文档库 最新最全的文档下载
当前位置:文档库 › RSA公钥加密算法及其安全性讨论

RSA公钥加密算法及其安全性讨论

RSA公钥加密算法及其安全性讨论
RSA公钥加密算法及其安全性讨论

RSA公钥加密算法及其安全性讨论

RSA algorithm for public-key encryption and its security

摘要:RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。但是,RSA的安全性依赖于大数的因子分解,却并没有从理论上证明破译RSA的难度与大数分解难度等价,即RSA的重大缺陷是无法从理论上把握它的保密性能到底如何。随着计算能力的不断进步和各种攻击方法的出现,RSA算法是否真的安全。

关键词:RSA,公钥,加密,大数分解,攻击,安全性

1 RSA加密算法

1.1公钥简介

密码体制按密钥类型分为对称密钥和不对称密钥。对称密钥即加密、解密用的是同一个密钥,又称为私钥。不对称密钥即公钥加密,加密、解密用的是不同的密钥,一个密钥“公开”,即公钥,另一个自己秘密持有,即私钥,加密方用公钥加密,只有用私钥才能解密——史称公钥加密体系:PKI。

1.2 RSA算法简介

RSA加密算法是一种非对称加密算法。RSA加密算法是Ron Rivest、Adi Shamirh和Len Adleman于1977年在美国麻省理工学院开发出来的,次年首次对外公开宣布,是第一个既能用于数据加密也能用于数字签名的算法。RSA就是他们三人姓氏开头字母拼在一起组成的。RSA是建立在“大整数的素因子分解是困难问题”基础上的,其安全性取决于大数分解,也就是大数分解质因数的困难性。换言之,对一极大整数做因式分解愈困难,RSA演算法愈可靠。假如有人找到一种快速因式分解的演算法的话,那么用RSA加密的信息的可靠性肯定会急剧下降,但找到这样的演算法的可能性是非常小的,今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战。

1.3 RSA算法

1.3.1公钥和私钥的产生

假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥:

(1)选两个保密的足够大的素数p和q。同时对p, q严加保密,不让任何人知道。

(2)计算N=p×q。

(3)计算f(n)=(p-1)(q-1)。

(4)找一个与f(n)互质的数e,且1

(5)计算d,使得:(d * e) ≡ 1 (mod (f(n)))。

(6)将p和q的记录销毁。

(7)以{e,N}为公钥,{d,N}为私钥。

Alice将她的公钥(N,e)传给Bob,而将她的私钥(N,d)藏起来。

1.3.2 加密与解密消息

假设Bob想给Alice送一个消息m,他知道Alice产生的N和e。他使用起先与Alice约

好的格式将m转换为一个小于N的整数n。假如他的信息非常长的话,他可以将这个信息分为几段,然后将每一段转换为n。用下面这个公式他可以将n加密为c:

c≡n e (mod N)

计算c并不复杂。Bob算出c后就可以将它传递给Alice。

解密过程为计算:n≡c d(mod N)。得到n后,她可以将原来的信息m重新复原。

由算法可知:如果第三者进行窃听,他会得到n,N(p×q),e这几个数,如果想要解码,必须想办法得到d。要获得d,最简单的方法是将N分解为p和q,这样她可以得到同余方程d × e≡ 1 (mod (p-1)(q-1))并解出d,然后代入解密公式

n≡c d(mod N)

导出n(破密)。但至今为止还没有人找到一个多项式时间的算法来分解一个大的整数的因子,同时也还没有人能够证明这种算法不存在。

2 RSA算法的安全性

2.1大数的分解问题

著名数学家费马(1601-1665)和勒让德(1752-1833)都研究过分解因子的算法,现代某些更好的算法是勒让德方法的扩展。其中R. Schroeppel算法是一类较好的算法,用此法分解因子仍然需要大约e 次运算, 其中ln表示自然对数,可见分解n所需的运算次数与密钥的长度有关,随着密钥长度的增加,分解所需的时间会成指数倍增加。

若用1台1s能进行1亿次因子分解的高速计算机来计算,分解十进制长度为200位的n,其所需时间为3 800 000年。由此可见,对于RSA系统,如果用一个长度为200位(十进制)的n,认为它是比较安全的。n的长度越长,因子分解越困难,密码就越难以破译,加密强度就越高。一般来说,每增加10位二进制数,分解的时间就要加长1倍。

不过随着计算机运算速度的提高和并行计算的发展,破解的速度也会同步提高,这时可能要求使用更长的密钥。1993年,一个国际研究小组决定对RSA-129发出挑战。他们之所以敢于这样做,主要因为近20年来,计算机运算速度有了突飞猛进的提高,在大数分解理论上也有新的突破。该小组在国际互联网上集合来自世界各地的志愿参加者,向他们分发因数分解软件。每个参加者都领取了不同的因数分解任务,在自己的计算机上独立运算,然后把计算结果寄回MIT总部,列表归纳。到1994年4月,共有600余名志愿者参加了这项破译活动。他们总共动用了1600多台工作站、大型机和超级计算机,花费了8个月的时间,终于分解了RSA-129的公开钥匙。不过破解的难度随着n长度而不断增加,因此可以根据被加密文件的重要程度及对加密时间的要求这两个因素来选择n的长度,密钥长度决定保密的等级。到目前为止,世界上还没有任何可靠的攻击RSA演算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。

