文档库 最新最全的文档下载
当前位置:文档库 › 1.2复数的有关概念

1.2复数的有关概念

1.2复数的有关概念
1.2复数的有关概念

虚数的起源

虚数要追溯虚数出现的轨迹,就要联系与它相对实数的出现过程。我们知道,实数是与虚数相对应的,它包括有理数和无理数,也就是说它是实实在在存在的数。

有理数出现的非常早,它是伴随人们的生产实践而产生的。

无理数的发现,应该归功于古希腊毕达哥拉斯学派。无理数的出现,与德谟克利特的“原子论”发生矛盾。根据这一理论,任何两个线段的比,不过是它们所含原子数目的经。而勾股定理却说明了存在着不可通约的线段。

不可通约线段的存在,使古希腊的数学家感到左右为难,因为他们的学说中只有整数和分数的概念,他们不能完全表示正方形对角线与边长的比,也就是说,在他们那里,正方形对角线与边长的比不能用任何“数”来表示。西亚他们已经发现了无理数这个问题,但是却又让它从自己的身边悄悄溜走了,甚至到了希腊最伟大的代数学家丢番图那里,方程的无理数解仍然被称为是“不可能的”。

“虚数”这个名词是17世纪著名数学家、哲学家笛卡尔创制,因为当时的观念认为这是真实不存在的数字。后来发现虚数可对应平面上的纵轴,与对应平面上横轴的实数同样真实。

人们发现即使使用全部的有理数和无理数,也不能解决代数方程的求解问题。像x2+1=0这样最简单的二次方程,在实数范围内没有解。12世纪的印度大数学家婆什伽罗都认为这个方程是没有解的。他认为正数的平方是正数,负数的平方也是正数,因此,一个正数的平方根是两重的;一个正数和一个负数,负数没有平方根,因此负数不是平方数。这等于不承认方程的负数平方根的存在。

到了16世纪,意大利数学家卡尔达诺在其著作《大术》(《数学大典》)中,把记为1545R15-15m这是最早的虚数记号。但他认为这仅仅是个形式表示而已。1637年法国数学家笛卡尔,在其《几何学》中第一次给出“虚数”的名称,并和“实数”相对应。

1545年意大利米兰的卡尔达诺发表了文艺复兴时期最重要的一部代数学著作,提出了一种求解一般三次方程的求解公式:

形如:x3+ax+b=0的三次方程解如下:

x={(-b/2)+[(b2)/4+(a3)/27]1/2}1/3+{(-b/2)-[(b2)/4+(a3)/27]1/2}1/3

当卡丹试图用该公式解方程x3-15x-4=0时他的解是:

x=[2+(-121)^(1/2)]^(1/3)+[2-(-121)^(1/2)]^(1/3)

在那个年代负数本身就是令人怀疑的,负数的平方根就更加荒谬了。因此卡丹的公式给出x=(2+j)+(2-j)=4。容易证明x=4确实是原方程的根,但卡丹不曾热心解释(-121)1/2的出现。认为是“不可捉摸而无用的东西”。

直到19世纪初,高斯系统地使用了i这个符号,并主张用数偶(a、b)来表示a+bi,称为复数,虚数才逐步得以通行。

由于虚数闯进数的领域时,人们对它的实际用处一无所知,在实际生活中似乎没有用复数来表达的量,因此在很长一段时间里,人们对它产生过种种怀疑和误解。笛卡尔称“虚数”的本意就是指它是虚假的;莱布尼兹则认为:“虚数是美妙而奇异的神灵隐蔽所,它几乎是既存在又不存在的两栖物。”欧拉尽管在许多地方用了虚数,但又说:“一切形如,√-1,√-2的数学式子都是不可能有的,想象的数,因为它们所表示的是负数的平方根。对于这类数,我们只能断言,它们既不是什么都不是,也不比什么都不是多些什么,更不比什么都不是少些什么,它们纯属虚幻。”

继欧拉之后,挪威测量学家维塞尔提出把复数(a+bi)用平面上的点来表示。后来高斯又提出了复平面的概念,终于使复数有了立足之地,也为复数的应用开辟了道路。现在,

复数一般用来表示向量(有方向的量),这在水利学、地图学、航空学中的应用十分广泛,虚数越来越显示出其丰富的内容。

i的性质

i 的高次方会不断作以下的循环:

i1 = i

i2= - 1

i3 = - i

i4 = 1

3.1.1数系的扩充和复数的概念(教学设计)

