,剪力相同; D.弯矩不同,轴力不同。 P P P P 2 l l 11. 刚结点在结构发生变形时的主要特征是( D )。 A.各杆可以绕结点结心自由转动; B.不变形; C.各杆之间的夹角可任意改变; D.各杆之间的夹角保持不变。 12. 若荷载作用在静定多跨梁的基本部分上,附属部分上无荷载作用,则( B )。 A.基本部分和附属部分均有内力;

最新结构力学作业答案

精品文档 [0729]《结构力学》 1、桁架计算的结点法所选分离体包含几个结点 A. 单个 2、固定铰支座有几个约束反力分量 B. 2个 3、从一个无多余约束的几何不变体系上去除二元体后得到的新体系是 A. 无多余约束的几何不变体系 4、两刚片用三根延长线交于一点的链杆相连组成 A. 瞬变体系 5、定向滑动支座有几个约束反力分量 B. 2个 6、结构的刚度是指 C. 结构抵抗变形的能力 7、桁架计算的截面法所选分离体包含几个结点 B. 最少两个 8、对结构进行强度计算的目的,是为了保证结构 A. 既经济又安全 9、可动铰支座有几个约束反力分量 A. 1个 10、固定支座(固定端)有几个约束反力分量 C. 3个 11、改变荷载值的大小,三铰拱的合理拱轴线不变。 A.√ 12、多余约束是体系中不需要的约束。 B.× 13、复铰是连接三个或三个以上刚片的铰 A.√

14、结构发生了变形必然会引起位移,结构有位移必然有变形发生。 B.× 精品文档. 精品文档 15、如果梁的截面刚度是截面位置的函数,则它的位移不能用图乘法计算。 A.√ 16、一根连杆相当于一个约束。 A.√ 17、单铰是联接两个刚片的铰。 A.√ 18、连接四个刚片的复铰相当于四个约束。 B.× 19、虚功原理中的力状态和位移状态都是虚设的。 B.× 20、带拉杆三铰拱中拉杆的拉力等于无拉杆三铰拱的水平推力。 A.√ 21、瞬变体系在很小的荷载作用下会产生很大的内力,所以不能作为结构使用。 A.√ 22、一个无铰封闭框有三个多余约束。 A.√ 23、三铰拱的水平推力不仅与三铰的位置有关,还与拱轴线的形状有关。 B.× 24、三铰拱的主要受力特点是:在竖向荷载作用下产生水平反力。 A.√ 25、两根链杆的约束作用相当于一个单铰。 B.× 26、不能用图乘法求三铰拱的位移。 A.√ 27、零杆不受力,所以它是桁架中不需要的杆,可以撤除。 B.×

(完整版)结构力学问答题总结

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)

所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,

结构动力学习题分析

第九章 结构动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312????????????+--????????????=?????? () 二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 :

A .()()()y l P s in m y EI =-77683θ t /; B .()()m y EI y l P s in /+=19273 θ t ; C .()()m y EI y l P s in /+=38473θ t ; D .()()()y l P s in m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C .增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B . ()76873EI ml k m //-; C .()76873 EI ml k m //-; D . () 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b) 7、图 示 结 构 ,不 计 阻 尼 与 杆 件 质 量 ,若 要 其 发 生 共 振 ,θ 应 等 于 A . 23k m ; B .k m 3;

福大结构力学课后习题详细答案(祁皑)

结构力学(祁皑)课后习题详细答案 答案仅供参考 第1章 1-1分析图示体系的几何组成。 1-1(a) 解 原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。因此,原体系为几何不变体系,且有一个多余约束。 1-1 (b) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (c) (c-1) (a ) (a-1) (b ) (b-1) (b-2)

(c-2) (c-3) 解 原体系依次去掉二元体后,得到一个三角形。因此,原体系为几何不变体系,且无多余约束。 1-1 (d) (d-1) (d-2) (d-3) 解 原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。因此,原体系为几何不变体系,且无多余约束。注意:这个题的二元体中有的是变了形的,分析要注意确认。 1-1 (e) 解 原体系去掉最右边一个二元体后,得到(e-1)所示体系。在该体系中,阴影所示的刚片与支链杆C 组成了一个以C 为顶点的二元体,也可以去掉,得到(e-2)所示体系。在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。因此,原体系为几何可变体系,缺少一个必要约束。 1-1 (f) 解 原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相 连,符合几何不变体系的组成规律。因此,可以将该刚片和相应的约束去掉只分析其 余部分。很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。因此,原体系为几何不变体系,且无多余约束。 1-1 (g) (d ) (e ) (e-1) A (e-2) (f ) (f-1) (g ) (g-1) (g-2)