1994年彼得·秀尔(Peter Shor)证明一台量子计算机可以在多项式时间内进行因数分解。它利用量子计算的并行性,可以快速分解出大数的质因子。假如有人能够找到一种有效的分解大整数的算法的话,或者假如量子计算机可行的话,那么大数分解将不再是难题。基于大数分解的加密算法将不再安全,包括RSA在内。

2.2已公开的或已知的攻击方法

2.2.1 RSA共模攻击

若系统中共有一个模数,只是不同的人拥有不同的e和d,系统将是危险的。最普遍的情况是同一信息用不同的公钥加密,这些公钥共模而且互质,那么该信息无需私钥就可得到恢复。设P为信息明文,两个加密密钥为e1和e2,公共模数是n,则:C1 = P^e1 mod n

C2 = P^e2 mod n

密码分析者知道n、e1、e2、C1和C2,就能得到P。

因为e1和e2互质,故用Euclidean算法能找到r和s,满足:

r * e1 + s * e2 = 1

假设r为负数,需再用Euclidean算法计算C1^(-1),则

( C1^(-1) )^(-r) * C2^s = P mod n

另外,还有其它几种利用公共模数攻击的方法。总之,如果知道给定模数的一对e和d,一是有利于攻击者分解模数,一是有利于攻击者计算出其它成对的e’和d’,而无需分解模数。解决办法只有一个,那就是不要共享模数n。

2.2.2 RSA的选择密文攻击

RSA在选择密文攻击面前很脆弱。一般攻击者是将某一信息作一下伪装( Blind),让拥有私钥的实体签署。然后,经过计算就可得到它所想要的信息。实际上,攻击利用的都是同一个弱点,即存在这样一个事实:乘幂保留了输入的乘法结构:( XM )^d = X^d *M^d mod n

前面已经提到,这个固有的问题来自于公钥密码系统的最有用的特征--每个人都能使用公钥。但从算法上无法解决这一问题,主要措施有两条:一条是采用好的公钥协议,保证工作过程中实体不对其他实体任意产生的信息解密,不对自己一无所知的信息签名;另一条是决不对陌生人送来的随机文档签名,签名时首先使用One-Way HashFunction 对文档作HASH处理,或同时使用不同的签名算法。

2.2.3大数因数分解法

针对RSA最流行的攻击一般是基于大数因数分解。大数分解问题在上文已作阐述,这里列举一些实例。

1999年,RSA-155(512 bits)被成功分解,花了五个月时间(约8000 MIPS 年)和224 CPU hours 在一台有3.2G中央内存的Cray C916计算机上完成。2002年,RSA-158也被成功因数分解。2009年12月12日,编号为RSA-768 (768 bits, 232 digits)数也被成功分解。

2.2.4误用导致的安全性问题

RSA的小指数攻击。有一种提高RSA速度的建议是使公钥e取较小的值,这样会使加密变得易于实现,速度有所提高。但这样作是不安全的,对付办法就是e和d 都取较大的值。e = 2永远不应该被使用。

找到的p和q还要满足一定的要求,首先它们不能太靠近,此外p-1或q-1的因子不能太小,否则的话N也可以被很快地分解。1990年有人证明假如p大于q而小于2q(这是一个很经常的情况)而d < N1/4/3,那么从N和e可以很有效地推算出d。因此密钥d必须足够大。

RSA的攻击攻击方法很多,如旁道攻击法,部分密钥暴露攻击法,RSA使用不当的其他攻击法等。

2.3 RSA 加密算法的缺点

1)产生密钥很麻烦,受到素数产生技术的限制,因而难以做到一次一密。

2) RSA的安全性依赖于大数的因子分解,但并没有从理论上证明破译RSA的难度与大数分解难度等价。且随着大数分解技术的发展,这个长度还在增加,不利于数据格式的标准化。

3)至今为止没有人能够证明对N进行因数分解是唯一的从c导出n的方法。若有或发现其他简单的方法的话,RSA算法将会被攻破。

4)北京时间2月15日上午消息,据《纽约时报》周二报道,欧美数学家和密码学家偶然发现,目前被全世界广泛应用的公钥加密算法RSA存在漏洞。他们发现,在700万个实验样本中有2.7万个公钥并不是按理论随机产生的。也就是说,或许有人可以找出产生公钥的秘密质数。

5)RSA密钥长度随着保密级别提高,增加很快。

总结:RSA的安全性依赖于大数的因子分解难题,从提出到现在的三十多年里,经历了各种攻击的考验,逐渐为人们接受,普遍认为是目前最优秀的公钥方案之一。虽然并没有人证明RSA的难度与大数分解难度等价,也没有人证明对N进行因数分解是唯一的从c导出n的方法。但迄今为止,也没有一个好的攻击RSA算法的方法,RSA密码同样很少被破译。随着计算能力的增长,以及分解方法的改进,大数分解问题,可能将越来越容易。但同时增加大数的位数可以增加分解的难度。RSA的缺点和误用,只要合理的避开和防范就可以很好地避免。因此,虽然RSA算法存在着这样那样的被破解的可能性,但就现今的计算能力和水平,只要选择合适的长度,RSA算法即密码体制还是很安全的。

参考文献:

【1】现代密码学.杨波编著.——北京:清华大学出版社,2003

【2】RSA算法——https://www.wendangku.net/doc/038819693.html,/view/7520.htm

【3】RSA加密算法——

https://www.wendangku.net/doc/038819693.html,/wiki/RSA%E5%8A%A0%E5%AF%86%E6%BC%94%E7%

AE%97%E6%B3%95

【4】量子分解算法——https://www.wendangku.net/doc/038819693.html,/view/1347838.htm#sub1347838

【5】经典密码学与现代密码学.(美)Richard Spillman著.叶元建.曹英.张长富译.