§3.1.1数系的扩充和复数的概念(教学设计) 教学目标: 知识与技能目标: 了解引进复数的必要性;理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等)。理解虚数单位i 以及i 与实数的四则运算规律。 过程与方法目标: 通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i 和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识。 情感、态度与价值观目标: 通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系。 教学重点: 复数的概念,虚数单位i ,复数的分类(实数、虚数、纯虚数)和复数相等等概念是本节课的教学重点.复数在现代科学技术中以及在数学学科中的地位和作用 教学难点: 虚数单位i 的引进及复数的概念是本节课的教学难点.复数的概念是在引入虚数单位i 并同时规定了它的两条性质之后,自然地得出的.在规定i 的第二条性质时,原有的加、乘运算律仍然成立 教学过程: 一、创设情境、新课引入: 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么有理数集实际上就是分数集 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集 因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i ,叫做虚数单位.并由此产生的了复数 二、师生互动、新课讲解 1.虚数单位i : (1)它的平方等于-1,即 2 1i =-; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立. 2. i 与-1的关系: i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ! 3. i 的周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1 4.复数的定义:形如(,)a bi a b R +∈的数叫复数,a 叫复数的实部,b 叫复数的虚部全体复数所成的集合叫做复数集,用字母C 表示* 3. 复数的代数形式: 复数通常用字母z 表示,即(,)z a bi a b R =+∈,把复数表示成a +bi 的形式,叫

高考数学新版一轮复习教程学案:第58课复数的概念及其运算

高考数学新版一轮复习教程学案 第58课 复数的概念及其运算 1. 了解数系的扩充过程;理解复数的基本概念、代数表示法以及复数相等的充要条件. 2. 理解复数代数形式的四则运算法则,能进行复数代数形式的四则运算. 1. 阅读:选修 22 第109~117页. 2. 解悟:①数系的扩充;②复数的四则运算与共轭复数;③与加法一样,复数的乘法也是一种规定.课本114页例2还可以让学生先计算后两个复数的积,再与第一个复数相乘,从而验证复数乘法满足结合律;④根据复数相等的充要条件,应用待定系数法求复数,是常用的方法之一. 3. 践习:在教材空白处,完成第118~119页习题第2、3、6、12题. 基础诊断 1. 若复数z =(1+m i )(2-i )(i 是虚数单位)是纯虚数,则实数m 的值为 -2 . 解析:由题意得,z =(1+m i )(2-i )=2+m +(2m -1)i .因为复数z 是纯虚数,所以2+m =0,且2m -1≠0,解得m =-2. 2. 设复数z =m +3i 1+m i (m>0,i 为虚数单位),若z =z ,则m 解析:z =m +3i 1+m i =(m +3i )(1-m i )(1+m i )(1-m i )=4m +(3-m 2)i 1+m 2.因为z =z ,所以3-m 2=0,解得m =±3.因为m>0,所以m = 3. 3. 已知复数z = 11+i ,其中i 是虚数单位,则|z|= 2 . 解析:z =11+i =1-i (1+i )(1-i )=12-1 2i ,所以|z|= ????122+????122 =22 . 4. 设复数z 满足(1+2i )·z =3(i 为虚数单位),则复数z 的实部为 3 5 . 解析:因为(1+2i )·z =3,所以z =3 1+2i =3(1-2i )(1+2i )(1-2i )=3-6i 5,所以复数z 的实 数为3 5 . 范例导航 考向? 复数的基本运算 例1 (1) (-1+i )(2+i ) i 3 ; (2) 1-i (1+i )2+1+i (1-i )2 ; (3) (-1+3i )3;

最新数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念 教案 李 志 文 【教学目标】 知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观: 1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创 新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点: 理解虚数单位i 的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 【知识链接】 前两个学段学习的数系的扩充: 但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗? Q N Z R 人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数 的全体构成自然数集N 为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z. 为了解决测量、分配中遇到的将某些量进行等分的问题, 人们引进了分数,将数系扩充至有理数集Q. 用方形的边长去度量它的对角线所得的结果,无法用有 理数表示,为了解决这个矛盾,人们又引进了无理数.有 理数集与无理数集合并在一起,构成实数集R . N x 2=-1,x =?

