文档库 最新最全的文档下载
当前位置:文档库 › 3算术运算指令实验

3算术运算指令实验

3算术运算指令实验
3算术运算指令实验

2.3 算术运算指令实验

一、实验目的

·掌握单字节的加减法指令的使用。

·掌握单字节的乘除法指令的使用。

·掌握用Keil调试汇编源程序的方法。

·掌握用Proteus调试汇编源程序的方法。

二、实验预备知识

算术运算指令对程序状态寄存器PSW中的相关位会产生不同的影响。具体如下:◇执行加法指令时,当和的第3位或第7位有进位时,分别将AC、CY标志位置1;否则为O。如果第6位向第7位有进位而第7位没有向前进位,或者如果第7位向前有进位而第6位没有向第7位进位,OV=1,否则OV-O。该操作也影响标志位P。

◇执行减法指令时,如果第7位有借位,则CY置1,否则清O。若第3位有借位,则 AC置1;否则清O。两个带符号数相减,还要考查OV标志,若OV为1,表示差数溢出,即破坏了正确结果的符号位。该操作也影响标志位P。

◇执行乘法指令时,若乘积大子OFFH,则OV置1,否则清o(此时B的内容为0)。 CY总是被清O。该操作也影响标志位p。

◇执行除法指令时,若除数(B) -OOH.则结果无法确定,OV置l。CY总是被清O。该操作也影响标志位P。

三、实验内容

将算术运算指令分成两类,分别编写两个小程序,以完成数据的加减法、乘除法运算。 1.参考程序i-hn减法运算

(1)将立即数# B5H、#36H、#89H分别传送至内部RAM区40H、R2、A中。

(2)将内部RAM区40H中的内容与A中的内容相加,然后再与R2中的内容相加,结果存放至内部RAM区50H中。

(3)将A中的内容与内部RAM区40H中的内容相减,结果存放至内部RAM区60H中。

2.参考程序2——乘除法运算

(1>将立即数#75H、#31H分别传送至内部RAM区15H、33H中。

(2)将内部RAM区15H单元的内容与33H单元的内容相乘。

(3)将乘积的高8位和低8位分别传送至内部RAM区31H、30H中。

(4)将内部RAM区15H单元的内容除以33H单元的内容。

(5)将商和余数分别传送至内部RAM区41H、40H中。四、实验参考程序

参考程序2:乘除法运算

五、实验步骤

1.用实验系统完成实验的步骤

(1)输入源程序。按第

(2)单步运行程序。即每按一次单步运行键,只执行一条指令。

(3)每执行一条指令后,根据参考程序检查数据栏要求检查每条指令的执行结果,以加深对算术运算指令的理解。

2.用Keil软件完成实验的步骤

(1)建立工程文件,选择单片机。工程文件名为“add”,选择单片机型号为Atmel的89C51。

(2)建立源文件,加载源文件。源文件名为“add. ASM”。

(3)设置工程的配置参数。“目标”标签页的晶振频率栏设为12MHz,“输出”标签页的生成HEX文件选择框选中。

(4)进行编译和连接。

(5)进入调试模式,打开存储器窗口。存储器#1窗口显示以地址OOH开始的片内 RAM各个存储单元。

(6)单步运行程序。单击“调试”一“单步”或调试工具栏的单步按钮飘,通过存储器窗口和工程窗口的寄存器标签页观察每条指令执行后数据处理的结果,以加深对算术运算指令的理解。程序调试窗口如图2-6所示。

3.用Proteus软件完成实验的步骤

(2)新建设计文件、设Proteus尺寸、设置网格、保存设AT89C51(件名为“add”。:兰l

(2)选取元器件。从Proteus元器件库中选取元器件AT89c51(单片机)。

(3)放置元器件、编辑元器件、放置终端、连线。按图2-8所示放置元器件并连线

(4)添加源程序、编辑源程序、编译源程序。源文件名为“add. ASM”。

(5)加载目标代码文件。“Clock Frequency”栏中的频率要设为12MHz。

(6)仿真。单击仿真工具栏“单步运行”按钮l◆,进入单步运行状态。分别打开]寄存器窗口、特殊功能寄存器窗口、片内数据存储器窗口和源代码调试窗口。

单击源代码调试窗口“单步执行”按钮蒸一次,执行一条指令,通过各调试窗口观察每条指令执行后数据处理的结果,以加深对算术运算指令的理解。程序调试窗口如图

2-8所示。

六、实验分析

1.分析不带进位的加法指令和带进位的加法指令的区别。

2.用带进位的减法指令实现不带进位的减法的方法。

七、实验思考

1.BCD码调整指令能否直接用于减法指令后面?

2.执行除法指令时,若寄存器B的内容为0,结果会如何?

3算术运算指令实验

2.3 算术运算指令实验 一、实验目的 ·掌握单字节的加减法指令的使用。 ·掌握单字节的乘除法指令的使用。 ·掌握用Keil调试汇编源程序的方法。 ·掌握用Proteus调试汇编源程序的方法。 二、实验预备知识 算术运算指令对程序状态寄存器PSW中的相关位会产生不同的影响。具体如下:◇执行加法指令时,当和的第3位或第7位有进位时,分别将AC、CY标志位置1;否则为O。如果第6位向第7位有进位而第7位没有向前进位,或者如果第7位向前有进位而第6位没有向第7位进位,OV=1,否则OV-O。该操作也影响标志位P。 ◇执行减法指令时,如果第7位有借位,则CY置1,否则清O。若第3位有借位,则 AC置1;否则清O。两个带符号数相减,还要考查OV标志,若OV为1,表示差数溢出,即破坏了正确结果的符号位。该操作也影响标志位P。 ◇执行乘法指令时,若乘积大子OFFH,则OV置1,否则清o(此时B的内容为0)。 CY总是被清O。该操作也影响标志位p。 ◇执行除法指令时,若除数(B) -OOH.则结果无法确定,OV置l。CY总是被清O。该操作也影响标志位P。 三、实验内容 将算术运算指令分成两类,分别编写两个小程序,以完成数据的加减法、乘除法运算。 1.参考程序i-hn减法运算 (1)将立即数# B5H、#36H、#89H分别传送至内部RAM区40H、R2、A中。 (2)将内部RAM区40H中的内容与A中的内容相加,然后再与R2中的内容相加,结果存放至内部RAM区50H中。 (3)将A中的内容与内部RAM区40H中的内容相减,结果存放至内部RAM区60H中。 2.参考程序2——乘除法运算 (1>将立即数#75H、#31H分别传送至内部RAM区15H、33H中。 (2)将内部RAM区15H单元的内容与33H单元的内容相乘。 (3)将乘积的高8位和低8位分别传送至内部RAM区31H、30H中。 (4)将内部RAM区15H单元的内容除以33H单元的内容。 (5)将商和余数分别传送至内部RAM区41H、40H中。四、实验参考程序