——北京:清华大学出版社.2005.7

RSA加密算法_源代码__C语言实现

RSA算法 1978年就出现了这种算法,它是第一个既能用于数据加密也能用于数字签名的算法。它易于理解和操作,也很流行。算法的名字以发明者的名字命名:Ron Rivest, AdiShamir 和Leonard Adleman。但RSA的安全性一直未能得到理论上的证明。 RSA的安全性依赖于大数难于分解这一特点。公钥和私钥都是两个大素数(大于100个十进制位)的函数。据猜测,从一个密钥和密文推断出明文的难度等同于分解两个大素数的积。 密钥对的产生。选择两个大素数,p 和q 。计算:n = p * q 然后随机选择加密密钥e,要求e 和( p - 1 ) * ( q - 1 )互质。最后,利用Euclid 算法计算解密密钥d, 满足e * d = 1 ( mod ( p - 1 ) * ( q - 1 ) )其中n和d也要互质。数e和n是公钥,d是私钥。两个素数p和q 不再需要,应该丢弃,不要让任何人知道。加密信息m(二进制表示)时,首先把m分成等长数据块m1 ,m2,..., mi ,块长s,其中2^s <= n, s 尽可能的大。对应的密文是:ci = mi^e ( mod n ) ( a ) 解密时作如下计算:mi = ci^d ( mod n ) ( b ) RSA 可用于数字签名,方案是用( a ) 式签名,( b )式验证。具体操作时考虑到安全性和m信息量较大等因素,一般是先作HASH 运算。RSA 的安全性。RSA的安全性依赖于大数分解,但是否等同于大数分解一直未能得到理论上的证明,因为没有证明破解RSA 就一定需要作大数分解。假设存在一种无须分解大数的算法,那它肯定可以修改成为大数分解算法。目前,RSA的一些变种算法已被证明等价于大数分解。不管怎样,分解n是最显然的攻击方法。现在,人们已能分解140多个十进制位的大素数。因此,模数n必须选大一些,因具体适用情况而定。 由于进行的都是大数计算,使得RSA最快的情况也比DES慢上100倍,无论是软件还是硬件实现。速度一直是RSA的缺陷。一般来说只用于少量数据加密。 */ #include #include #include

RSA加密解密的设计与实现

RSA加密解密的设计与实现

上海电力学院 《应用密码学》课程设计 题目: RSA加密解密的设计与实现 院系:计算机科学与技术学院 专业年级:级 学生姓名:李正熹学号: 3273 指导教师:田秀霞 1月 8日 目录

目录 1.设计要求 2.开发环境与工具 3.设计原理(算法工作原理) 4.系统功能描述与软件模块划分 5.设计核心代码 6.参考文献 7. 设计结果及验证 8. 软件使用说明 9. 设计体会 附录 1.设计要求

1 随机搜索大素数,随机生成公钥和私钥 2 用公钥对任意长度的明文加密 3 用私钥对密文解密 4 界面简洁、交互操作性强 2.开发环境与工具 Windows XP操作系统 Microsoft Visual C++ 6.0 1.创立rsa工程

2.在rsa工程中创立 3273 李正熹cpp文件 3.设计原理 RSA算法简介 公开密码算法与其它密码学完全不同,它是基于数学函数而不是基于替换或置换。与使用一个密钥的对称算法不同,公开密钥算法是非对称的,而且它使用的是两个密钥,包括用于加密的公钥和用于解密的私钥。公开密钥算法有RSA、Elgamal等。 RSA公钥密码算法是由美国麻省理工学院(MIT)的Rivest,Shamir和Adleman在1978年提出来的,并以她们的名字的有字母命名的。RSA是第一个安全、实用的公钥密码算法,已经成为公钥密码的国际标准,是当前应用广泛的公钥密码体制。

RSA的基础是数论的Euler定理,其安全性基于二大整数因子分解问题的困难性,公私钥是一对大素数的函数。而且该算法已经经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这不恰恰说明该算法有其一定的可信度。 4.系统功能描述与软件模块划分 功能:

