文档库 最新最全的文档下载
当前位置:文档库 › 论地铁车站低压供配电方案

论地铁车站低压供配电方案

论地铁车站低压供配电方案
论地铁车站低压供配电方案

论地铁车站低压供配电方案

张勇

【期刊名称】《硅谷》

【年(卷),期】2009(000)004

【摘要】通过对地铁车站设置变电所和低压室角度出发,阐述地铁低压供配电的几种方案,并介绍隧道风机的供电方案.

【总页数】1页(35-35)

【关键词】地铁车站;低压供配电;一所式;两所式;一所一室式;隧道风机供电【作者】张勇

【作者单位】中铁二院工程集团有限责任公司,地下铁道设计研究院,四川,成都,610031

【正文语种】中文

【中图分类】TM7

【相关文献】

1.地铁车站低压配电系统方案的研究 [J], 林珊; 钟铨

2.地铁车站低压配电室方案研究 [J], 尹聿力

3.地铁地下车站低压供配电方案设计分析 [J], 徐蓓

4.地铁地下车站集中冷站供配电设计探讨 [J], 潘元欣

5.地铁车站供配电与照明系统节能分析与节能措施的研究 [J], 陈晓明; 王彬; 项炳泉; 杜德平

以上内容为文献基本信息,获取文献全文请下载

超长地铁车站低压配电方案探讨

超长地铁车站低压配电方案探讨 发表时间:2018-07-16T11:05:32.030Z 来源:《基层建设》2018年第16期作者:王石凌 [导读] 摘要:随着城市轨道交通网络化快速发展,线网中各线路的配线模式越来越复杂,设渡线、折返线的车站越来越多,这些车站通常都比常规200m左右的标准站长很多,如何合理进行这种超长车站的低压配电方案设计,既能满足供电可靠性要求,又经济技术合理且运营灵活方便,已成为轨道交通建设值得研究的重要课题。 上海隧道工程有限公司上海 200040 摘要:随着城市轨道交通网络化快速发展,线网中各线路的配线模式越来越复杂,设渡线、折返线的车站越来越多,这些车站通常都比常规200m左右的标准站长很多,如何合理进行这种超长车站的低压配电方案设计,既能满足供电可靠性要求,又经济技术合理且运营灵活方便,已成为轨道交通建设值得研究的重要课题。 关键词:地铁车站;低配电;方案探讨 一、车站概况及用电负荷分布 为了方案研究的通用性和代表性,笔者结合某市某区轨道交通工程某站对各种配电方案进行分析对比。该车站为地下两层岛式车站,地下一层为站厅层,地下二层为站台层。车站总长349m,宽21.1m,站后带折返线,车站左侧为设备大端(重负荷端),右侧为设备小端(轻负荷端)。受折返线影响,变配电所设备房屋均设置在站厅层。车站平面布置图如图1、图2所示。车站的用电负荷主要分布在车站两端设备区内,车站各级低压用电负荷情况如表1所示。 二、车站低压配电方案 结合本站的建筑特点,并根据车站用电负荷的分布情况,提出4种低压配电方案。 1)降压所直接供电方案(方案1)在车站左端(重负荷端)设置1座降压变电所,为车站左、右两端用电设备提供电源。此方案低压主接线系统如图3所示。 2)降压所+跟随所供电方案(方案2)在车站左端(重负荷端)设置1座降压变电所,为车站左端的用电设备提供电源;在车站右端(轻负荷端)设置1座跟随式降压变电所,为车站右端的用电设备提供电源。此方案低压主接线系统如图4所示。 3)降压所+低压配电室供电(方案3) 在车站左端(重负荷端)设置1座降压变电所,为车站左端的用电设备提供电源;在车站右端(轻负荷端)设置1个低压配电室,为车

[全]地铁低压配电系统

地铁低压配电系统 400V配电系统根据负荷等级分类直接向车站、区间的低压设备供电,从负荷分类来讲,一、二级负荷占绝大多数,因此400V配电系统的可靠性、保护选择性高。 400V配电系统包括进线开关、母联断路器、馈出开关、三级负荷总开关、电流互感器、多功能仪表等设备。采用单母线分段连接,设母联断路器,两段母线上的负荷尽量均衡分配,与配电变压器安装容量匹配。 1. 设备房分布(常见标准站) 变电所低压室、低压配电室各一座分别布置在站台层两端,各负责半个车站及区间的负荷; 环控室两座布置在站厅层两端,各负责半个车站的环控负荷; 物业配电室在物业层; 照明配电室四座分别在站台和站厅层两端; 蓄电池室(应急照明电源)两座,站台层两端; 2. 低压主结线