计算机组成原理运算器实验—算术逻辑运算实验

实验报告 、实验名称 运算器实验—算术逻辑运算实验 、实验目的 1、了解运算器的组成原理。 2、掌握运算器的工作原理。 3、掌握简单运算器的数据传送通路。 4、验证运算功能发生器( 74LS181)的组合功能 三、实验设备 TDN-CM++ 计算机组成原理教学实验系统一套,导线若干四、实验原理 实验中所用的运算器数据通路如图1-1 所示。其中两片74LSl81以串行方式构成8 位字长的ALU,ALU 的输出经过一个三态门(74LS245)和数据总线相连。三态门由ALU-R 控制,控制运算器运算的结果能否送往总线,低电平有效。为实现双操作数的运算,ALU 的两个数据输入端分别由二个锁存器DR1、DR2 (由74LS273实现)锁存数据。要将数据总线上的数据锁存到DRl、DR2 中,锁存器的控制端LDDR1 和DDR2必须为高电平,同时由T4 脉冲到来。 数据开关“( INPUT DEVICE")用来给出参与运算的数据,经过三态 (74LS245) 后送入数据总线,三态门由SW—B控制,低电平有效。数据显示灯“( BUS UNIT") 已和数据总线相连,用来显示数据总线上的内容。 图中已将用户需要连接的控制信号用圆圈标明(其他实验相同,不再说明),其中除T4 为脉冲信号外,其它均为电平信号。由于实验电路中的时序信号均已连至“W/R UNIT ”的相应时序信号引出端,因此,在进行实验时,只需将“W /R UNIT"的T4接至“ STATE UNIT ”的微动开关KK2 的输入端,按动微动开关,即可获得实验所需的单脉冲。 ALU 运算所需的电平控制信号S3、S2、S1、S0 、Cn、M、LDDRl、 LDDR2 、ALU-B 、SW-B均由“ SWITCH UNIT ”中的二进制数据开关来模拟,其中Cn、ALU —B、SW 一 B 为低电平有效LDDR1 、LDDR2 为高电平有效。 对单总线数据通路,需要分时共享总线,每一时刻只能由一组数据送往总线。

组成原理实验1 8位算术逻辑运算

淮海工学院计算机工程学院实验报告书 课程名:《计算机组成原理》 题目:实验一8位算术逻辑运算 实验 班级: 学号: 姓名:

1、目的与要求 1)掌握算术逻辑运算器单元ALU(74LS181)的工作原理。 2)掌握简单运算器的数据传送通路组成原理。 3)验证算术逻辑运算功能发生器74LSl8l的组合功能。 4)按给定数据,完成实验指导书中的算术/逻辑运算。 2、实验设备 ZYE1601B计算机组成原理教学实验箱一台,排线若干。 3、实验步骤与源程序 l) 按下列步骤连接实验线路,仔细检查无误后,接通电源。 ⑴ ALUBUS连EXJ3; ⑵ ALUO1连BUS1; ⑶ SJ2连UJ2; ⑷跳线器J23上T4连SD; ⑸ LDDR1、LDDR2、ALUB、SWB四个跳线器拨在左边(手动方式); ⑹ AR跳线器拨在左边,同时开关AR拨在“1”电平。 2) 用二进制数码开关KD0~KD7向DR1和DR2寄存器置数。方法:关闭ALU输出三态门(ALUB`=1),开启输入三态门(SWB`=0),输入脉冲T4按手动脉冲发生按钮产生。设置数据开关具体操作步骤图示如下: LDDR1=1 LDDR1=0 说明:LDDR1、LDDR2、ALUB`、SWB`四个信号电平由对应的开关LDDR1、LDDR2、ALUB、SWB 给出,拨在上面为“1”,拨在下面为“0”,电平值由对应的显示灯显示,T4由手动脉冲开关给出。 ⑶检验DR1和DR2中存入的数据是否正确,利用算术逻辑运算功能发生器 74LS181的逻辑功能,即M=1。具体操作为:关闭数据输入三态门SWB`=1,打开ALU输出三态门ALUB`=0,当置S3、S2、S1、S0、M为1 1 1 1 1时,总线指示灯显示DR1中的数,而置成1 0 1 0 1时总线指示灯显示DR2中的数。 ⑷验证74LS181的算术运算和逻辑运算功能(采用正逻辑) 在给定DR1=35、DR2=48的情况下,改变算术逻辑运算功能发生器的功能设置,观察运算器的输出,填入表2.1.1中,并和理论分析进行比较、验证。。 4、测试数据与实验结果 实验数据记录

实验二 算术运算实验

实验二算术运算实验 一、实验目的 1、掌握MASM for Windows 环境下的汇编语言编程环境使用; 2、掌握汇编语言程序设计的基本流程及汇编语言中的二进制、十六进制、十进制、BCD 码的表示形式; 3、掌握汇编语言对多精度十六进制和十进制的编程方法及运算类指令对各状态标志 位的影响及测试方法; 4、掌握无符号数和有符号数运算区别及编程方法; 5、掌握BCD 码调整指令的使用方法 二、软硬件实验环境 1、硬件环境:惠普64 位一体化计算机及局域网; 2、软件环境:windows 8,红蜘蛛管理系统,MASM for Windows。 三、实验基本原理 算术运算实验需要对运行结果进行调试及查看状态字,其相关知识如下。 1) 标志位 在debug调试过程中,标志位用特殊符号表示的,其标志名和状态符号的对照表参照表1所示。 表1标志名和状态符号的对照表参照表 2) 加减法指令 ADD表示加法指令,ADC表示带进位加法指令,SUB表示减法指令,SBB表示带进位减法指令。 3) 乘除法指令