RSA公钥加密算法及其安全性讨论

RSA公钥加密算法及其安全性讨论 RSA algorithm for public-key encryption and its security 摘要:RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。但是,RSA的安全性依赖于大数的因子分解,却并没有从理论上证明破译RSA的难度与大数分解难度等价,即RSA的重大缺陷是无法从理论上把握它的保密性能到底如何。随着计算能力的不断进步和各种攻击方法的出现,RSA算法是否真的安全。 关键词:RSA,公钥,加密,大数分解,攻击,安全性 1 RSA加密算法 1.1公钥简介 密码体制按密钥类型分为对称密钥和不对称密钥。对称密钥即加密、解密用的是同一个密钥,又称为私钥。不对称密钥即公钥加密,加密、解密用的是不同的密钥,一个密钥“公开”,即公钥,另一个自己秘密持有,即私钥,加密方用公钥加密,只有用私钥才能解密——史称公钥加密体系:PKI。 1.2 RSA算法简介 RSA加密算法是一种非对称加密算法。RSA加密算法是Ron Rivest、Adi Shamirh和Len Adleman于1977年在美国麻省理工学院开发出来的,次年首次对外公开宣布,是第一个既能用于数据加密也能用于数字签名的算法。RSA就是他们三人姓氏开头字母拼在一起组成的。RSA是建立在“大整数的素因子分解是困难问题”基础上的,其安全性取决于大数分解,也就是大数分解质因数的困难性。换言之,对一极大整数做因式分解愈困难,RSA演算法愈可靠。假如有人找到一种快速因式分解的演算法的话,那么用RSA加密的信息的可靠性肯定会急剧下降,但找到这样的演算法的可能性是非常小的,今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战。 1.3 RSA算法 1.3.1公钥和私钥的产生 假设Alice想要通过一个不可靠的媒体接收Bob的一条私人讯息。她可以用以下的方式来产生一个公钥和一个私钥: (1)选两个保密的足够大的素数p和q。同时对p, q严加保密,不让任何人知道。 (2)计算N=p×q。 (3)计算f(n)=(p-1)(q-1)。 (4)找一个与f(n)互质的数e,且1

RSA加密算法的基本原理

RSA加密算法的基本原理 1978年RSA加密算法是最常用的非对称加密算法,CFCA 在证书服务中离不了它。但是有不少新来的同事对它不太了解,恰好看到一本书中作者用实例对它进行了简化而生动的描述,使得高深的数学理论能够被容易地理解。我们经过整理和改写特别推荐给大家阅读,希望能够对时间紧张但是又想了解它的同事有所帮助。 RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest,Adi Shamir,Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。 RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。 RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表: 可能各位同事好久没有接触数学了,看了这些公式不免一头雾水。别急,在没有正式讲解RSA加密算法以前,让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到: 一、什么是“素数”? 素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。 二、什么是“互质数”(或“互素数”)? 小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。 判别方法主要有以下几种(不限于此): (1)两个质数一定是互质数。例如,2与7、13与19。 (2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与26。(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。(4)相邻的两个自然数是互质数。如15与16。 (5)相邻的两个奇数是互质数。如49与51。 (6)大数是质数的两个数是互质数。如97与88。 (7)小数是质数,大数不是小数的倍数的两个数是互质数。如7和16。 (8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,

RSA加密算法加密与解密过程解析

RSA加密算法加密与解密过程解析 1.加密算法概述 加密算法根据内容是否可以还原分为可逆加密和非可逆加密。 可逆加密根据其加密解密是否使用的同一个密钥而可以分为对称加密和非对称加密。 所谓对称加密即是指在加密和解密时使用的是同一个密钥:举个简单的例子,对一个字符串C做简单的加密处理,对于每个字符都和A做异或,形成密文S。 解密的时候再用密文S和密钥A做异或,还原为原来的字符串C。这种加密方式有一个很大的缺点就是不安全,因为一旦加密用的密钥泄露了之后,就可以用这个密钥破解其他所有的密文。 非对称加密在加密和解密过程中使用不同的密钥,即公钥和私钥。公钥用于加密,所有人都可见,私钥用于解密,只有解密者持有。就算在一次加密过程中原文和密文发生泄漏,破解者在知道原文、密文和公钥的情况下无法推理出私钥,很大程度上保证了数据的安全性。 此处,我们介绍一种非常具有代表性的非对称加密算法,RSA加密算法。RSA 算法是1977年发明的,全称是RSA Public Key System,这个Public Key 就是指的公共密钥。 2.密钥的计算获取过程 密钥的计算过程为:首先选择两个质数p和q,令n=p*q。 令k=?(n)=(p?1)(q?1),原理见4的分析 选择任意整数d,保证其与k互质 取整数e,使得[de]k=[1]k。也就是说de=kt+1,t为某一整数。

3.RSA加密算法的使用过程 同样以一个字符串来进行举例,例如要对字符串the art of programming 进行加密,RSA算法会提供两个公钥e和n,其值为两个正整数,解密方持有一个私钥d,然后开始加密解密过程过程。 1. 首先根据一定的规整将字符串转换为正整数z,例如对应为0到36,转化后形成了一个整数序列。 2. 对于每个字符对应的正整数映射值z,计算其加密值M=(N^e)%n. 其中N^e表示N的e次方。 3. 解密方收到密文后开始解密,计算解密后的值为(M^d)%n,可在此得到正整数z。 4. 根据开始设定的公共转化规则,即可将z转化为对应的字符,获得明文。 4.RSA加密算法原理解析 下面分析其内在的数学原理,说到RSA加密算法就不得不说到欧拉定理。 欧拉定理(Euler’s theorem)是欧拉在证明费马小定理的过程中,发现的一个适用性更广的定理。 首先定义一个函数,叫做欧拉Phi函数,即?(n),其中,n是一个正整数。?(n)=总数(从1到n?1,与n互质整数) 比如5,那么1,2,3,4,都与5互质。与5互质的数有4个。?(5)=4再比如6,与1,5互质,与2,3,4并不互质。因此,?(6)=2