《复数的概念》教学设计【高中数学人教A版必修2(新课标)】

《复数的概念》教学设计 教材通过三个环节完成了对实数系的扩充过程:(1)提出问题(用什么方法解决方程x2+1=0在实数集中无解的问题),引发学生的认知冲突,激发学生扩充实数系的欲望;(2)回顾从自然数集逐步扩充到实数集的过程和特点(添加新数,满足原来的运算律);(3)类比、设想扩充实数系的方向及引入新数i所满足的条件(使i2=-1成立,满足原来的运算律).由于学生对数系扩充的知识并不熟悉,教学中教师需多作引导. 复数的概念是复数这一章的基础,复数的有关概念都是围绕复数的代数表示形式展开的.虚数单位、实部、虚部的命名,复数相等的概念,以及虚数、纯虚数等概念的理解,教学中可结合具体例子,以促进对复数实质的理解. 课时分配 1课时. 1.了解引进复数的必要性;理解虚数单位i以及i与实数的四则运算规律.理解并掌握复数的有关概念(复数集、代数形式、虚数、纯虚数、实部、虚部、复数相等).2.通过问题情境,了解扩充数系的必要性,感受数系的扩充过程,体会引入虚数单位i和复数形式的合理性,使学生对数的概念有一个初步的、完整的认识. 3.通过问题情境,体会实际需求与数学内部矛盾在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. 重点:复数的概念,虚数单位i,复数的分类(实数、虚数、纯虚数)和复数相等等概念. ~ 难点:虚数单位i的引进及复数的概念. 引入新课 请同学们回答以下问题: (1)在自然数集N中,方程x+4=0有解吗

(2)在整数集Z中,方程3x-2=0有解吗 (3)在有理数集Q中,方程x2-2=0有解吗 ) 活动设计:先让学生独立思考,然后小组交流,最后师生总结. 活动成果:问题(1)在自然数集中,方程x+4=0无解,为此引进负数,自然数→整数; 问题(2)在整数集中,方程3x-2=0无解,为此引进分数,整数→有理数; 问题(3)在有理数集中,方程x2-2=0无解,为此引进无理数,有理数→实数. 数集的每一次扩充,对数学本身来说,解决了在原有数集中某种运算不能实施的矛盾,如分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾. 提出问题:从自然数集N扩充到实数集R经历了几次扩充每一次扩充的主要原因是什么每一次扩充的共同特征是什么 活动设计:先让学生独立思考,然后小组讨论,师生共同归纳总结. 活动成果:扩充原因:①满足解决实际问题的需要;②满足数学自身完善和发展的需要. $ 扩充特征:①引入新的数;②原数集中的运算规则在新数集中得到保留和扩展,都满足交换律和结合律,乘法对加法满足分配律. 设计意图 回顾从自然数集N扩充到实数集R的过程,帮助学生认识数系扩充的主要原因和共同特征. 探究新知 提出问题:方程x2+1=0在R上有解吗如何对实数集进行扩充,使方程x2+1=0在新的数集中有解 活动设计:小组讨论,类比猜想,设想新数的引进,师生共同完成. 学情预测:学生讨论可能没有统一结果,无法描述. 类比原来不同阶段数系的每一次扩充的特点,在实数集中方程x2+1=0无解,需要引进“新数”扩充实数集.让我们设想引入一个新数i,使i满足两个条件:(1)i是方程x2+1=0

复数的概念5

复数的概念 1、复数1z =3+i ,2z =1-i,则21z z z ?=在复平面内对应的点位于 ( ) A 第一象限内 B 第二象限内 C 第三象限内 D 第四象限内 2、若复数z 满足i z z 2110||-=-,则z = ( ) A -3+4i B -3-4i C 3-4i D 3+4i 3、设z 为复数,则“|z|=1”是“z z 1 +∈R ”的 ( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 不充分不必要条件 4、复数)2(sin cos 1παπαα<

复数的概念及运算 知识点+例题 全面分类

[例2] 设复数z 满足)1)(23(i i iz -+=-,则.______=z i 51+ [巩固1] 复数 i i a 212+-是纯虚数,则实数a 的值为________.4 [巩固2] 如果 )(112R m mi i ∈+=-,那么._____=m 1 [例3] 已知i z 34+-=,则._______2=-z i 36+ [巩固1] 已知复数i z 211+=,i z 322-=,则21z z +的共轭复数是___________.i +3 [巩固2] 已知i 是虚数单位,R n m ∈,,且ni i m -=+22,则 ni m ni m -+的共轭复数为_________.i [例4] 计算:(1)3)2)(1(i i i ++-(2)22)1(1)1(1i i i i -+++- [巩固] 计算: (1))1()2()23(i i i +---++;(2))2)(1(2013i i i -+?;(3)i i 4321-+

1.复平面:我们把建立了直角坐标系来表示复数的平面叫做复平面.x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数. 2.复数的模:22b a bi a z +=+= 3.bi a z +=1,di c z +=2,则2221)()(d b c a z z -+-= - 两个复数的差的模就是复平面内与这两个复数对应的两点间的距离. [例1] 已知复数i i z -+= 12,则._____=z 210 [巩固1] 复数)0(21<+= a i ai z ,其中i 为虚数单位, 5=z ,则a 的值为__________.-5 [巩固2] 若2=z ,求i z 43-+取最大值时的. ______=z i 5 856- [例2] 复数)(23)1(2R a i a a i z ∈++--= (1)若z z =,求z ; (2)若在复平面内复数z 对应的点在第一象限,求a 的范围. 知识模块3复数的模 精典例题透析