MUL表示无符号数乘法指令,IMUL表示带符号数乘法指令,DIV表示无符号数除法指令,IDIV 表示带符号数除法指令。 4) 符号位扩展指令 CBW表示从字节扩展到字的指令,CWD表示从字扩展到双字的指令。 5) BCD码的调整指令 在进行十进制加减运算时,需要将数据用BCD码表示,还要考虑到是组合BCD码还是非组合BCD码,组合BCD码是用一个字节表示两位十进制数,非组合BCD码是用一个字节表示一位十进制数,对于组合的BCD码加减法运算其结果存放在AL中。 组合的BCD码加法调整指令DAA; 组合的BCD码减法调整指令DAS; 非组合的BCD码加法调整指令AAA; 非组合的BCD码减法调整指令AAS; 乘法的非组合BCD码调整指令AAM; 除法的非组合BCD码调整指令AAD。 8088/8086指令系统提供了实现加、减、乘、除运算指令,可参照表2所示内容。 表2数据类型的数据运算表 四、实验步骤与内容 1)对于表格中三组无符号数,试编程求这三组数的指定运算结果,并考虑计算结果对标志寄存器中状态标志位的影响: ①实验分析 本实验要求简单,仅对指定三组数进行基本运算。只需使用ADD、SUB、MUL、DIV四个运算命令,并以MOV命令作为数值转移的手段即可。运算结果和状态标志的情况可以通过debug调试中的T命令进行逐步查看。 需要注意的主要有以下几点: 1.在进行加法和乘法运算时,会出现对高位的进位扩展。因此,在记录结

《8位算术逻辑运算实验》

3.2 算术逻辑运算部件 1位全加器 n 位并行加法器 ALU 单元 乘、除 法器 运算器 3.2.1 加法单元 若:+1101,+1111 两数相加,且分别放入A 、B 两个寄存器。 0 0 1 1 0 1 (补码、双符号位表示) +) 0 0 1 1 1 1 0 1 1 1 0 0 第3位:输入量: Ai(1),Bi(1), C i-1(1) 本位进位 C i ∑i C i-1 A i B i 低位进位 本位操作数 输入、输出量之间的关系式: Σi =(A B i C i-1 (1) C i = A i B i A B i )C i-1 (2) 根据上式,得出一位全加器的逻辑电路图: 根据(1)式得: 如果三个输人中1的个数为奇数,则本位和为1,否则为0。 根据(2)式得: 当本位的两个输入A i 、B i 均为1时,不管低位有无进位C i-1传来,都必然产生进位C i ;若C i-1为1,只要A i 、B i 中有一个为1,也必然产生进位。 i-1 i-1 i i i i (a ) (b ) 进位链 选择逻 辑控制 移位器 寄存器组 选择器

3.3.1 2并行加法器与进位逻辑结构 一、串行加法器 1.定义:如果每步只求一位和,将n 位加分成n 步实现,这样的加法器称为串行 加法器。 2.组成: 1 个一位全加器 1个移位寄存器:从低到高串行提供操作数相加; 1个寄存器 1个触发器 3.特点:结构简单,速度极慢。 二、并行加法器 1.定义:如果用n 位全加器一步实现n 位相加,即n 位同步相加,这样的加法器称为并行加法器。 2.组成: n 位加法器 并行加法器 串行进位链 进位链 并行进位链 根据(指C i-1 )输入量提供时间的不同,将进位链分为带串行进位链的并行加法器,带并行进位链的并行加法器。 加法器的运算速度不仅与全加器的运算速度有关,更主要的因素是取决于进位传递速度。 3.进位信号的基本逻辑: C i = A i B i +(A i )C i-1 令Gi= A i B i 进位产生函数 Pi = A i ,进位传递函数 4.串行进位链 (1)定义:各级进位信号直接依赖于低一级的进位信号 (2)关系式: C 1 = G 1 + P 1C 0 C 2 = G 2 + P 2C 1 C 3 = G 3 + P 3C 2 。。。。。。。。。 C n = G n + P n C n-1 (3)结构图:

练习(算术运算及逻辑移位指令3题目)

练习 算术运算与逻辑移位指令 1、若AX=0ABCDH,BX=7F8FH,CF=1。分别执行0886 CPU指令 (1)ADD AX,BX (2)ADC AX,BX (3)SBB AX,BX (3)NEG AX (5)AND AX,BX (6)OR AX,BX (7)XOR AX,BX (8)IMUL BL 后,AX寄存器中的内容,并指出标志寄存器SF、ZF、AF、PF、CF及OF的状态。 2、若CX=6700H,DX=78FFH,CF=1,求分别执行指令 (1)ADD CX,DX (2)ADC CX,DX (3)SUB CX,DX (4)SBB CX,DX (5)AND CX,DX (6)OR CX,DX (7)XOR CX,DX 后,CX和DX中的内容。并指出标志寄存器SF、ZF、AF、PF、CF和OF的状态。 3、X,Y分别为下列各组数,当它们分别进行加、减、AND、OR、XOR运算后,其标志位,SF、OF、CF、PF、ZF的状态如何? (1)X=21H;Y=43H (2)X=9AH;Y=0BCH (3)X=48H;Y=8DH (2)X=54H;Y=54H 4、若AX=98ABH,BX=A8BCH,求执行指令ADD AX,BX后,AX与BX中的内容,并指出SF、ZF、AF、PF、CF和OF的状态。 5、针对下列各条指令执行后的结果,填入目的操作数的值及标志位的状态。 6、若AX=FFF8H,BX=FFFAH,求执行IMUL BX后,DX与AX中的内容,并指出标