密码学实验-RSA公钥密码

实验报告 实验八、RSA公钥密码 实验目的: 熟练掌握RSA公钥密码算法原理及实现。 实验内容: 1、写出RSA公钥密码算法及其实现。 2、当取两素数分别为17、23,加密密钥为35时,写出其明文空间,并求出下列明文的密 文:1、15、17、23、48、235。 3、当取两素数分别为17、23,加密密钥为35时,求相应的解密密钥。 实验结果: 1.算法: Step1:选取两个大素数p和q,p和q保密 Step2:计算n=pq,f(n)=(p-1)(q-1),n公开,f(n)保密 Step3:随机选取正整数1 #include #include void main() { int i; double M,C,e,n,p,q,t; cout<<"请输入素数p:"; cin>>p; cout<<"请输入素数q:"; cin>>q;

n=p*q; t=(p-1)*(q-1); cout<<"请输入加密密钥e:"; cin>>e; cout<<"输入明文M:"; cin>>M; C=1; for(i=0;i

RSA加密算法java编程实现

一、RSA加密算法的原理 (1)、RSA算法描述 RSA公钥密码体制的基本原理:根据数论,寻求两个大素数比较简单,而将他们的乘积分解开则极为困难。 (2)、RSA算法密钥计算过程: 1.用户秘密选取两个大素数p 和q,计算n=pq,n称为 RSA算法的模数,公开。 2.计算出n的欧拉函数Φ(n) = (p-1)×(q-1),保密。 3.从(1, Φ(n))中随机地选择一个与Φ(n)互素的数e作为加 密密钥,公开。 4.计算出满足下式的d 作为解密密钥,保密。 ed=1 mod Φ(n) (3)、RSA算法密钥: 加密密钥PK = |e, n| 公开 解密密钥SK = |d, n| 保密 (4)、RSA算法加密解密过程: RSA算法属于分组密码,明文在加密前要进行分组,分组 的值m 要满足:0 < m < n 加密算法:C = E(m) ≡me mod n 解密算法:m = D(c) ≡cd mod n (5)、RSA算法的几点说明: 1.对于RSA算法,相同的明文映射出相同的密文。

2.RSA算法的密钥长度:是指模数n的长度,即n的二进 制位数,而不是e或d的长度。 3.RSA的保密性基于大数进行因式分解很花时间,因此, 进行RSA加密时,应选足够长的密钥。512bit已被证明 不安全,1024bit也不保险。 4.RSA最快情况也比DES慢100倍,仅适合少量数据的加 密。公钥e取较小值的方案不安全。 二.RSA公钥加密算法的编程实现 以下程序是java编写的实现RSA加密及解密的算法 import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.NoSuchAlgorithmException; import java.security.SecureRandom; import java.security.interfaces.RSAPrivateKey; import java.security.interfaces.RSAPublicKey; import javax.crypto.Cipher; //RSATest类即为测试类 public class RSATest { //主函数 public static void main(String[] args) { try { RSATest encrypt = new RSATest(); String encryptText = "encryptText";//输入的明文 KeyPair keyPair = encrypt.generateKey();//调用函数生成密钥对,函数见下 RSAPrivateKey privateKey = (RSAPrivateKey) keyPair.getPrivate(); RSAPublicKey publicKey = (RSAPublicKey) keyPair.getPublic(); byte[] e = encrypt.encrypt(publicKey, encryptText.getBytes()); //调用自己编写的encrypt函数实现加密, byte[] de = encrypt.decrypt(privateKey, e); //调用自己编写的decrypt函数实现解密, System.out.println(toHexString(e)); //输出结果,采用ASSIC码形式

实验四RSA加解密算法的实现

实验四 RSA加解密算法的实现 一.实验目的 1、对算法描述可进行充分理解,精确理解算法的各个步骤。 2、完成RSA软件算法的详细设计。 3、用C++完成算法的设计模块。 4、编制测试代码。 二.实验内容 1.实验原理及基本技术路线图(方框原理图) 加密过程: 第一步,用户首先输入两个素数p和q,并求出 n = p*q,然后再求出n的欧拉函数值phi。 第二步,在[e,phi]中选出一个与phi互素的整数e,并根据e*d ≡1(mod phi),求出e的乘法逆元。至此我们已经得到了公开密钥{e,n}和秘密密钥{d,n}。 第三步,让用户输入要进行加密的小于n一组正整数(个数不超过MAXLENGTH=500),输入以-1为结束标志,实际个数存入size中,正整数以clear[MAXLENGTH]保存。 第四步,对第三步所得的明文clear[MAXLENGTH]进行加密。遍历clear[size],对每一个整数用以下算法进行加密,并将加密后的密文保存在Ciphertext[MAXLENGTH]中。 注意:此处不能用m2[j] = clear[j] ^ e整数的幂,因为当e和clear[j]较大时,会发生溢出,至使出现无法预料的结果。 第五步,输出加密后的密文。 解密过程: 第一步,根据在以上算法中求出的解密密钥[d,phi],对加密后的密文Ciphertext[MAXLENGTH]进行解密,结果保存在DecryptionText[MAXLENGTH]中,算法如下: 第二步,输出对加密前的明文和加密并解密后的密文进行比较,判断两个数组是否一致,从而得知算法是否正确。