车站电源及负荷分类 (1)车站电源:两路电源引自降压变压器二次侧,两路电源互为备用,切换;一路分进线断开,三级负荷切除;火灾时切断三级负荷,二级负荷要人工现场切除 (2)负荷分类: 按供电重要程度分: 一级负荷、二级负荷、三级负荷

按用途分:动力和照明两大类 ①一级负荷 供电方式:从I、II段母线(即两路引自降压变压器电源)各引一路电源到设备附近,在线路末端设双电源自动切换箱(相对集中的小容量一级负荷为节省投资而共用一个双电源自动切换箱就近配电) 负荷包括: 通信、信号、FAS、EMCS、AFC;应急照明、站厅和站台照明、出入口照明;屏蔽门、垂直梯、排水泵、雨水泵、回排风机、排热风机、组合式空调箱、小系统排烟风机。 ②二级负荷 供电方式:从I或II段母线引一路电源,当所在母线故障时母联开关投入,由另一母线供电。当低压配电系统中只有一路电源时,允许将其从系统中切除(人工切除) 负荷包括: 一般照明(房屋、板下、插座);自动扶梯、污水泵、通风机;设备房维修、区间检修。 ③三级负荷

地铁车站动力照明供配电系统介绍

地铁车站动力照明供配电系统介绍 摘要:地铁车站的动力照明配电是地铁车站建设的重要组成部分,车站的动力照明的系统安全、稳定运行对车站的正常运行有着重要的影响。本文对地铁车站的供配电系统依据负荷的分类设计进行了相应的介绍。 关键词:地铁,动力照明,供配电系统 Abstract: the lighting distribution of the subway station subway station is the important part of the construction, the power of the station of lighting system security and stable operation of the normal operation of the station has an important effect. In this paper, the subway station for distribution system introduces the classification of load the design of the corresponding. Key words: subway, dynamic lighting, distribution system 地下铁道工程是一个综合性的工程,这里主要就国内主要的地铁线路的车站动力照明供配电系统设计作一个简要的介绍。车站的供配电系统的设计范围主要包括从变电所配电变压器后的低压柜及变电所交直流盘馈出的电缆头至车站的动力、照明、通信、信号等用电设备。车站低压配电系统采用380V三相五线制、220V单相三线制方式供电。系统范围大致包括站台层、站厅层和设备及管理用房的环控、排水、消防、电梯、自动扶梯、自动售检票及通信、信号、站控室等系统动力设备的供配电和车站环控室所供配电设备的电控控制。 一、根据用电设备的不同用途和重要性,车站用电负荷分为三级: 1.1、一级负荷:包括通信系统、信号系统、火灾报警系统、气体灭火系统、机电设备监控系统、屏蔽门、所用电、消防泵、废水泵、雨水泵、防淹门、站控室、事故风机及其风阀等。 1.2、二级负荷: 包括非事故风机及风阀、污水泵、集水泵、自动扶梯、工作人员电梯、轮椅牵引机、自动售检票设备、民用通信电源、维修电源及冷水机组油加热器等。 1.3、三级负荷:包括冷水机组、冷冻水泵、冷却水泵、冷却塔风机、电开水器、清扫电源等。 二、对各级负荷的供电配置设计 为了方便对机电设备的供电管理和控制,对不同的设备的供电分为由车

低压配电系统的供电方式

低压配电系统的供电方式 低压配电系统按保护接地的形式不同可分为:IT系统、T T系统和TN系统。其中I系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可 导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。国际电工委员会(I E C)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系: T--一点直接接地; I--所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T--外露可导电部分对地直接电气连接,与电力系统的任何接地点无关; N--外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。后面还有字母时,这些字母表示中性线与保护线的组合: S--中性线和保护线是分开的; O--中性线和保护线是合一的。 (1)IT系统: I T系统的电源中性点是对地绝缘的或经高阻抗接地,而用电设备的金属外壳直接接地。即:过去称三相三线制供电系统的保护接地。其工作原理是:若设备外壳没有接地,在发生单相碰壳故障时,设备外壳带上了相电压,若此时人触摸外壳,就会有相当危险的电流流经人身与电网和大地之间的分布电容所构成的回路。而设备的金属外壳有了保护接地后,由于