志位OF与CF的状态。 7、若AX=FFFEH,BX=FFFDH,求执行指令IMUL BX后,DX与AX中的内容。指出标志位OF与CF的状态。 8、设AL=85H,BL=2AH,均为带符号数,求指令 IMUL BL的执行结果。 9、若AL=78H,BL=87H, (1)求执行指令 ADD AL,BL DAA 之后,AL=?标志位AF=?CF=?并说明BCD码调整情况。 (2)若执行指令SUB AL,BL与DAS后,情况又如何? 10、若AL=75H,BL=48, (1)求执行指令 ADD AL,BL DAA 之后,AL=?标志位AF=?CF=?并说明BCD码调整情况。 (2)若执行指令SUB AL,BL与DAS后,情况又如何? 11、若有一个4字节数,放在寄存器BX间址的内存中(低地址对应低字节),要求这个4字节整数整个左移一位如何实现?右移一位又如何实现? 12、若有一个四字节数,放在寄存器DX与AX中(DX放高16位),要求这个四字节数整个左移一位如何实现?右移一位又如何实现? 13、分别编写一程序使 (1)AX寄存器高3位清0; (2)BX寄存器高3位置1; (3)CX寄存器高4位取反; (4)DX寄存器高3位不变,其余位清0。

dsp实验1-基本算数运算

电子科技大学通信与信息工程学院标准实验报告 (实验)课程名称DSP设计与实现 电子科技大学教务处制表

电 子 科 技 大 学 实 验 报 告 一、实验室名称:DSP 实验室 二、实验项目名称:基本算术运算 三、实验学时:4 四、实验原理: (1) 定点DSP 中数据表示方法 C54X 是16位的定点DSP 。一个16位的二进制数既可以表示一个整数,也可以表示一个小数。当它表示一个整数时,其最低位(D0)表示02,D1位表示12,次高位(D14)表示142。如果表示一个有符号数时,最高位(D15)为符号位,0表示正数,1表示负数。例如,07FFFH 表示最大的正数32767(十进制),而0FFFFH 表示最大的负数-1(负数用2的补码方式显示)。当需要表示小数时,小数点的位置始终在最高位后,而最高位(D15)表示符号位。这样次高位(D14)表示12-,然后是22-,最低位(D0)表示152 -。所以04000H 表示小数0.5,01000H 表示小数125.02 3=-,而0001H 表示16位定点DSP 能表示的最小的小数(有符号)152-=0.8125。在后面的实验中,除非有特别说明,我们指的都是有符号数。 在C54X 中,将一个小数用16位定点格式来表示的方法是用152乘以该小数,然后取整。 从上面的分析可以看出,在DSP 中一个16进制的数可以表示不同的十进制数,或者是整数,或者是小数(如果表示小数,必定小于1),但仅仅是在做整数乘除或小数乘除时,系统对它们的处理才是有所区别的,而在加减运算时,系统都当成整数来处理。 (2) 实现16定点加法 C54X 中提供了多条用于加法的指令,如ADD ,ADDC ,ADDM 和ADDS 。其中ADDS 用于无符号数的加法运算,ADDC 用于带进位的加法运算(如32位扩展精度加法),而ADDM

16位算术逻辑运算实验

16 位算术逻辑运算实验 一、实验内容 1、实验原理 实验中所用16位运算器数据通路如图3-3所示。其中运算器由四片74LS181以并/串形成16位字长的ALU构成。低8位运算器的输出经过一个三态门74LS245(U33)到ALUO1插座,实验时用8芯排线和内部数据总线BUSD0~D7插座BUS1~6中的任一个相连,低8位数据总线通过LZD0~LZD7显示灯显示;高8位运算器的输出经过一个三态门74LS245(U33`)到ALUO1`插座,实验时用8芯排线和高8位数据总线BUSD8~D15插座KBUS1或KBUS2相连,高8位数据总线通过LZD8~LZD15显示灯显示;参与运算的四个数据输入端分别由四个锁存器74LS273(U29、U30、U29`、U30、)锁存,实验时四个锁存器的输入并联后用8芯排线连至外部数据总线EXD0~D7插座EXJ1~EXJ3中的任一个;参与运算的数据源来自于8位数据开并KD0~KD7,并经过一三态门74LS245(U51)直接连至外部数据总线EXD0~EXD7,输入的数据通过LD0~LD7显示。

本实验用到6个主要模块:⑴低8位运算器模块,⑵数据输入并显示模块,⑶数据总线显示模块,⑷功能开关模块(借用微地址输入模块),⑸高8位运算器模块,⑹高8位(扩展)数据总线显示模块。根据实验原理详细接线如下(接线⑴~⑸同实验一): ⑴ALUBUS连EXJ3; ⑵ALUO1连BUS1; ⑶SJ2连UJ2; ⑷跳线器J23上T4连SD; ⑸LDDR1、LDDR2、ALUB、SWB四个跳线器拨在左边(手动方式); ⑹AR跳线器拨在左边,同时开关AR拨在"1"电平; ⑺ALUBUS`连EXJ2;

第八讲 算术运算类指令

第八讲算术运算类指令 教学方法:讲授法 教学目的: 1、熟悉数据运算类指令的操作方式特点 2、理解二-十进制调整指令的含义 3、熟练掌握加法指令 教学重点、难点: 加法、减法指令、二-十进制调整指令 无条件转移指令的应用 主要教学内容(提纲): 一、数据运算类指令的操作方式特点 二、算术运算类指令 三、逻辑运算类指令 复习: direct、@Ri、@DPTR、Rn、#data、(x)、((x))的含义? 讲授要点 §3-3 算术运算类指令 包括:加、减、乘、除;加一、减一。 一、加法指令 ADD A,Rn ;(A)(A)+ (Rn)以下类同。 ADD A,direct ADD A,@Ri ADD A,#data 无符号数相加时:若C = 1,说明有溢出(其值> 255)。 带符号数相加时:若OV = D7c⊕D6c = 1,说明有溢出。 ADDC A,Rn ;(A)(A)+(Rn)+(C),以下类同。ADDC A,direct ADDC A,@Ri ADDC A,#data 上述四条指令多用于多字节数相加。 INC A ;(A)(A)+1 ,以下类同。 INC Rn INC direct INC @Ri INC DPTR 例1、设(R0)= 7FH;(7EH)= 40H