复数的概念 人教版

1 复数的概念 【学习目标】 1.理解复数的概念. 2.掌握一个复数为实数、虚数、纯虚数的充要条件. 3.掌握复数相等的概念及其应用,了解不全是实数的两个复数不能比较大小. 【学习障碍】 1.对虚数单位i 的理解不深导致概念理解不透. 2.应用复数概念时,没有掌握好数集的结构. 3.应用复数相等,联立方程组求解变量时,没有注意变量的取值范围、取舍等问题. 【学习策略】 1.在处理复数有关判断问题时,通常采用特例法,帮助理解复数概念. 2.在应用复数相等的条件时,思维过程要严密,要保证实部、虚部有意义,充分掌握好数集结构. 对于复数f (m )+g (m )i 有如下判断: (1)表示实数:g (m )=0 (2)表示纯虚数:f (m )=0且g (m )≠0 (3)虚数:g (m )≠0 3、要注意变量取值范围,比如:对数式中应真数大于0;分式分母不为0;无理式中开偶次方根的被开方数大于等于0. 【例题分析】 [例1]判断各式的对错. (1)若z ∈C ,则z 2≥0 (2)若a >b ,则a +i >b +i (3)若z 1,z 2∈C ,且z 1-z 2>0,则z 1>z 2 分析:虚数与实数的一个重要区别:虚数不能比较大小,因此,不等式的性质在复数集中部分不适用. 方法:特例法——除解决复数问题,在解决不等式、三角函数等有关问题,也常采用特例法. 解:(1)z 2≥0,当且仅当z ∈R 时成立.如设z =i ,则z 2=-1<0,故(1)错 (2)因a >b ,故a 、b ∈R ,故a +i 与b +i 都是虚数,不能比较大小,故(2)错 (3)反例:设z 1=1+2i ,z 2=-1+2i ,满足z 1-z 2>0,但z 1,z 2不能比较大小,故(3)错 [例2]已知复数z =(1+i )m 2+(5-2i )m +6-15i ,实数m 分别为何值时, ①z 是实数;②z 是虚数;③z 是纯虚数 分析:本题直接考查数集的分类: 复数a +bi (a ,b ∈R )?? ??????≠=≠=非纯虚数纯虚数虚数实数 0 0 0 0a a b b 在判断一个复数类型时,首先一定要分清所给复数的实部和虚部. 方法:如学习策略2,联立方程组或不等式组. 解:z =(m 2+5m +6)+(m 2-2m -15)i ∵m ∈R ,∴z 的实部m 2+5m +6,虚部m 2-2m -15 (1)由m 2-2m -15=0(m ∈R )∴m =5或m =-3,∴当m =5或m =-3时,z 为实数 (2)由m 2-2m -15≠0(m ∈R )∴m ≠5且m ≠-3, ∴当m ≠5且m ≠-3时,z 为虚数

数系的扩充和复数的概念

《数系的扩充和复数的概念》教学设计 1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的 分类表; 2.理解复数的有关概念以及符号表示; 3.掌握复数的代数表示形式及其有关概念; 4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.【教学重点】引进虚数单位i的必要性、对i的规定以及复数的有关概念. 【教学难点】复数概念的理解. 【教学过程】 1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简 明扼要的概括和总结) 自然数整数有理数无理数实数 2.提出问题 我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使 得在新的数集中,该问题能得到圆满解决呢? 3.组织讨论,研究问题 我们说,实系数一元二次方程没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢? 组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问 题.即一个什么样的数,它的平方会等于-1. 4.引入新数,并给出它的两条性质 根据前面讨论结果,我们引入一个新数,叫做虚数单位,并规定: (1); (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是). 5.提出复数的概念 根据虚数单位的第(2)条性质,可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成这样,数的范围又扩充了,出现了形如的数, 我们把它们叫做复数. 全体复数所形成的集合叫做复数集,一般用字母C表示,显然有: N* N Z Q R C. 【巩固练习】 下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复 数的实部与虚部各是什么? 例1.实数m分别取什么值时,复数z=m+1+(m-1)i是 (1)实数?(2)虚数?(3)纯虚数? 分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实、虚数、纯虚数与 零的条件可以确定实数m的值.