人体电阻远比接地装置的接地电阻大,在发生单相碰壳时,大部分的接地电流被接地装置分流,流经人体的电流很小,从而对人身安全起了保护作用。 IT系统适用于环境条件不良,易发生单相接地故障的场所,以及易燃、易爆的场所。 (2)TT系统: TT系统的电源中性点直接接地;用电设备的金属外壳亦直接接地,且与电源中性点的接地无关。即:过去称三相四线制供电系统中的保护接地。其工作原理是:当发生单相碰壳故障时,接地电流经保护接地装置和电源的工作接地装置所构成的回路流过。此时如有人触带电的外壳,则由于保护接地装置的电阻小于人体的电阻,大部分的接地电流被接地装置分流,从而对人身起保护作用。T T系统在确保安全用电方面还存在有不足之处,主要表现在: ①当设备发生单相碰壳故障时,接地电流并不很大,往往不能使保护装置动作,这将导致线路长期带故障运行。 ②当TT系统中的用电设备只是由于绝缘不良引起漏电时,因漏电电流往往不大(仅为毫安级),不可能使线路的保护装置动作,这也导致漏电设备的外壳长期带电,增加了人身触电的危险。因此,TT系统必须加装剩余电流动作保护器,方能成为较完善的保护系统。目前,TT系统广泛应用于城镇、农村居民区、工业企业和由公用变压器供电的民用建筑中。

电力系统运行方式

1、电力系统的运行方式分为( )方式。 (A)(A)正常运行和故障运行 (B)最大运行和最小运行 (C)正常运行、特殊运行 (D)最大运行、最小运行、正常运行 答: D 2、输电线路通常要装设( )。 (A)主保护 (B)后备保护 (C)主保护和后备保护 (D)近后备和辅助保护 答: C 3、DL-11/10 电磁型电流继电器,当继电器线圈串联时,其最大的电流整定值为( )。 (A) 2.5 (B) 5 (C)7.5 (D)10 答: B 4、中性点直接接地系统,最常见的短路故障是( )。 (A)金属性两相短路 (B)三相短路 (C)两相接地短路 (D)单相接地短路 答: D 5、保护用的电流互感器二次所接的负荷阻抗越大,为满足误差的要求,则允许的( )。 (A)一次电流倍数越大(B)一次电流倍数越小(C)一次电流倍数不变(D )一次电流倍数等于1 答: B 6、在相同的条件下,在输电线路的同一点发生三相或两相短路时,保护安装处母线相间的残压( )。 (A)相同 (B)不同 (C)两相短路残压高于三相短路 (D)三相短路残压高于两相短路 答:A 7、一般( )保护是依靠动作值来保证选择性。 (A)瞬时电流速断 (B)限时电流速断 (C)定时限过电流 (D )过负荷保护 答: A 8、低电压继电器与过电压继电器的返回系数相比,( )。 (A)两者相同 (B)过电压继电器返回系数小于低电压继电器 (C)大小相等 (D)低电压继电器返回系数小于过电压继电器 答:B 9、电磁型过电流继电器返回系数不等于1的原因是( )。 (A)存在摩擦力矩(B)存在剩余力矩(C)存在弹簧反作用力矩(D)存在摩擦力矩和剩余力矩 答:D 10、输电线路相间短路的电流保护,则应装设( )保护。 (A)三段式电流 (B)二段式电流 (C)四段式电流 (D)阶段式电流 答: D 11、若为线路—变压器组,则要求线路的速断保护应能保护线路( )。 (A)%100(B)%20~%10(C)%75(D)%50 答: A 12、流入保护继电器的电流与电流互感器的二次电流的比值,称为( )。 (A)接线系数 (B)灵敏系数 (C)可靠系数 (D)分支系数 答:A 13、对电流互感器进行10%误差校验的目的是满足( )时,互感器具有规定的精确性。 (A)系统发生短路故障 (B)系统正常运行 (C)系统发生短路或正常运行 (D)系统发生接地短路故障 答:A 14、在不接入调相电阻的情况下,电抗变换器二次输出电压比一次输入电流( )°。 (A)滞后90 (B)超前90 (C)约0 (D)超前约90 答: D 15、当加入电抗变换器的电流不变,一次绕组匝数减少,二次输出电压( )。 (A)增加 (B)不变 (C)减少 (D)相位改变 答: C 16、相间短路保护功率方向继电器采用90°接线的目的是( )。 (A)消除三相短路时方向元件的动作死区 (B)消除出口两相短路时方向元件的动作死区