2.所用仪器、材料(设备名称、型号、规格等) 计算机一台、vc6.0 3.实验方法、步骤 #include #include using namespace std; #define MAXLENGTH 500 //明文最大长度,即所允许最大整数个数 int size = 0;//保存要进行加密的正整数的个数 int p, q; //两个大素数 int n, phi; //n = p * q,phi = (p-1) * (q-1) 是n的欧拉函数值 int e; //{e, n}为公开密钥 int d; //{d, n}为秘密密钥 int clear[MAXLENGTH], Ciphertext[MAXLENGTH];//分别用于存放加//密前的明//文和加密后的密文int DecryptionText[MAXLENGTH];//存放解密后的明文 //////////////////////////////////////////////////////////// //以下为加密算法 void Encryption() {//加密算法 cout << " 请输入两个较大的素数:" ; cin >> p >> q ; cout << " p = " << p << ", q = " << q << endl; n = p * q;//求解 n, phi = (p - 1) * ( q - 1 );//求解 n 的欧拉函数值 cout << " n = " << n << ", phi = " << phi << endl; cout << " 请从[0," << phi - 1 << "]中选择一个与 " << phi << " 互素的数 e:"; cin >> e; float d0; for( int i = 1; ; i++) {///求解乘法逆元 e * d ≡ 1 (mod phi) d0 = (float)(phi*i+1) / e; if( d0 - (int)d0 == 0 ) break; } d = (int)d0; cout << endl; cout << " e = " << e << ", d = " << d << endl; cout << " 公开密钥 Pk = {e,n} = {" << e << "," << n << "}" << endl; cout << " 秘密密钥 Sk = {d,n} = {" << d << "," << n << "}" << endl; cout << endl;

常见公钥加密算法有哪些

常见公钥加密算法有哪些 什么是公钥加密公钥加密,也叫非对称(密钥)加密(public key encrypTIon),属于通信科技下的网络安全二级学科,指的是由对应的一对唯一性密钥(即公开密钥和私有密钥)组成的加密方法。它解决了密钥的发布和管理问题,是目前商业密码的核心。在公钥加密体制中,没有公开的是私钥,公开的是公钥。 常见算法RSA、ElGamal、背包算法、Rabin(Rabin的加密法可以说是RSA方法的特例)、Diffie-Hellman (D-H)密钥交换协议中的公钥加密算法、EllipTIc Curve Cryptography (ECC,椭圆曲线加密算法)。使用最广泛的是RSA算法(由发明者Rivest、Shmir和Adleman 姓氏首字母缩写而来)是著名的公开金钥加密算法,ElGamal是另一种常用的非对称加密算法。 非对称是指一对加密密钥与解密密钥,这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。 如果加密密钥是公开的,这用于客户给私钥所有者上传加密的数据,这被称作为公开密钥加密(狭义)。例如,网络银行的客户发给银行网站的账户操作的加密数据。 如果解密密钥是公开的,用私钥加密的信息,可以用公钥对其解密,用于客户验证持有私钥一方发布的数据或文件是完整准确的,接收者由此可知这条信息确实来自于拥有私钥的某人,这被称作数字签名,公钥的形式就是数字证书。例如,从网上下载的安装程序,一般都带有程序制作者的数字签名,可以证明该程序的确是该作者(公司)发布的而不是第三方伪造的且未被篡改过(身份认证/验证)。 对称密钥密码体制 所谓对称密钥密码体制,即加密密钥与解密密钥是相同的密码体制。 数据加密标准DES属于对称密钥密码体制。它是由IBM公司研制出,于1977年被美国

密码学-RSA加密解密算法的实现课程设计报告

密码学课程报告《RSA加密解密算法》 专业:信息工程(信息安全) 班级:1132102 学号:201130210214 姓名:周林 指导老师:阳红星 时间:2014年1月10号

一、课程设计的目的 当前最著名、应用最广泛的公钥系统RSA是在1978年,由美国麻省理工学院(MIT)的Rivest、Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出的。 RSA算法是第一个既能用于数据加密也能用于数字签名的算法,因此它为公用网络上信息的加密和鉴别提供了一种基本的方法。它通常是先生成一对RSA 密钥,其中之一是保密密钥,由用户保存;另一个为公开密钥,可对外公开,甚至可在网络服务器中注册,人们用公钥加密文件发送给个人,个人就可以用私钥解密接受。为提高保密强度,RSA密钥至少为500位长,一般推荐使用1024位。 公钥加密算法中使用最广的是RSA。RSA算法研制的最初理念与目标是努力使互联网安全可靠,旨在解决DES算法秘密密钥的利用公开信道传输分发的难题。而实际结果不但很好地解决了这个难题;还可利用RSA来完成对电文的数字签名以抗对电文的否认与抵赖;同时还可以利用数字签名较容易地发现攻击者对电文的非法篡改,以保护数据信息的完整性。此外,RSA加密系统还可应用于智能IC卡和网络安全产品。 二、RSA算法的编程思路 1.确定密钥的宽度。 2.随机选择两个不同的素数p与q,它们的宽度是密钥宽度的1/2。 3.计算出p和q的乘积n 。 4.在2和Φ(n)之间随机选择一个数e , e 必须和Φ(n)互素,整数e 用做加密密钥(其中Φ(n)=(p-1)*(q-1))。 5.从公式ed ≡ 1 mod Φ(n)中求出解密密钥d 。 6.得公钥(e ,n ), 私钥 (d , n) 。 7.公开公钥,但不公开私钥。 8.将明文P (假设P是一个小于n的整数)加密为密文C,计算方法为: C = Pe mod n 9.将密文C解密为明文P,计算方法为:P = Cd mod n 然而只根据n和e(不是p和q)要计算出d是不可能的。因此,任何人都可对明文进行加密,但只有授权用户(知道d)才可对密文解密 三、程序实现流程图: 1、密钥产生模块:

用实例讲解RSA加密算法(精)

可能各位同事好久没有接触数学了,看了这些公式不免一头雾水。别急,在没有正式讲解RSA加密算法以前,让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到: 一、什么是“素数”? 素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。 二、什么是“互质数”(或“互素数”)? 小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。 判别方法主要有以下几种(不限于此): (1)两个质数一定是互质数。例如,2与7、13与19。 (2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与26。(3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。(4)相邻的两个自然数是互质数。如15与16。 (5)相邻的两个奇数是互质数。如49与51。 (6)大数是质数的两个数是互质数。如97与88。 (7)小数是质数,大数不是小数的倍数的两个数是互质数。如7和16。 (8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。 三、什么是模指数运算? 指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n 为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就

RSA加解密算法C语言的实现

#include #include #include #include #include #include #define MAX 100 #define LEN sizeof(struct slink) void sub(int a[MAX],int b[MAX] ,int c[MAX] ); struct slink { int bignum[MAX]; /*bignum[98]用来标记正负号,1正,0负bignum[99]来标记实际长度*/ struct slink *next; }; /*/--------------------------------------自己建立的大数运算库-------------------------------------*/ void print( int a[MAX] ) { int i; for(i=0;il2) return 1; if (l1=0;i--) { if (a1[i]>a2[i]) return 1 ; if (a1[i]

RSA加密算法及实现

数学文化课程报告题目:RSA公钥加密算法及实现

RSA公钥加密算法及实现 摘要 公钥密码是密码学界的一项重要发明,现代计算机与互联网中所使用的密码技术都得益于公钥密码。公钥密码是基于数学的上的困难问题来保证其性。其中RSA加密算法是一项重要的密码算法,RSA利用大整数的质数分解的困难性,从而保证了其相对安全性。但如果发现了一种快速进行质数分解的算法,则RSA算法便会失效。本文利用C 语言编程技术进行了RSA算法的演示[1]。 关键词:C语言编程、RSA算法、应用数学。

RSA public key encryption algorithm Abstract Public key cryptography is an important invention in cryptography, thanks to public key cryptography, and it is used in modern computer and Internet password technology. Public key cryptography is based on the mathematics difficult problem to ensure its confidentiality. The RSA public key encryption algorithm is an important cryptographic algorithm, RSA using the difficulty that large integer is hard to be factorized into prime Numbers to ensure it safety. But if you can find a kind of fast algorithm to do the factorization, RSA algorithm will be failure. In this paper we used C language programming technology to demonstrate the RSA algorithm. Keywords:C language programming、RSA algorithm、Applied mathematics

公钥加密算法

实验五公钥加密算法—RSA 一、实验目的 通过使用RSA算法对实验数据进行加密和解密,掌握公钥加密算法的基本原理,熟练掌握RSA算法各功能模块的工作原理和具体运算过程。 二、实验原理 RSA公钥加密算法是1977年由Ron Rivest、Adi Shamirh和LenAdleman在(美国麻省理工学院)开发的。RSA取名来自开发他们三者的名字。RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的所有密码攻击,已被ISO推荐为公钥数据加密标准。RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但那时想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。 1. RSA的密钥生成 RSA的算法涉及三个参数,n、e、d。 其中,n是两个大质数p、q的积,n的二进制表示时所占用的位数,就是所谓的密钥长度。鉴于现代对于大整数分解的水平不断增强,一般P、Q的取值都要求在1024位以上。 e和d是一对相关的值,e可以任意取,但要求e与(p-1)*(q-1)互质;再选择d,要求: (e*d)mod((p-1)*(q-1))=1。 就是密钥对。一般将前者当作公钥,后者作为私钥使用。 2. RSA加密/解密过程 RSA加解密和解密的算法完全相同,设A为明文,B为密文,则: A=B^e mod n;B=A^d mod n; e和d可以互换使用,即: A=B^d mod n;B=A^e mod n; 三、实验环境 运行Windows或Linux操作系统的PC机,具有gcc(Linux)、VC(Windows)等C语言编译环境。 四、 实验内容和步聚 1.根据本讲义提供的RSA程序,分析RSA算法的实现过程: (1).利用:void GenerateKey(RSA_Key& PublicKey,RSA_Key& PrivateKey,unsigned int iKeySize)函数根据实际需要生成符合要求长度的公钥和私钥,大致步骤如下: a) 随机生成两个指定长度的大素数P,Q。 b) 计算N=P*Q,以及N的欧拉函数φ(N)=(P-1)*(Q-1)。 c) 随机生成一个与φ(N)互素的大整数E(公钥)。 d) 根据公式ed≡1(modΦ(N)),利用函数multi_inverse(1, Big*, Big, Big*)计算出 私钥D。 (2).将某个大整数赋值给一个Big型变量M(明文)。 (3).调用函数powmod(..,..,..,..)对明文M加密得到密文C。 (4).调用函数powmod(..,..,..,..)对密文C解密得到明文D。 (5).比较M与D是否一致,判断实验结果是否正确。