(完整版)复数知识点归纳

精心整理 页脚内容 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x = 2(1①a z =(2例题:注意:三、共轭复数 bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==? bi a z +=的共轭复数记作bi a z -=_,且22_ b a z z +=? 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

精心整理 页脚内容 2、复数的几何意义 复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点 ①位于第三象限;②位于直线x y =上 (2)复平面内)6,2(=→AB ,已知→→AB CD //,求→ CD 对应的复数 3、复数的模: 向量OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z = 若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值 五、复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ①i d b c a di c bi a z z )()(21+++=+++=± ②i ad bc bd ac di c bi a z z )()()()(21++-=+?+=? ③2221)()()()())(())(d c i a d bc bd ac di c di c di c bi a di c bi a z z +-++=-?+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出 的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-. 六、常用结论 (1)i ,12-=i ,i i -=3,14=i 求n i ,只需将n 除以4看余数是几就是i 的几次 例题:=675i (2)i i 2)1(2=+,i i 2)1(2-=- (3)1)2321(3=±-i ,1)2 321(3-=±i 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( )

复数的基本概念与基本运算

复数的基本概念与基本运算 一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;?(2)理顺复数的三种表示形式及相互转换:z = r(cosθ+isinθ) , OZ(Z(a,b)) , z=a+bi (3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;复(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三

角数实数集集形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根纯虚数集ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。四、本章知识结构与复习要点1.知识体系表解 1 1/16页2.复数的有关概念和性质:(1)i称为虚数单位,规定2i,,1,形如a+bi的数称为复数,其中a,b?R.(2)复数的分类(下面的a,b均为实数) (3)复数的相等设复数,那么的充要zz,zabizabiababR,,,,,,(,,,)121112221122条件是:.abab,,且1122 (4)复数的几何表示复数z=a+bi(a,b?R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的. 2 2/16页复数 z=a+bi.在复平面内还可以用以原点O为起点,以点Z(a,b) abR,,,,向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处?任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.?实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:?**n4k,rrkNrN,,,nN,ii,i怎样计算?(先求n被4除所得的余数,),,,,1313?,,,,i、,,,,i

1-1复数的基本概念

§1.1 复数的基本概念 授课要点:复数的定义,复数的代数表示,三角式、指数式及它们与复数几何表示(二维向量)之间的关系 1、 复数的定义: 设有一个有序数对(),a b ,遵从如下的运算法则 加法:()()()11221212,,,a b a b a a b b +=++ 乘法:()(),,(,) a b c d ac bd ad bc =-+ 则称这一有序数对(),a b 为复数,记为α,即 α=(),a b 其中a 为α实部,b 为α的虚部,记为 a =Re α, b =Im α 纯实数a =(),0a ,纯虚数记为b =()0,b ,所以有 α=(),0a +()0,b =a(1,0)+b (0,1) 其中(0,1)即为虚数单位,常记为i. 2、 复数的相等与大小 两个复数相等的充要条件是:实部、虚部分别相等. 复数不能比较大小!这一点可用反证法证明: 假设认为i >0,则在不等式两边同乘以一个大于0的数i ,不等式符号应当不变,即 20i > 即 -1>0,这显然是错误的! 3、 几个特殊的复数: (0,0):(0,0)(,)(,)(0,0)(,)(0,0)a b a b a b +=??=? (1,0):(1,0)(,)(,)a b a b = (0,1):(0,1)(0,1)=(-1,0)=-1 (0,1)是-1的平方根,是虚数单位,记为i =(0,1) 4、 共轭复数:(,)a b α=,* (,)a b α=-互为共轭复数 性质:**()αα=(共轭的共轭等于自己)

*2ααα+=为实数(两个互为共轭的复数相加,结果必为实数) *22a b αα?=+,为非负实数(α的模方) 5、 复数的减法、除法 减法:()()()()a ib c id a c i b d +-+=-+- 除法:2222()()()()a ib a ib c id ac bd bc ad i c id c id c id c d c d ++-+-==+++-++ ↑“分母实数化” 6、 复数的几何表示: (1) 任何一个复数都可以和复平面上的一点对应,将这一点和原点连起来(原点为起 点),形成一个二维矢量,这是一个二维自由向量,即将op 平移后,仍代表同一 矢量(如右图所示) (2) 加法的几何表示(平行四边形法则与三角形法则) γαβ=+ (3) 减法的几何表示:

复数概念教学设计1终稿

§3.1.1 数系的扩充与复数的概念 学生情况分析: 在学习本节之前,学生对数的概念已经扩充到实数,也已清楚各种数集之间的包含关系等内容,但知识是零碎、分散的,对数的生成发展的历史和规律缺乏整体认识与理性思考,知识体系还未形成。另一方面学生对方程解的问题会默认为在实数集中进行,缺乏严谨的思维习惯。 一、教学目标 1.在问题情境中了解数系的扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及与现实世界的联系。 2.理解复数的基本概念以及复数相等的充要条件。 3.了解复数的代数表示法及其几何意义。 4.能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义。 二、教学重难点 重点: 理解虚数单位i的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用.