《结构力学习题集》9-结构动力计算

第九章 结构的动力计算 一、是非题 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、忽略直杆的轴向变形,图示结构的动力自由度为4个。 3、仅在恢复力作用下的振动称为自由振动。 4、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 5、图 a 体 系 的 自 振 频 率 比 图 b 的 小 。 l /2 l /2 l /2 l /2 (a)(b) 6、单 自 由 度 体 系 如 图 ,W =98 .kN ,欲 使 顶 端 产 生 水 平 位 移 ?=001 .m ,需 加 水 平 力 P =16kN ,则 体 系 的 自 振 频 率 ω=-40s 1 。 ? 7、结构在动力荷载作用下,其动内力 与动位移仅与动力荷载的变化规律有关。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、桁 架 ABC 在 C 结 点 处 有 重 物 W ,杆 重 不 计 , EA 为 常 数 ,在 C 点 的 竖 向 初 位 移 干 扰 下 ,W 将 作 竖 向 自 由 振 动 。 A C 10、不 计 阻 尼 时 ,图 示 体 系 的 运 动 方 程 为 : m m X X h EI EI EI EI X X P t 00148242424012312?? ??????????+--????????????=?????? ()

二、选择题 1、图 示 体 系 ,质 点 的 运 动 方 程 为 : A .()()()y l Ps i n m y EI =-77683θ t /; B .()()m y EIy l Ps i n /+=19273θ t ; C .()()m y EIy l Ps i n /+=38473θ t ; D .()()()y l Ps i n m y EI =-7963θ t / 。 l l 0.50.5 2、在 图 示 结 构 中 ,若 要 使 其 自 振 频 率 ω增 大 ,可 以 A .增 大 P ; B .增 大 m ; C . 增 大 E I ; D .增 大 l 。 l t ) 3、单 自 由 度 体 系 自 由 振 动 的 振 幅 取 决 于 : A .初 位 移 ; B .初 速 度 ; C .初 位 移 、初 速 度 与 质 量 ; D .初 位 移 、初 速 度 与 结 构 自 振 频 率 。 4、考 虑 阻 尼 比 不 考 虑 阻 尼 时 结 构 的 自 振 频 率 : A .大 ; B .小 ; C .相 同 ; D .不 定 ,取 决 于 阻 尼 性 质 。 5、已 知 一 单 自 由 度 体 系 的 阻 尼 比 ξ=12.,则 该 体 系 自 由 振 动 时 的 位 移 时 程 曲 线 的 形 状 可 能 为 : D. C. B. A. 6、图 a 所 示 梁 ,梁 重 不 计 ,其 自 振 频 率 () ω=76873 EI ml /;今 在 集 中 质 量 处 添 加 弹 性 支 承 ,如 图 b 所 示 ,则 该 体 系 的 自 振 频 率 ω为 : A .() 76873 EI ml k m //+; B .()76873EI ml k m //-; C .()76873EI ml k m //-; D .() 76873 EI ml k m //+ 。 l l /2 /2 l l /2 /2(a)(b)

结构力学主要知识点归纳

结构力学主要知识点 一、基本概念 1、计算简图:在计算结构之前,往往需要对实际结构加以简化,表现其主要特点,略去 其次要因素,用一个简化图形来代替实际结构。通常包括以下几个方面: A、杆件的简化:常以其轴线代表 B、支座和节点简化: ①活动铰支座、固定铰支座、固定支座、滑动支座; ②铰节点、刚节点、组合节点。 C、体系简化:常简化为集中荷载及线分布荷载 D、体系简化:将空间结果简化为平面结构 2、结构分类: A、按几何特征划分:梁、拱、刚架、桁架、组合结构、悬索结构。 B、按内力是否静定划分: ①静定结构:在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定。②超静定结构:只靠平衡条件还不能确定全部反力和内力,还必须考虑变形条件才能确定。二、平面体系的机动分析 1、体系种类 A、几何不变体系:几何形状和位置均能保持不变;通常根据结构有无多余联系,又划分为无多余联系的几何不变体系和有多余联系的几何不变体系。 B、几何可变体系:在很小荷载作用下会发生机械运动,不能保持原有的几何形状和位置。常具体划分为常变体系和瞬变体系。 2、自由度:体系运动时所具有的独立运动方程式数目或者说是确定体系位置所需的独立 坐标数目。 3、联系:限制运动的装置成为联系(或约束)体系的自由度可因加入的联系而减少,能减少一个自由度的装置成为一个联系 ①一个链杆可以减少一个自由度,成为一个联系。②一个单铰为两个联系。 4、计算自由度:W 3m (2h r ) ,m为刚片数,h为单铰束,r为链杆数。 A 、 W>0, 表明缺少足够联系,结构为几何可变; B、 W=0 ,没有多余联系; C、 W<0, 有多余联系,是否为几何不变仍不确定。 5、几何不变体系的基本组成规则: A、三刚片规则:三个刚片用不在同一直线上的三个单铰两两铰联,组成的体系是几何不变的,而且没有多余联系。 B、二元体规则:在一个刚片上增加一个二元体,仍未几何不变体系,而且没有多余联系。 C、两刚片原则:两个刚片用一个铰和一根不通过此铰的链杆相联,为几何不变体系,而且 没有多余联系。 6、虚铰:连接两个刚片的两根链杆的作用相当于在其交点处的一个单铰。虚铰在无穷远 处的体系分析可见结构力学 P20,自行了解。 7、静定结构的几何构造为特征为几何不变且无多余联系。 三、静定梁与静定钢架 1、内力图绘制: A、内力图通常是用平行于杆轴线方向的坐标表示截面的位置,用垂直于杆轴线的坐标表示