低压配电系统供电方式

配电系统 传统上将电力系统划分为发电、输电和配电三大组成系统。 发电系统发出的电能经由输电系统的输送,最后由配电系统分配给各个用户。 一般地,将电力系统中从降压配电变电站(高压配电变电站)出口到用户端的这一段系统称为配电系统。 配电系统是由多种配电设备(或元件)和配电设施所组成的变换电压和直接向终端用户分配电能的一个电力网络系统。[编辑本段] 配电系统的组成 在我国,配电系统可划分为高压配电系统、中压配电系统和低压配电系统三部分。 由于配电系统作为电力系统的最后一个环节直接面向终端 用户,它的完善与否直接关系着广大用户的用电可靠性和用电质量, 因而在电力系统中具有重要的地位。 我国配电系统的电压等级,根据《城市电网规划设计导则》的规定,220kV及其以上电压为输变电系统,35、63、110kV为高压配电系统,10、6kV为中压配电系统,380、220V为低压配电系统。

[编辑本段] 低压配电系统的基本方式 根据 IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即 TT 、 TN 和 IT 系统,分述如下。 1、 TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称 TT 系统。第一个符号 T 表示电力系统中性点直接接地;第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在 TT 系统中负载的所有接地均称为保护接地,如图 1-1 所示。这种供电系统的特点如下。 (1)当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 (2)当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此 TT 系统难以推广。 (3)TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

地铁供电系统的运行方式及特点分析

地铁供电系统的运行方式及特点分析 地铁是我国城市交通系统的重要组成部分,对城市居民的交通出行具有十分重要的影响,因此建设好地铁系统是市政建设的重要任务之一。地铁系统建设中供电系统的建设是非常重要的一环,因为地铁系统的运行主要依赖于地铁供电系统。地铁供电系统是为地铁运行提供电能的系统,其主要包括内部供电系统和外接电网供电系统两部分。文章主要针对地铁供电系统的运行方式及特点进行了分析,希望有助于促进其建设的进步。 标签:地铁供电系统;运行方式;特点 Abstract:Subway is an important part of the urban transportation system in China,which has a very important impact on the transportation of urban residents,so building a good subway system is one of the important tasks of municipal construction. The construction of power supply system is a very important part in the construction of subway system,because the operation of subway system mainly depends on the subway power supply system. The subway power supply system is a power supply system for subway operation,which mainly includes two parts:the internal power supply system and the external grid power supply system. In this paper,the operation mode and characteristics of subway power supply system are analyzed,so as to promote the progress of its construction. Keywords:subway power supply system;operation mode;characteristics 近年來,随着我国社会经济的高速发展及城市人口的不断增多,城市地铁的建设规模正不断扩大。地铁供电系统是城市地铁系统的重要组成部分,其负责为电力机车提供牵引电力及为地铁运营服务提供电能。地铁中处处都需要电能,如车站、车辆段、车辆区间、控制中心以及动力照明等,都离不开电能,因此必须要重视地铁供电系统的建设,确保其具备良好的安全性、可靠性、经济性以及调度方便。而为了更好地建设地铁供电系统,首先应当要对地铁供电系统的运行方式及特点进行有效分析。以下笔者就联系实际来谈谈地铁供电系统的运行方式及特点,仅供参考。 1 地铁供电系统概述 随着我国城市化建设的不断深入以及城市经济发展速度的不断加快,城市中的地铁系统建设也越来越完善。地铁是我国城市交通系统的重要组成部分,对城市居民的交通出行具有十分重要的影响。而地铁供电系统则是地铁系统的重要组成部分,其主要负责为地铁运行提供电能,无论是电力机车还是地铁运营服务的运行,都离不开地铁供电系统的供电。当前随着城市中地铁系统建设规模的不断扩大及运行负荷的不断提高,地铁供电系统的负荷也在与日俱增,在此背景下,必须要进一步加强对地铁供电系统的运行方式的研究,找到更加合适的供电体系,以满足现代地铁的供电需求。地铁供电系统中主要包括内部供电系统和外接