RSA加密算法

RSA加密算法 RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。 RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。 RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表: 可能各位同事好久没有接触数学了,看了这些公式不免一头雾水。别急,在没有正式讲解RSA加密算法以前,让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到: 一、什么是“素数”? 素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。 二、什么是“互质数”(或“互素数”)? 小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。 判别方法主要有以下几种(不限于此): (1)两个质数一定是互质数。例如,2与7、13与19。 (2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与 26。 (3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。 (4)相邻的两个自然数是互质数。如 15与 16。 (5)相邻的两个奇数是互质数。如 49与 51。 (6)大数是质数的两个数是互质数。如97与88。 (7)小数是质数,大数不是小数的倍数的两个数是互质数。如 7和 16。(8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。

RSA加密解密

苏州科技学院 实验报告 实验四 学生姓名:学号:指导教师: 实验地点:计算机学院大楼东309 实验时间:4.21 一、实验室名称:软件实验室 二、实验项目名称:RSA加密解密 三、实验学时:4学时 四、实验原理: 加密过程: 第一步,用户首先输入两个素数p和q,并求出 n = p*q,然后再求出n的欧拉函数值phi。 第二步,在[e,phi]中选出一个与phi互素的整数e,并根据e*d ≡1(mod phi),求出e的乘法逆元。至此我们已经得到了公开密钥{e,n}和秘密密钥{d,n}。 第三步,让用户输入要进行加密的小于n一组正整数(个数不超过MAXLENGTH=500),输入以-1为结束标志,实际个数存入size中,正整数以clear[MAXLENGTH]保存。 第四步,对第三步所得的明文clear[MAXLENGTH]进行加密。遍历clear[size],对每一个整数用以下算法进行加密,并将加密后的密文保存在Ciphertext[MAXLENGTH]中。 注意:此处不能用m2[j] = clear[j] ^ e整数的幂,因为当e和clear[j]较大时,会发生溢出,至使出现无法预料的结果。 第五步,输出加密后的密文。

解密过程: 第一步,根据在以上算法中求出的解密密钥[d,phi],对加密后的密文Ciphertext[MAXLENGTH]进行解密,结果保存在DecryptionText[MAXLENGTH]中,算法如下: 第二步,输出对加密前的明文和加密并解密后的密文进行比较,判断两个数组是否一致,从而得知算法是否正确。 五、实验目的: 1、对算法描述可进行充分理解,精确理解算法的各个步骤。 2、完成RSA软件算法设计。 3、用C++完成算法的设计模块。 六、实验内容: 通过编写的程序完成RSA加密解密功能 七、实验器材(设备、元器件): (1)个人计算机 (2) Windows 7系统平台 (3) C++开发环境 八、实验数据及结果分析: #include #include

用实例给新手讲解RSA加密算法

RSA加密算法是最常用的非对称加密算法,CFCA在证书服务中离不了它。但是有不少新来的同事对它不太了解,恰好看到一本书中作者用实例对它进行了简化而生动的描述,使得高深的数学理论能够被容易地理解。我们经过整理和改写特别推荐给大家阅读,希望能够对时间紧张但是又想了解它的同事有所帮助。 RSA是第一个比较完善的公开密钥算法,它既能用于加密,也能用于数字签名。RSA以它的三个发明者Ron Rivest, Adi Shamir, Leonard Adleman的名字首字母命名,这个算法经受住了多年深入的密码分析,虽然密码分析者既不能证明也不能否定RSA的安全性,但这恰恰说明该算法有一定的可信性,目前它已经成为最流行的公开密钥算法。 RSA的安全基于大数分解的难度。其公钥和私钥是一对大素数(100到200位十进制数或更大)的函数。从一个公钥和密文恢复出明文的难度,等价于分解两个大素数之积(这是公认的数学难题)。 RSA的公钥、私钥的组成,以及加密、解密的公式可见于下表: 可能各位同事好久没有接触数学了,看了这些公式不免一头雾水。别急,在没有正式讲解RSA加密算法以前,让我们先复习一下数学上的几个基本概念,它们在后面的介绍中要用到: 一、什么是“素数”? 素数是这样的整数,它除了能表示为它自己和1的乘积以外,不能表示为任何其它两个整数的乘积。例如,15=3*5,所以15不是素数;又如,12=6*2=4*3,所以12也不是素数。另一方面,13除了等于13*1以外,不能表示为其它任何两个整数的乘积,所以13是一个素数。素数也称为“质数”。 二、什么是“互质数”(或“互素数”)? 小学数学教材对互质数是这样定义的:“公约数只有1的两个数,叫做互质数。”这里所说的“两个数”是指自然数。 判别方法主要有以下几种(不限于此): (1)两个质数一定是互质数。例如,2与7、13与19。 (2)一个质数如果不能整除另一个合数,这两个数为互质数。例如,3与10、5与26。 (3)1不是质数也不是合数,它和任何一个自然数在一起都是互质数。如1和9908。 (4)相邻的两个自然数是互质数。如15与16。 (5)相邻的两个奇数是互质数。如49与51。 (6)大数是质数的两个数是互质数。如97与88。 (7)小数是质数,大数不是小数的倍数的两个数是互质数。如7和16。 (8)两个数都是合数(二数差又较大),小数所有的质因数,都不是大数的约数,这两个数是互质数。如357与715,357=3×7×17,而3、7和17都不是715的约数,这两个数为互质数。等等。 三、什么是模指数运算? 指数运算谁都懂,不必说了,先说说模运算。模运算是整数运算,有一个整数m,以n为模做模运算,即m mod n。怎样做呢?让m去被n整除,只取所得的余数作为结果,就叫做模运算。例如,10 mod 3=1; 26 mod 6=2;28 mod 2 =0等等。

相关文档