三、教具 多媒体 四、教学过程 (一)引入 1.前面我们学习的数系扩充:N Z Q R 思考:如何解决方程210x +=在实数集中无解的问题? (二)新知导学 探究1复数的引入 引导1: 为了解决方程210x +=在实数集中无解的问题,我们设想我们 引入一个新数i ,并规定:(1)=2i -1 ; (2)实数可以与i 进行加法和乘法运算: 实数a 与数i 相加记为: a i + ;实数b 与数i 相乘记为:bi ;实数a 与实数b 和i 相乘的结果相加,结果记为:bi a +; (3)实数与i 进行加法和乘法时,原有的加法、乘法运算律仍然成立.i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i 引导2:复数的有关概念: (1)我们把形如bi a +()R b a ∈,的数叫做复数,其中i 叫做虚数单位 , 全体复数所组成的集合叫做复数集,常用大写.. 字母 C 表示。 (2)复数的代数形式:

复数的定义

第十四章 复数 一 、复数的概念 1. 虚数单位:i 规定:(1)21i =-;(2)虚数单位i ,可以与实数进行四则运算,在进行四则运算时,原有的加法,乘法运算律仍然成立。 2. 复数:形如a bi +,,a R b R ∈∈的数叫做复数,a 叫实部,b 叫虚部。 3. 复数集:所有复数构成的集合,复数集{},,C x x a bi a R b R ==+∈∈. 4. 分类:0b =时为实数;0b ≠时为虚数,0,0a b =≠时为纯虚数,且R üC . 5. 两个复数相等:a bi c di a c +=+?=且(,,,)b d a b c d R =∈ 例1 下面五个命题 ①34i +比24i +大; ②复数32i -的实部为3,虚部为2i -; ③1Z ,2Z 为复数,120Z Z ->,那么12Z Z >;④两个复数互为共轭复数,则其和为实数; ⑤两个复数相等:a bi c di a c +=+?=且(,,,)b d a b c d R =∈. 例2 已知:(1)(1),Z m m i m R =++-∈求Z 为(1)实数;(2)虚数;(3)纯虚数时,求m 的值。 例3 已知2226()x y i y x i +-=+-,求实数,x y 的值。 二 、复数的几何意义:,,,Z a bi a R b R =+∈∈与点(,)a b 一一对应。 1.复平面:x 轴叫实轴;y 轴叫虚轴。x 轴上点为实数,y 轴上除原点外的点为纯虚数。 2.Z a bi =+;连接点(,)a b 与原点,得到向量OZ ,点(,)Z a b ,向量OZ ,Z a bi =+之间一一对应。 3.模:2Z a bi OZ a =+== 注:Z 的几何意义:令(,)Z x yi x y R =+∈,则Z =Z 的点到原点的距离就是Z 的几何意义;12Z Z -的几何意义是复平面内表示复数1Z ,2Z 的两点之间的距离。

学习知识资料讲解复数(基础学习知识)

高考总复习:复数 【考纲要求】 1.理解复数的基本概念,理解复数相等的充要条件; 2.了解复数的代数表示形式及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对的复数用代数形式表示。 3.会进行复数代数形式的四则运算,了解两个具体相加、相减的几何意义. 【知识网络】 【考点梳理】 考点一、复数的有关概念 1.虚数单位i : (1)它的平方等于1-,即2 1i =-; (2)i 与-1的关系: i 就是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -; (3)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立; (4)i 的周期性:41n i =,41n i i +=,421n i +=-,43n i i +=-(*n N ∈). 2. 概念