地铁变配电系统设计

地铁变配电系统工程设计 摘要:本文针对地铁变配电系统工程,详细论述了地铁降压变电所的主接线和运行方式、继电保护、测量与计量等,以及低压配电系统和照明配电系统的设计技术。 关键词:地铁变配电系统工程设计 1.引言 地铁车站一般分为地下二层,地下一层称为站厅层,地下二层称为站台层,每层均分为公共区和两端的设备区。公共区是乘客购票、乘车的区域,设备区则是各种专业的设备机房,如BAS、FAS、AFC(自动售检票)、通信、信号、泵房、气体灭火、照明配电室、环控机房、环控电控室、牵引/降压变电所、蓄电池室、屏蔽门管理室、车站控制室等。上海轨道交通明珠线二期工程共设17座地下车站和1座地面车辆段,线路全长22公里,与明珠线一期工程的中段连接,构成环线。 明珠线二期工程供电系统采用集中供电的110/35/10kV三级电压供电方式,由主变电所、牵引供电系统、变配电系统和电力SCADA系统组成。全线设两座110/35/10kV主变电所,向牵引供电系统(35kV)和变配电系统(10kV)供电。由于地铁牵引、车站动力多为一级负荷,因此每座主变电所均由城市电网提供两回独立电源。 变配电系统由10/0.4kV降压变电所、低压配电系统与照明配电系统组成。降压变电所在规模较大的车站设置二座,以车站中心为界,每座变电所各提供半个车站和单侧相邻半个区间的负荷用电。而规模较小的车站则设置一座,提供整个车站和两侧相邻半个区间的负荷用电。 2.地铁降压变电所设计 2.1主接线 全线的降压变电所被分成若干个供电分区,每一个供电分区均从主变电所的35/10kV主变压器,就近引入两路10kV电源。在各供电分区设有网络开关,正常运行时该开关分断,形成10kV开口双环网络供电形式。

低压配电系统施工方案

东湖国家自主创新示范区有轨电车 T1试验线工程 低压配电施工方案 编制: 审核: 批准: 武汉有轨电车T1T2试验线流芳车辆基地项目部 二O一六年八月

目录 二、施工组织 (1) 三、施工流程图 (1) 四、施工方法和技术措施 (1) 1.电缆桥架安装 (1) 2.电缆导管、电线导管安装 (3) 3.配电箱安装 (3) 4.电缆、电线敷设 (3) 5.灯具、插座、开关安装 (6) 五、施工重点、难点及解决方案 (8) 六、安全教育培训 (9) 一、工程概况 T1线起点光谷创业街站~终点光谷芯中心站,全长约15.824km,其中单环线长度约为2.414km,双线段长度为13.410km。另与T2线条形成三通支线。共设车站23座,其中地面站20座,高架站3座。在光谷一路-高新六路处设流芳车辆段一座,车辆段占地面积约15公顷。本方案主要为了规范低压配电的施工安装、检验和试验方法,做到经济合理、施工方便、确保工程质量制定本方案。 二、施工组织 工程开工前,组织本专业项目主管工程师、施工员、各施工队队长、施工队技术员及相关专业的项目主管、施工员对施工现场进行详细的调查,并由项目部总工程师主持,由项目主管工程师、专职施工员、施工队长等人员组成的施工图会审,对会审结果进行技术交底,细化材料和设备购置、进场计划,组织施工人员、机具进场,完善施工用水、用电布置。对本系统全体人员我们将组织熟悉施工现场并进行集中施工技术规范的交底和安全文明交底。 总体施工顺序主要考虑装修工程隔墙砌筑,先进行设备房施工,后进行非设备房施工。 工程开工,首先进行动力、照明及其它设备控制柜就位及桥架与控制箱的联络导管,同时进行配电设备的安装。然后,根据各用电设备的位置定位,即可确定电缆长度并进行电线、电缆的敷设。最后根据装修进度进行灯具等的安装接线、检查、调试及各设备的穿线、接线和调试工作及配电孔洞的防火封堵和工程的验交开通。 三、施工流程图 1 栓。其工艺流程及安装方法如下:

浅谈低压供电系统的几种供电方式

浅谈低压供电系统的几种供电方式 国际电工委员会(IEC)标准规定,低压供电系统按照其形式不同,可分为TT供电系统、TN供电系统和IT供电系统。现在将此3种供电系统作一个简单的论述,并进行综合比较。1供电系统符号的意义第一个字母表示电力(电源)系统的对地关系。T指中性线直接接地;I指所有带电部分与大地绝缘或高阻抗(经消弧线圈)接地。第二个字母表示用电装置处外露的可导电金属部分与大地的关系。T指用电设备外露可导电金属部分与大地有直接的电气连接,而与低压系统的任何接地点无关;N指用电设备外露可导电金属部分与低压系统的接地点有直接的电气连接。第三个字母表示工作零线与保护线的组合关系。S指整个电力系统工作零线(N线)与保护线(PE线)是严格分开的;C指整个电力系统工作零线与保护线是共同使用的即PEN线;(C-S)指系统中有一部分工作零线与保护线是共同使用的。2供电的基本方式2.1 TT供电系统的电源中性点直接接地,并且引出中性线(N),称作三相四线制系统,此系统的用电设备的外壳可导电金属部分通过设备本身的保护接地线(PE)与大地直接连接,称为保护接地系统。 常见的各种低压交流(220/380V,50Hz)供电系统有:IT、TN一C、TN一S、TN一C一S、TT供电系统。 供电的安全性指供电配电时不能伤害人或损坏设备。可靠性指在一

定条件和时间内连续供电的能力。这是电源系统中的一对矛盾,当人身与设备安全性受到危险时,需要切断电源;而切断电源又对用电设备连续供电产生影响。以下对供电系统常用的五种交流电源系统及接地方式进行介绍,并在安全性与可靠性分析进行比较。 IT供电系统及接地方式 IT系统是三相三线式供电及接地系统,该系统变压器(或发电机组三相输出)中性点不接地或经高阻抗接地,无中性线(俗称零线)N,只有线电压(380V),无相电压(220V),电器设备保护接地线(PE线)各自独立 IT系统在供电距离不长时,供电可靠性高,安全性好。电源侧也可采取中性点经高阻抗接地。 IT系统在一相接地时,单相对地漏电电流小,不破坏电源的电压平衡。一般用于不允许停电的场所,或是严格要求连续供电的地方。 如果一相发生接地故障,通过熔断器F等可以切断该相,其它两相可以供电。而且,用电设备有接地保护,当单相绝缘损坏碰到外壳,使金属外壳呈带电状态时,人员触及带电金属外壳可以避免触电事故的发生。这是因为电流经过两条并联电路流通,一路通过接地线、大

10KV供电系统及运行方式

第一篇供电系统 一、工程概况 二、供电系统构成 三、10kV系统运行方式 一、工程概况: 北京轨道交通昌平线北起十三陵景区,南至城铁13号线西二旗站,全长31.094KM,其中高架线15.780KM,地下线13.450KM,地面线1.394KM,过渡段0.470KM,共设站11座。全线设车辆段和停车场各一座,车辆段位于昌平线起点十三陵景区站西侧,京包高速路南侧地块内,停车场位于定泗路东南地块内。 昌平线分两期建设,一期工程为城南站至西二旗站段,线路长21.094KM,设车站7座,其中地下站1座(南邵站),高架站5座(沙河高教园站、沙河站、巩华城站、朱辛庄站、生命科学园站),地面站1座(西二旗站),其中西二旗站是昌平线与13号线的换乘站,朱辛庄站是昌平线与8号线换乘站。一期工程设定泗停车场1座。二期工程为十三陵景区站至城东站段,线路全长10KM,全部为地下线,设站4座(十三陵景区站、鼓楼站、水库站、城东站),一处十三陵车辆段。 供电系统采用10KV开闭所双环网供电方式,直流牵引供电系统采用DC750V上部接触钢铝复合接触轨供电,DC750牵引供电系统设杂散电流防护,车辆受电方式为通过DC750V接触轨上部接触受电,走行轨回流方式。 昌平线后备中心设在定泗停车场内,远期指挥中心设置在小营第二指