执行:INC @R0 INC R0 INC @R0 后, (R0)= 7FH; (7EH)= 00H; (7FH)= 41H. DA A ;二——十进制调整指令。 执行过程中,CPU能根据加法运算后,累加器中的值和PSW中的AC及C标志位的状况自动选择一个修正值(00H、06H、60H、66H)与原运算结果相加,进行二——十进制调整。 选择修正值的规则: (A3 ~ 0)> 9时或(AC)= 1时,(A3 ~ 0)(A3 ~ 0)+6 (A7 ~ 4)> 9 或(C) = 1时,(A7 ~ 4)(A7 ~ 4)+ 6 例2、设(A)= 56H 为56的压缩的BCD码数,(R3)= 67H,(CY)=1 执行ADDC A,R3 DA A 结果为:124 注意:1)DA指令只能跟在加法指令后面使用; 2)调整前参与运算的两数是BCD码数; 3)DA指令不能与减法指令配对使用,但可以实现对A中压缩BCD 减一操作。 例3、设(A)=30H(压缩BCD码数),执行: ADD A,#99H DA A 后,便实现了30 -1 = 29的操作。 例4、两个4位BCD码相加,一个存放在(31H)(30H);另一个存放在 (33H)(32H);和数拟回存在(31H)(30H)中,试编程实现之。 解:MOV R0,#30H MOV R1,#32H MOV A,@R0 ADD A,@R1 DA A MOV @R0,A INC R0 INC R1 MOV A,@R0 ADDC A,@R1 DA A MOV @R0,A 二、减法指令 SUBB A,Rn ;(A)(A)-(Rn)-(C),以下类同。 SUBB A,direct SUBB A,@Ri SUBB A,#data

《计算机组成原理》实验报告---8位算术逻辑运算实验

. '. 计算机专业类课程 实验报告 课程名称:计算机组成原理 学 院:信息与软件工程学院 专 业:软件工程 学生姓名: 学 号: 指导教师: 日 期: 2012 年 12 月 15 日

电子科技大学 实验报告 一、实验名称:8位算术逻辑运算实验 二、实验学时:2 三、实验内容、目的和实验原理: 实验目的: 1.掌握算术逻辑运算器单元ALU(74LS181)的工作原理。 2.掌握模型机运算器的数据传送通路组成原理。 3.验证74LS181的组合功能。 4.按给定数据,完成实验指导书中的算术/逻辑运算。 实验内容: 使用模型机运算器,置入两个数据DR1=35,DR2=48,改变运算器的功能设定,观察运算器的输出,记录到实验表格中,将实验结果对比分析,得出结论。 实验原理: 1.运算器由两片74LS181以并/串形式构成8位字长的ALU。

. '. 2.运算器的输出经过一个三态门(74LS245)和数据总线相连。 3.运算器的两个数据输入端分别由两个锁存器(74LS273)锁存。 4.锁存器的输入连至数据总线,数据开关(INPUT DEVICE)用来给 出参与运算的数据,并经过一三态门(74LS245)和数据总线相连。 5.数据显示灯(BUS UNIT)已和数据总线相连,用来显示数据总线内 容。 实验器材(设备、元器件):模型机运算器 四、实验步骤: 1. 仔细查看试验箱,按以下步骤连线 1)ALUBUS连EXJ3 2) ALU01连BUS1 3) SJ2连UJ2 4) 跳线器J23上T4连SD 5) LDDR1,LDDR2,ALUB,SWB四个跳线器拨在左边 6) AR跳线器拨在左边,同时开关AR拨在“1”电平 2. 核对线路,核对正确后接通电源 3. 用二进制数据开关KD0-KD7向DR1和DR2寄存器置入8位运算数据。

实验二 算术运算类操作实验 (基础与设计)

实验二算术运算类操作实验 (基础与设计) 一、实验要求和目的 1、了解汇编语言中的二进制、十六进制、十进制、BCD 码的表示形式; 2、掌握各类运算类指令对各状态标志位的影响及测试方法; 3、熟悉汇编语言二进制多字节加减法基本指令的使用方法; 4、熟悉无符号数和有符号数乘法和除法指令的使用; 5、掌握符号位扩展指令的使用。 6、掌握BCD 码调整指令的使用方法 二、软硬件环境 1、硬件环境:计算机系统 windows; 2、软件环境:装有MASM、DEBUG、LINK、等应用程序。 三、实验涉及的主要知识 本实验主要进行算术运算程序设计和调试,涉及到的知识点包括: 1.加减法处理指令 主要有加法指令ADD,带进位加法ADC,减法指令SUB,带进位减法指令SBB。 2.乘除法指令和符号位扩展指令 主要有无符号数乘法指令MUL,带符号数乘法指令IMUL,无符号数除法指令DIV,带符号数除法指令IDIV,以及符号位从字节扩展到字的指令CBW 和从字扩展到双字的指令CWD。3.BCD 码的调整指令 主要有非压缩的BCD 码加法调整指令DAA,压缩的BCD 码减法调整指令DAS,非压缩的BCD 码加法调整指令AAA,非压缩的BCD 码减法调整指令AAS,乘法的非压缩BCD码调整指令AAM,除法的非压缩BCD 码调整指令AAD。 8088/8086 指令系统提供了实现加、减、乘、除运算的上述基本指令,可对下表所示的数据类型进行数据运算。 四、实验内容与步骤 1、对于两组无符号数,087H 和034H,0C2H 和5FH,试编程求这两组数的和差积商,并考虑计算结果对标志寄存器中状态标志位的影响。 设计流程:

计算机组成原理--实验二算术逻辑运算实验

实验二算术逻辑运算实验 一、实验目的 (1)了解运算器芯片(74LS181)的逻辑功能。 (2)掌握运算器数据的载入、读取方法,掌握运算器工作模式的设置。 (3)观察在不同工作模式下数据运算的规则。 二、实验原理 1.运算器芯片(74LS181)的逻辑功能 74LS181是一种数据宽度为4个二进制位的多功能运算器芯片,封装在壳中,封装形式如图2-3所示。 5V A1 B1 A2 B2 A3 B3 Cn4 F3 BO A0 S3 S2 S1 S0 Cn M F0 F1 F2 GND 图 2-3 74LS181封装图 主要引脚有: (1)A0—A3:第一组操作数据输入端。 (2)B0—B3:第二组操作数据输入端。 (3)F0—F3:操作结果数据输入端。 (4)F0—F3:操作功能控制端。 (5):低端进位接收端。

(6):高端进位输出端。 (7)M:算数/逻辑功能控制端。 芯片的逻辑功能见表2-1.从表中可以看到当控制端S0—S3为1001、M为0、 为1时,操作结果数据输出端F0—F3上的数据等于第一组操作数据输入端A0—A3上的数据加第二组操作数据输入端B0—B3上的数据。当S0—S3、M、 上控制信号电平不同时,74LS181芯片完成不同功能的逻辑运算操作或算数运算操作。在加法运算操作时,、进位信号低电平有效;减法运算操作时,、 借位信号高电平有效;而逻辑运算操作时,、进位信号无意义。 2.运算器实验逻辑电路 试验台运算器实验逻辑电路中,两片74LS181芯片构成一个长度为8位的运算器,两片74LS181分别作为第一操作数据寄存器和第二操作数据寄存器,一片74LS254作为操作结果数据输出缓冲器,逻辑结构如图2-4所示。途中算术运算操作时的进位Cy判别进位指示电路;判零Zi和零标志电路指示电路,将在实验三中使用。 第一操作数据由B-DA1(BUS TO DATA1)负脉冲控制信号送入名为DA1的第一操作数据寄存器,第二操作数据由B-DA2(BUS TO DATA2)负脉冲控制信号送入名为DA2的第二操作数据寄存器。74LS181的运算结果数据由(ALU TO BUS)低电平控制信号送总线。S0—S3、M芯片模式控制信号同时与两片74LS181的S0—S3、M端相连,保证二者以同一工作模式工作。实验电路的低端进位接收端Ci与低4位74LS181的相连,用于接收外部进位信号。低4为74LS181的与高4位74LS181的上相连,实现高、低4位之间进位信号的传递。高4位之间进位信号的传递。高4位74LS181的送进位Cy判别和进位指示电路。 表2-1 74LS181 芯片逻辑功能表

计算机组成原理实验报告 算术逻辑运算单元实验

西华大学数学与计算机学院实验报告 课程名称:计算机组成原理年级:2011级实验成绩: 指导教师:祝昌宇姓名:蒋俊 实验名称:算术逻辑运算单元实验学号:312011*********实验日期:2013-12-15 一、目的 1. 掌握简单运算器的数据传输方式 2. 掌握74LS181的功能和应用 二、实验原理 (1)ALU单元实验构成 1、结构试验箱上的算术逻辑运算单元上的运算器是由运算器由2片74LS181构成8字长的ALU 单元。 2、2片74LS373作为2个数据锁存器(DR1、DR2),8芯插座ALU-OUT作为数据输入端,可通过短8芯扁平电缆,把数据输入端连接到数据总线上。 3、运算器的数据输出由一片74LS244(输出缓冲器)来控制,8芯插座ALU-OUT作为数据输出端,可通过短8芯扁平电缆把数据输出端连接到数据总线上。 (2)ALU单元的工作原理 数据输入锁存器DR1的EDR1为低电平,并且D1CK有上升沿时,把来自数据总线上的数据打入锁存器DR1。同样,使EDR2为低电平,并且D2CK有上升沿时,把来自数据总线上的数据打入锁存器DR2。 算术逻辑运算单元的核心是由2片74LS181构成,它可以进行2个8位二进制数的算术逻辑运算,74LS181的各种工作方式可通过设置其控制信号来实现(S0、S1、S2、S3、M、CN)。当实验者正确设置了74LS181的各个控制信号,74LS181会运算数据锁存器DR1、DR2内的数据。由于DR1、DR2已经把数据锁存,只要74LS181的控制信号不变,那么74LS181的输出数据也不会发生改变。 输出缓冲器采用74LS244,当控制信号ALU-O为低电平时,74LS244导通,把74LS181的运算结果输出到数据总线;ALU-O为高电平时,74LS244的输出为高阻。

算术逻辑运算实验

实验报告 实验项目:算术逻辑运算实验(试验一) 课程名称:计算机组成原理 姓名:学号同组姓名:学号:实验位置(机号): 实验日期 实验1.掌握简单运算器的数据传送通路 目的2.验证运算器功能发生器(74LS181)的组合功能 3.验证带进为控制的算术运算器功能发生器(74LS181)的功能 4.按指定的数据完成几种制定的算术运算 5.验证移位控制的组合功能 实验YY-Z02计算机组成原理教学实验系统一台,排线若干。设备 实验 内容1.实验原理 (算 运算器实验原理图 法、 程 T4______ ALU-B 序、

_____ _____ 进位CyCn 步骤 299-B 判零_____ M 74LS2 电路CyNCn 和方 S0 99 ALU S1 法) (74LS181) S2 S3 _____I/O-RINPUT Ai =“0”B-DA1DA1 (74LS273)DA2

(74LS273)B-DA2 实验中所用的运算器数据通路图如图1-1所示,算术逻辑实验接线图如图1-2所示。图中所示的是由两片段74LS181芯片以并/串形式构成的8位字长的运算器。右方为低压4位运算芯片,左方为高4位运算芯片。低位芯片的进位输出端C(n+4)与高芯片的进位输入端CN相连,高位芯片的进位输出引至外部。两个芯片的控制端S0~S3和M各自相连。 2.实验步骤 1)算数逻辑运算 i.输入单元置数一 ii.设置I/O-R# = 0 iii.ALU-B# =1 iv.B-DA1 _| ̄|_将输入单元的输入数据存入DA1中 v.输入单元置数据二 vi.B-DA2 _| ̄|_将数据存入DA2中 vii.设置S 3 -------S 0、M、Cn根据要求按照定义操作设置完成运算viii. ix. x.I/O-R# = 1 ALU-B = 0运算结果送总线 IO-W ̄|_| ̄总线数据送显示单元显示 数据1.算数逻辑运算