形如a bi +(,a b R ∈)的数叫复数,a 叫复数的实部,b 叫复数的虚部。 说明:这里,a b R ∈容易忽视但却是列方程求复数的重要依据。 3.复数集 全体复数所成的集合叫做复数集,用字母C 表示;复数集与其它数集之间的关系:N Z Q R C 4.复数与实数、虚数、纯虚、0的关系: 对于复数z a bi =+(,a b R ∈), 当且仅当0b =时,复数z a bi a =+=是实数; 当且仅当0b ≠时,复数z a bi =+叫做虚数; 当且仅当0a =且0b ≠时,复数z a bi bi =+=叫做纯虚数; 当且仅当0a b ==时,复数0z a bi =+=就是实数0. 所以复数的分类如下: z a bi =+(,a b R ∈)?(0)(0)00b b a b =?? ≠?=≠?实数;虚数当且时为纯虚数 5.复数相等的充要条件 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。即: 如果,,,a b c d R ∈,那么a bi c di a c b d +=+?==且. 特别地: 00a bi a b +=?==. 应当理解: (1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样. (2)复数相等的充要条件是将复数转化为实数解决问题的基础. 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小。 6.共轭复数: 两个复数的实部相等,而且虚部相反,那么这两个复数叫做共轭复数。即: 复数z a bi =+和z a bi a bi =+=-(,a b R ∈)互为共轭复数。 考点二:复数的代数表示法及其四则运算 1.复数的代数形式: 复数通常用字母z 表示,即a bi +(,a b R ∈),把复数表示成a bi +的形式,叫做复数的代数形式。 2.四则运算

复数教学设计(省优质课)

§5.1 数系的扩充与复数的引入 江西省永新县任弼时中学 文辉 【教学目标】 (1) 了解引进复数的必要性,理解复数的基本概念,了解复数的代数法表示, 理解虚数单位,理解复数相等的充要条件. (2) 了解复数的几何意义,理解复数模的概念,了解复数与复平面内的点的 对应关系. (3) 体会实际需求与数学内部的矛盾在数学扩充过程中的作用,感受人类理 性思维在数系的扩充过程的作用以及数与现实世界的联系。 (4) 通过复数与复平面内的点的对应关系,体会二维空间中数与形之间的内 在联系. 【教学重难点】 重点:引进虚数单位i 的必要性,对i 的规定,复数的有关概念. 难点:实数系扩充到复数系的过程的理解,复数的概念的理解. 教学方法:1.启发式教学法. 2.激励---探索---讨论---发现. 教具准备:多媒体,投影仪. 教学过程 Ⅰ.课题导入 ㈠引导学生回顾数的变化发展过程 数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N 随着生产和科学的发展,数的概念也得到发展. 为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q .显然N Q .如果把自然数集(含正整数和零)与负整数集合并在一起,构成整数集Z ,则有Z Q 、N Z .如果把整数看作分母为1的分数,那么﹛有理数﹜=﹛分数﹜=﹛循环小数﹜. 有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R .因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以﹛实数﹜=﹛小数﹜. ㈡设置问题情境,探究实践 问题①:请类比引进2,就可以解决方程02x 2=-在有理数集中无解的问题,怎么解决方程01x 2=+在实数集中无解的问题?

复数 教案(绝对经典)

复 数 复数的基本概念、复数相等的充要条件以及复数的代数运算是高考的热点,并且一般在前三题的位置,主要考查对复数概念的理解以及复数的加减乘除四则运算,难度较小. 【复习指导】 1.复习时要理解复数的相关概念如实部、虚部、纯虚数、共轭复数等,以及复数的几何意义. 2.要把复数的基本运算作为复习的重点,尤其是复数的四则运算与共轭复数的性质等.因考题较容易,所以重在练基础。 基础梳理 1.复数的有关概念 (1)复数的概念 形如a +b i (a ,b ∈R )的数叫作复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数,若b ≠0,则a +b i 为虚数,若a =0且b ≠0,则a +b i 为纯虚数. (2)复数相等:a +b i =c +d i ?a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭?a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复平面 建立直角坐标系来表示复数的平面,叫作复平面.x 轴叫作实轴,y 轴叫作虚轴.实轴上的点都表示实数;除原点外,虚轴上的点都表示纯虚数;各象限内的点都表示非纯虚数. (5)复数的模 向量OZ →的模r 叫作复数z =a +b i 的模,记作__|z |__或|a +b i|,即|z |=|a +b i|=a 2+b 2. 2.复数的几何意义 (1)复数z =a +b i(a ,b ∈R )的模|z |=a 2+b 2,实际上就是指复平面上的点Z 到原点O 的距离;|z 1-z 2|的几何意义是复平面上的点Z 1、Z 2两点间的距离. (2)复数z 、复平面上的点Z 及向量OZ → 相互联系,即z =a +b i(a ,b ∈R )?Z (a ,b )?OZ → . 3.复数的四则运算 设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 (1)加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; (2)减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; (3)乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ; (4)除法:z 1z 2 =a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=(ac +bd )+(bc -ad )i c 2+d 2(c +d i ≠0).