挥中心内。 一期工程计划在2010年底建成通车;二期工程计划在2012年底建成通车。 二、供电系统构成 2.1变电所分布 昌平线一期全线设AC10kV/DC750V、10kV/0.4kV牵引降压混合变电所14座和维修基地跟随所1座。 14座牵引降压混合变电所包括:停车场一座设在定泗路,正线13座分别设在西二旗、生西区间一、生西区间二、生命科学园、朱生区间、朱辛庄、巩朱区间、巩华城、沙河、沙河高教园、南沙区间一、南沙区间二、南邵;维修基地跟随所1座设在定泗车辆厂厂区内。 2. 2外电源系统分布 根据城市轨道交通供电的需要,在地铁沿线直接由城市电网引入多路电源,构成供电系统,称为分散式供电。分散式供电要保证每座牵引变电所和降压变电所均获得双路电源,要求城市轨道交通沿线有足够的电源引入点及备用容量。昌平线外电源采用分散式供电,电压等级为10kV,设置5座电源开闭所。分别位于西二旗、生命科学园、巩华城、沙河高教园、南邵。每座电源开闭所从城市电网引入两回10kV外线电源,该电源可以引自城市电网不同的变电所,也可以引自同一变电所的不同母线。 2.3接线方式: A.开闭所 a.开闭所10kV侧采用单母线分段接线方式,两段母线通过母线分段断路器连接,母线分段断路器可手动和远动操作。每段母线分别通过进线隔

低压配电系统送电方案

中国移动广东公司粤东区域生产中心一期建设项目 低压配电系统送电方案 一.基本要求 1. 严格按图,按现行相关规范施工,各设备房及场所土建工程已完工,符合规范要求的送电条件。 2. 做好送电前各相关场所的安全防护措施,做好专人监护、安全围护、警示牌等工作。 3. 做好参与人员的安全、技术交底、确保参与送电工作的相关人员、做到定员定职、工作目标明确。 4. 送电前须做好如下的基本工作 (1)系统相关设备及线路已按图、按规范施工完工,相关场所符合送电条件。 (2)检查线路至相关设备安装的正确性(既校对线路)并检查相关挂牌标识的正确性。 (3)准备送电的馈电回路各用电设备的总开关处在断开状态,专人检查校对并做记录。 (4)用电设备的控制箱已做单体模拟调试,绝缘性能良好,达到规范标准。 (5)单体模拟调试最基本要做到如下要求 ①绝缘性能测试 ②控制逻辑正确

③各开关操作正常 ④各指示功能、保护功能符合要求 5. 试送电要求 ①对准备送电的馈电回路专人巡查各开关状态断开 ②送电端及受电端有专人监护,并用对讲进行联络 ③对线路做送电前的绝缘性能进行检查 ④试送电,采用瞬间合断的方法,进行三次,确认无异常后,送电试运行,并做好警示挂牌工作。 6. 对整个调送电工作要做到有书面记录,严格校对图纸与安装内容的一致性,特别是对设备的型号、规格要认真校对无误。 7.做好试送电前的柜、箱检查后,组织分配工作人员,通过对讲机交流所需要人员为15人 8.试送电所需要工期为25天 9.试送电所需要仪表仪器 ①万能表 ②钳形电流表 ③绝缘电阻测试仪摇表

二.拟送电回路内容及顺序 (顺序可依据实际情况作相应调整) (一)一机楼一期(一层配电房)低压配电回路内容 1. 园区室外照明回路 ①走向及编号:P1-5屏101 至门卫 屏的位置:一层高低压变配电2(1-3~1-C) ②未端设备:ALSW-1箱 ③消防时断电 2. 智能系统双电源回路 ①走向及编号:P3-6屏1009#,P2-5屏1010# 至智能消防控制中心 ②未端设备:1AP1-1箱→UPS ③供电范围: (A)第一路供B1~5层。箱共6台.即1APR B1~5 (B)第二路供6~10层。箱共5台.即1APR6~10 3. 6~10层应急照明双电源回路 ①走向及编号:P1-6屏1003#,P2-5屏1004# 至楼屋配电间 ②未端设备:1ALE6-1箱→2ALEW-DT1共6台 4. 1~5层应急照明双电源回路 ①走向及编号:P1-6屏1001#,P2-5屏1002# 至楼屋配电间 ②未端设备:1ALE1-1箱→1ALE5-1共5台 5. B1~5层走道照明双电源回路 ①走向及编号:P1-6屏1005#,P2-5屏1006# 至楼屋配电间 ②未端设备:1ALZB1-1箱→1ALZ5-1共7台 6. 6~10层走道照明双电源回路 ①走向及编号:P1-6屏1005#,P2-5屏1006# 至楼屋配电间 ②未端设备:1ALZ6-1箱→1ALZ10-1共5台 7. B1层~1层照明回路 ①走向及编号:P1-5屏1017# 至楼屋配电间