Maple 常用计算命令

Maple 常用计算命令 《Maple 指令》7.0版本 第1章章数 1.1 复数 Re,Im - 返回复数型表达式的实部/虚部 abs - 绝对值函数 argument - 复数的幅角函数 conjugate - 返回共轭复数 csgn - 实数和复数表达式的符号函数 signum - 实数和复数表达式的sign 函数5 1.2 MAPLE 常数 已知的变量名称 指数常数(以自然对数为底) I - x^2 = -1 的根 infinity 无穷大 1.3 整数函数 ! - 阶乘函数 irem, iquo - 整数的余数/商 isprime - 素数测试 isqrfree - 无整数平方的因数分解 max, min - 数的最大值/最小值 mod, modp, mods - 计算对 m 的整数模 rand - 随机数生成器 randomize - 重置随机数生成器 1.4 素数 Randpoly, Randprime - 有限域的随机多项式/首一素数多项式ithprime - 确定第i个素数 nextprime, prevprime - 确定下一个最大/最小素数 1.5 数的进制转换 convert/base - 基数之间的转换 convert/binary - 转换为二进制形式 convert/decimal - 转换为 10 进制 convert/double - 将双精度浮点数由一种形式转换为另一种形式convert/float - 转换为浮点数 convert/hex - 转换为十六进制形式 convert/metric - 转换为公制单位 convert/octal - 转换为八进制形式 1.6 数的类型检查 type - 数的类型检查函数 第2章初等数学 2.1 初等函数 product - 确定乘积求和不确定乘积 exp - 指数函数

计算机组成原理实验二算术逻辑运算实验

计算机组成原理实验二 算术逻辑运算实验 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

实验二算术逻辑运算实验 一、实验目的 (1)了解运算器芯片(74LS181)的逻辑功能。 (2)掌握运算器数据的载入、读取方法,掌握运算器工作模式的设置。 (3)观察在不同工作模式下数据运算的规则。 二、实验原理 1.运算器芯片(74LS181)的逻辑功能 74LS181是一种数据宽度为4个二进制位的多功能运算器芯片,封装在壳中,封装形式如图2-3所示。 图2-3 74LS181封装图 主要引脚有: (1)A0—A3:第一组操作数据输入端。 (2)B0—B3:第二组操作数据输入端。 (3)F0—F3:操作结果数据输入端。 (4)F0—F3:操作功能控制端。 ??????:低端进位接收端。 (5)CC (6)CC4:高端进位输出端。 (7)M:算数/逻辑功能控制端。 芯片的逻辑功能见表2-1.从表中可以看到当控制端S0—S3为1001、M为??????为1时,操作结果数据输出端F0—F3上的数据等于第一组操作数据输0、CC 入端A0—A3上的数据加第二组操作数据输入端B0—B3上的数据。当S0—S3、??????上控制信号电平不同时,74LS181芯片完成不同功能的逻辑运算操作或M、CC ??????、CC4进位信号低电平有效;减法运算数运算操作。在加法运算操作时,CC ??????、 算操作时,CC ??????、CC4借位信号高电平有效;而逻辑运算操作时,CC CC4进位信号无意义。 2.运算器实验逻辑电路 试验台运算器实验逻辑电路中,两片74LS181芯片构成一个长度为8位的运算器,两片74LS181分别作为第一操作数据寄存器和第二操作数据寄存器,一片74LS254作为操作结果数据输出缓冲器,逻辑结构如图2-4所示。途中算

实验二带进位控制8位算术逻辑运算实验

实验二带进位控制8位算术逻辑运算实验 一、实验目的 1、验证带进位控制的算术逻辑运算发生器的功能。 2、按指定数据完成几种指定的算术运算。 二、实验内容 1、实验原理 带进位控制运算器的实验原理如图所示,在实验(1)的基础上增加进位控制部分,其中高位74LS181(U31)的进位CN4通过门UN4E、UN2C、UN3B 进入UN5B的输入端D,其写入脉冲由T4和AR信号控制,T4是脉冲信号,在手动方式下进行实验时,只需将跳线器J23上T4与手动脉冲发生开关的输出端SD相连,按动手动脉冲开关,即可获得实验所需的单脉冲。AR是电平控制信号(低电平有效),可用于实现带进位控制实验。从图中可以看出,AR必须为“0’’电平,D型触发器74LS74(UN5B)的时钟端CLK才有脉冲信号输入。才可以将本次运算的进位结果CY锁存到进位锁存器74LS74(UN5B)中。 2、实验接线 实验连线(1)~(5)同实验~,洋细如下: (1)ALUBUS~连ExJ3; (2)ALUO1连BUSl; (3)SJ2连UJ2; (4)跳线器J23上T4连SD; (5)LDDRl、LDDR2、ALUB、SWB四个跳线器拨在左边(手动方式);(6)AR、299B跳线器拨在左边,同时开关AR拨在“0’’电平,开关299B拨在“1”电平; (7)J25跳线器拨在右边。 3、实验步骤 (1)仔细查线无误后,接通电源。 (2)用二进制数码开关KDO~KD7向DRl和DR2 寄存器置数,方法:关闭ALU输出三态门ALUB=1,开启输入三态门SWB=0,输入脉冲T4按手动脉冲