复数的概念与运算

复数的概念与运算 【知识点精讲】 1. 虚数单位i :i 2=–1,实数可以与它进行四则运算,原有的加、乘运算律仍成立;i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ;I 具有周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1(n ∈N ). 2. 复数的代数形式:z=a+bi (a,b ∈R ), a 叫实部,b 叫虚部.掌握复数(集C )的分类: ()?? ??????+=≠==+=≠====∈+=为非纯虚数的虚数时为纯虚数时为虚数时为实数时其中为实数时复数bi a z a bi z a bi a z b ,z b a a z b R b a bi a z 000000),( NZQRC 3.复数相等:设a,b,c,d ∈R ,则a+bi=c+di ?a=c,b=d ;a+bi=0?a=b=0;利用复数相等的条件转化为实数问题是解决复数问题的常用方法; 4.共轭复数:实部相等,虚部互为相反数的两个复数.如:a+bi 和a –bi (a,b ∈R ); 5.复数的模:2||||||z a bi OZ a =+==,两个复数不能比较大小,但它们的模可以比较大小; 6.复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数 7.掌握复数的和、差、积、商运算法则:z 1±z 2=(a +bi ) ±(c +di )=(a ±c )+(b ±d )i ;(a +bi )(c +di )=(ac -bd )+(bc +ad )i ;(a +bi )÷(c +di )= 2222d c ad bc d c bd ac +-+++ i (实际上是分子分母同乘以分母的共轭复数,并化简). 复数运算满足加、乘的交换律、结合律、分配律. 【例题选讲】 例1 计算:(1)i i -22;(2)i i 3232-+. 解:(1)i 5 452+- ;(2)i 56251+-. 例2 已知z 是复数,z+2i 、 i z -2均为实数,且复数(z+ai)2在复平面上对应的点在第一象限,求实数a 的取值范围. 优化设计P222典例剖析例1,解答略。

(完整版)复数知识点归纳

精心整理 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i叫做虚数单位,并规定:①i可与实数进行四则运算;②i2 1 ;这样方程x21就有解了,解 为x i或x i 2、复数的概念 (1)定义:形如a bi (a, b€ R)的数叫做复数,其中i叫做虚数单位,a叫做,b叫做。全体复数所成的集合C叫做复数集。复数通常用字母z表示,即z a bi (a,b€ R) 对于复数的定义要注意以下几点: ①z a bi (a,b€ R)被称为复数的代数形式,其中bi表示b与虚数单位i相乘 ②复数的实部和虚部都是实数,否则不是代数形式 (2)分类: 例题:当实数m为何值时,复数(m 5m 6) (m2 3m)i是实数?虚数?纯虚数? 二、复数相等 也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等 注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小 例题:已知(x y 3) (x 4)i 0求x,y的值 三、共轭复数 a bi 与c di 共轭a c, b d(a,b,c,d R) z a bi的共轭复数记作z a bi,且z z a2b2 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点

都表示实数;除了原点外,虚轴上的点都表示纯虚数。 页脚内容

2、复数的几何意义 复数z a bi 与复平面内的点Z(a,b)及平面向量OZ (a,b)(a,b R)是一一对应关系(复数的实质 是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数z (m 2 8m 15) (m 2 5m 14)i 的点 ①位于第三象限;②位于直线y x 上 (2) 复平面内AB (2,6),已知CD//AB ,求CD 对应的复数 3、复数的模: 向量0Z 的模叫做复数z a bi 的模,记作|Z 或|a bi|,表示点(a,b)到原点的距离,即 z a bi| Va 2 b 2, z 若召 a bi , z 2 c di ,则忆 z 2 |表示(a,b)到(c,d)的距离,即 |z ) z 2 | J(a c)2 ―(b —dp 例题:已知z 2 i ,求|z 1 i|的 值 五、复数的运算 (1)运算法则:设 Z 1 = a + bi ,z 2= c + di , a , b , c ,d € R ① z ,九 a bi c di (a c) ( b d)i ② 召 z 2 (a bi) (c di) (ac bd) (bc ad)i (a bi)(c di) (ac bd) (bc ad)i ---------------------------- = (c di) (c di) c 2 d 2 (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行 ?如图给出 的平行四边形0Z 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+ ,二一 六、常用结论 (1) i ,i 2 1,i 3 i ,i 4 1 求i n ,只需将n 除以4看余数是几就是i 的几次 例题:严 (2) (1 i)2 2i ,(1 i)2 2i ),1 3、3 4 1 '3 3 . (3) ( i ) 1 ,( i) 1 2 2 2 2 【思考辨析】 判断下面结论是否正确(请在括号中打“V”或“X” ) (1) 方程X 2 + x + 1 = 0没有解.( ) ③互 (a bi) Z 2 (c di)

相关文档
相关文档 最新文档