结构的动力计算

第十章 结构动力计算基础 一、判断题: 1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。 2、仅在恢复力作用下的振动称为自由振动。 3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。 4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。 5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。 6、图示组合结构,不计杆件的质量,其动力自由度为5个。 7、忽略直杆的轴向变形,图示结构的动力自由度为4个。 8、由于阻尼的存在,任何振动都不会长期继续下去。 9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。

二、计算题: 10、图示梁自重不计,求自振频率ω。 l l /4 11、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。 l /2 l /2 12、求图示体系的自振频率ω。 l l 0.5l 0.5 13、求图示体系的自振频率ω。EI = 常数。 l l 0.5 14、求图示结构的自振频率ω。 l l

15、求图示体系的自振频率ω。EI =常数,杆长均为l 。 16、求图示体系的自振频率ω。杆长均为l 。 17、求图示结构的自振频率和振型。 l /2 l /2 l / 18、图示梁自重不计,W EI ==?? 2002104kN kN m 2 ,,求自振圆频率ω。 B 2m 2m 19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。 EI EI W

结构力学典型例题

第2章平面体系的几何构造分析典型例题 1. 对图 2.1a体系作几何组成分析。 图2.1 分析:图2.1a等效图2.1b(去掉二元体)。 对象:刚片Ⅰ、Ⅱ和Ⅲ; 联系:刚片Ⅰ、Ⅲ有虚铰A(杆、2);刚片Ⅱ、Ⅲ有虚铰C(无穷远)(杆3、4);刚片Ⅰ、Ⅱ有虚铰B(杆5、6); 结论:三铰共线,几何瞬变体系。 2. 对图2.2a体系作几何组成分析。 图2.1 分析:去掉二元体(杆12、杆34和杆56图2.1b),等效图2.1c。 对象:刚片Ⅰ和Ⅱ; 联系:三杆:7、8和9;

结论:三铰不共线,无多余约束的几何不变体系。 3. 对图2.3a体系作几何组成分析。 图2.3 分析:图2.3a 对象:刚片Ⅰ(三角形原则)和大地Ⅱ; 联系:铰A和杆1; 结论:无多余约束的几何不变体系。 对象:刚片Ⅲ(三角形原则)和大地Ⅱ; 联系:杆2、3和4; 结论:无多余约束的几何不变体系。 第3章静定结构的受力分析典型题1. 求图3.1结构的内力图。

图3.1 解(1)支座反力(单位:kN) 由整体平衡,得=100.= 66.67,=-66.67.(2)内力(单位:kN.m制) 取AD为脱离体: ,,; ,,。取结点D为脱离体: ,, 取BE为脱离体: ,,。 取结点E为脱离体:

,, (3)内力图见图3.1b~d。 2. 判断图 3.2a和b桁架中的零杆。 图3.2 分析: 判断桁架零杆的常用方法是找出桁架中的L型结点和T型结点。如果这两种结点上无荷载作用.那么L 型纪点的两杆及T型结点的非共线杆均为零杆。 解:图3.2a: 考察结点C、D、E、I、K、L,这些结点均为T型结点,且没有荷载作用,故杆件CG、DJ、EH、IJ、KH、LF均为零杆。 考察结点G和H,这两个结点上的两竖向链杆均已判断为零杆,故这两个结点的受力也已成为T型结点的情形.由于没有荷载作用,故杆件AG、BH也为零杆。 整个结构共有8根零杆.如图3.2c虚线所示。 图3.2b: 考察结点D,为“K”型结点且无荷载作用,故;对称结构对称荷载(A支座处的水平反力为 零),有,故杆件DE和DF必为零杆。