发生按钮产生。如果选择参与操作的两个数据分别为55H 、AAH ,将这两个数存入DR1和DR2的具体操作步骤如下: (3)开关ALUB=0,开启输出三态门,开关SWB=1,关闭输入三态门,同时让 LDDR1=0,LDDR2=0。 (4)如果原来有进位,CY=1,进位灯亮,但需要清零进位标志时,具体操作方 法如下: ◆ S3、S2、S1、S0、M 的状态置为0 0 0 0 0,AR 信号置为“0”电平 (清零操作时DRl 寄存器中的数应不等于FF )。 ◆ 按动手动脉冲发生开关,CY=0,即清进位标志。 注:进位标志指示灯CY 亮时表示进位标志为“1”,有进位;进位标志指示灯CY 灭时,表示进位位为“0”,无进位。 (5)验证带进位运算及进位锁存功能 这里有两种情况: ● 进位标志已清零,即CY=0,进位灯灭。 ? 使开关CN=0,再来进行带进位算术运算。例如步骤(2)参与运算的两 个数为55H 和AAH ,当S3、S2、S1、S0状态为10010,此时输出数据总线显示灯上显示的数据为DRl 加DR2再加初始进位位“1” (因CN=0),相加的结果应为ALU=00,并且产生进位,此时按动手动脉冲开关,则进位标志灯亮,表示有进位。 ? 使开关CN=1,当S3、S2、S1、S0状态为10010,则相加的结累ALU=FF , 并且不产生进位。

北理工-汇编-实验二-算术运算类操作实验

………………………………………………最新资料推荐……………………………………… 本科实验报告 实验名称:实验二算术运算类操作实验(基础与设计)课程名称:CPU与汇编实验实验时间: 任课教师:实验地点: 实验教师: 实验类型:□原理验证■综合设计□自主创新 学生姓名: 学号/班级:组号:无学院:信息与电子同组搭档:无专业:信息工程成绩:

一、实验要求和目的 1.了解汇编语言中的二进制、十六进制、十进制、BCD 码的表示形式; 2.掌握各类运算类指令对各状态标志位的影响及测试方法; 3.熟悉汇编语言二进制多字节加减法基本指令的使用方法; 4.熟悉无符号数和有符号数乘法和除法指令的使用; 5.掌握符号位扩展指令的使用; 6.掌握BCD 码调整指令的使用方法。 二、软硬件环境 1、硬件环境:计算机系统 windows; 2、软件环境:装有MASM、DEBUG、LINK、等应用程序。 三、实验涉及的主要知识 1.加减法处理指令 2.乘除法指令和符号位扩展指令 3.BCD 码的调整指令 四、实验内容 (一)对于两组无符号数,087H 和034H,0C2H 和5FH,试编程求这两组数的和差积商,并考虑计算结果对标志寄存器中状态标志位的影响:

1.流程图 2.程序代码: DA TAS SEGMENT DA TAS ENDS STACKS SEGMENT STACKS ENDS CODES SEGMENT ASSUME CS:CODES,DS:DATAS,SS:STACKS START : MOV AX,DATAS MOV DS,AX MOV AX,0C2H MOV BX,5FH ADD AX,BX ;add MOV AX,0C2H MOV BX,5FH SUB AX,BX ;sub MOV AX,0C2H MOV BX,5FH MUL BX ;mul MOV AX,0C2H MOV BX,5FH DIV BX ;div MOV AH,4CH INT 21H CODES ENDS ENDSTART (将数据改变得到另一组输出结果) 3.实验结果 以第一组数的加法为例 (已将截图以上输入-t 进行debug 的步骤省略) 此时右下角信息(NV UP ……)代表标志寄存器的值。 4.结果分析: 由资料可得: 开始 结束 将两组数据分别存入AX ,BX 中,将二者中的数据相加,存入AX 中 将两组数据分别存入AX ,BX 中,用AX 中数据减去BX 中数据,存入AX 中 将两组数据分别存入AX ,BX 中,将二者中的数据相乘,存入AX 中 将两组数据分别存入AX , BX 中,用AX 中数据除以 BX 中数据,存入AX 中

8086指令系统之算术运算类指令

8086 指令系统之算术运算类指令 2007-04-17 07:51 1 加法指令 1.1 加法指令 ADD ADD reg,imm/reg/mem ;reg←reg+imm/reg/mem ADD mem,imm/reg ;mem←mem+imm/reg 2.17a: 例 2.17a:加法运算 mov add mov mov add add al,0fbh ;al=0fbh al,07h ;al=02h word ptr[200h],4652h ;[200h]=4652h bx,1feh ;bx=1feh al,bl ;al=00h word ptr[bx+2],0f0f0h ;[200h]=3742h
ADD 指令按照状态标志的定义相应设置这些标志的 0 或 1 状态。例如 在 07+FBH→02H 运算后:标志为 OF=0、SF=0、ZF=0、AF=1、PF=0、CF=1;用调 试程序单步执行后,上述标志状态依次为 NV、PL、NZ、AC、PO、CY。 同样进行 4652h+f0f0h→3742H 运算后,标志为 OF=0、SF=0、ZF=0、 AF=0、PF=1、CF=1;调试程序依次显示为 NV、PL、NZ、NA、PE、CY。注意,PF 仅反映低 8 位中“1”的个数,AF 只反映 D3 对 D4 位是否有进位。 1.2 带进位加法指令 ADC ADC reg,imm/reg/mem ;reg←reg+imm/reg/mem+CF ADC mem,imm/reg ;mem←mem+imm/reg+CF ;mem←mem+imm/reg+CF 加法运算外, CF, ADC 指令除完成 ADD 加法运算外,还要加进位 CF,其用法及对状态标志的 指令一样。 影响也与 ADD 指令一样。ADC 指令主要用于与 ADD 指令相结合实现多精度 数相加。 数相加。 2.17b: 例 2.17b:无符号双字加法运算 mov ax,4652h ;ax=4652h add ax,0f0f0h ;ax=3742h,CF=1 mov dx,0234h ;dx=0234h adc dx,0f0f0h ;dx=f325h,CF=0 上述程序段完成 DX.AX = 0234 4652H + F0F0 F0F0H = F325 3742H。 1.3 增量指令 INC INC reg/mem ;reg/mem←reg/mem+1 增量)。 INC 指令对操作数加 1(增量)。

相关文档