(整理)计算结构动力学2

第2章 分析动力学基础 2.1 基本概念 2.1.1 约束 对质点系各质点的位移和速度提供的限制,约束在数学上通过约束方程来表达。对于n 个质点组成的系统,约束方程的一般形式为: m k t r r r r r r f n n k ,1,0),,...,,,,...,,(2 121== 或简写为: m k t r r f i i k ,1,0),,(== 式中,i r 、i r 分别为质点i 的位置矢量和速度矢量,t 为时间,m 为约束方程的个数。 注:弹性支座不对位置和速度提供直接限制,不作为约束。 约束方程的分类: (1) 几何约束和运动约束 几何约束:约束方程中不显含速度项,如:0),(=t r f i k 运动约束:约束方程中显含速度项,如:0),,(=t r r f i i k 下图中,如果圆轮与地面之间无滑动,则其约束方程为:0=-? a x c (2) 定常约束和非定常约束 定常约束:约束方程中不显含时间t ,如:0),(=i i k r r f 非定常约束:约束方程中显含时间t ,如:0),,(=t r r f i i k

222l y x =+ 222)(ut l y x -=+ (3) 完整约束与非完整约束 完整约束:几何约束以及可积分的运动约束 非完整约束:不可积分的运动约束 方程0=-? a x c 可积分为0=-?a x c ,因此是完整约束。 (4) 单面约束与双面约束 单面约束:约束方程为不等式,如:0),,(≤t r r f i i k 双面约束:约束方程为等式,如:0),,(=t r r f i i k 下图中,如果考虑到绳子可以缩短,则其约束方程为:222l y x ≤+,表现为不等式形式,就是一个单面约束。 一般分析力学的研究对象为:完整的双面约束,方程为:0),(=t r f i k 。 2.1.2 广义坐标与自由度 广义坐标:描述系统位置状态的独立参数,称为系统 的广义坐标。 广义坐标的个数: (1) 空间质点系:m n N -=3 (2) 平面质点系:m n N -=2

结构力学习题及答案

结构力学习题 第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。 题2-1图题2-2图 题2-3图题2-4图 题2-5图题2-6图 2-7~2-15 试对图示体系进行几何组成分析。若是具有多余约束的几何不变体系,则需指明多余约束的数目。 题2-7图 题2-8图题2-9图 题2-10图题2-11图 题2-12图题2-13图 题2-14图题2-15图 题2-16图题2-17图

题2-18图题2-19图 题2-20图题2-21图 2-1 1 W = 2-1 9 W - = 2-3 3 - W = 2-4 2 W - = 2-5 1 W = - 2-6 4 = W - 2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系 2-9、2-10、2-15具有一个多余约束的几何不变体系 2-11具有六个多余约束的几何不变体系 2-13、2-14几何可变体系为 2-18、2-19 瞬变体系 2-20、2-21具有三个多余约束的几何不变体系 第3章静定梁和静定平面刚架的内力分析3-1 试作图示静定梁的内力图。 (a)(b) (c) (d) 习题3-1图 3-2 试作图示多跨静定梁的内力图。 (a) (b)

(c) 习题3-2图 3-3~3-9 试作图示静定刚架的内力图。 习题3-3图 习题3-4图 习题3-5图 习题3-6图 习题3-7图 习题3-8图 习题3-9图 3-10 试判断图示静定结构的弯矩图是否正确。 (a) (b) (c) (d) 部分习题答案 3-1 (a )m kN M B ?=80(上侧受拉),kN F R QB 60=,kN F L QB 60-= (b )m kN M A ?=20(上侧受拉),m kN M B ?=40(上侧受拉),kN F R QA 5.32=, kN F L QA 20-=,kN F L QB 5.47-=,kN F R QB 20= (c) 4 Fl M C =(下侧受拉),θcos 2 F F L QC = 3-2 (a) 0=E M ,m kN M F ?-=40(上侧受拉),m kN M B ?-=120(上侧受拉) (b )m kN M R H ?-=15(上侧受拉),m kN M E ?=25.11(下侧受拉) (c )m kN M G ?=29(下侧受拉),m kN M D ?-=5.8(上侧受拉),m kN M H ?=15(下侧受拉) 3-3 m kN M CB ?=10(左侧受拉),m kN M DF ?=8(上侧受拉),m kN M DE ?=20(右侧受拉) 3-4 m kN M BA ?=120(左侧受拉)

相关文档
相关文档 最新文档