供电系统的运行方式

供电系统的运行方式 1.主变电所的运行方式 每座主变电所分别从城市电网引入2路相互独立的110kV电源进线,每路电源进线各带一台110/35kV有载调压主变压器,并在高压侧设有载分接开关。主变电所的110kV侧采用内桥接线,在正常运行方式下,高压进线的联络开关打开,两台主变压器同时分列运行,主变电所的35kV侧采用单母线分段接线并设常开母联开关,馈出35kV 中压电源给沿线的牵引变电所和降压变电所供电。 在正常运行方式下,每座主变电所的2路电源进线和两台主变压器同时分列运行,负担各自供电分区的牵引负荷和动力照明负荷。 在故障情况下,当其中一台主变压器解列时,合上该所的母联开关,由另一台主变压器负担该主变电所的供电区域负荷,该主变压器应能满足该所供电区域内高峰小时牵引负荷和动力照明一、二级负荷需要;当其中一路电源进线故障时,合上进线侧的联络开关,由另一路电源进线负担该主变电所的供电区域内负荷,它应能满足该所供电区域内高峰小时全部牵引负荷和动力照明负荷。 在严重故障情况下,当一座主变电所解列时(不考虑该主变电所的母线故障),合上两座主变电所间设于建国道变电所的环网联络开关,由另一座主变电所通过环网越区供电负担全线供电范围内的牵引负荷及动力照明一、二级负荷需要。 2.牵引变电所的运行方式 牵引变电所的35kV侧采用单母线分段接线,两套整流机组并联接在

同一段35kV母线上,DC750V侧为单母线接线,通过直流快速开关向接触轨供电,两台配电变压器分别接在两段35kV母线上。 在正常运行方式下,牵引变电所中的两套整流机组并联工作并组成等效24脉波整流方式;相邻牵引变电所对正线接触轨实行上下行分路双边供电方式。 当正线任一座牵引变电所解列时,由相邻的两座牵引变电所越区“大双边”供电。 当牵引变电所内有一台牵引变压器出现故障,另一台变压器可以负担该所的牵引负荷,但一般不会 3.降压变电所的运行方式 降压变电所的35kV侧采用单母线分段接线,两台动力变压器分别接在两段高压母线上;低压0.4kV侧采用单母线分段接线,通过低压开关向车站各动力照明负荷供电,并设三级负荷总开关,以方便对三级负荷必要的切除工作。 在正常运行方式下,两台动力变压器同时分列运行,共同负担供电区域内的动力照明负荷。 在故障情况下,当牵引降压混合变电所或降压变电所中的一台动力变压器故障解列时,自动切除三级负荷,由另一台动力变压器负担该所供电范围内全部动力照明一、二级负荷。 4.中压环网电缆的运行方式 在正常运行方式下,每个供电分区均由两路电源同时负担供电。 在故障情况下,当供电分区中的任一路电缆故障时,跳开故障电缆的

常见低压配电系统简介

1.1 低压配电系统简介 本章所描述的低压配电系统是根据国际电工委员会标准IEC 664-1的要求来定义的,适用于海拔至2000m,额定交流电压至1000V,额定频率至30kHz或直流至1500V的系统中。另外,在通信设备中所说的交流配电,一般是指220/ 380V 的供电系统。 IEC 364-3标准中,按照载流导体的配置和接地的方法划分成TN、TT和IT交流配电系统,在下面的图示中给出了配电系统的一些实例。 图中: ---在大多数情况下,配电系统适用于单相和三相设备,但为了简化起见,图中仅划出了单相设备; ---供电电源可以是变压器的次级绕组,电动机驱动的发电机或不间断电源系统;字母代号的含义: 第一个字母T或I表示电源对地的关系,第二个字母N或T表示装置的外露导电部分对地关系,横线后字母S、C或C-S表示保护线与中性线的组合情况。1.1.1 TN配电系统 TN配电系统中,电源有一点(通常是中性点)直接接地,设备端的外露导电部分通过保护线(即PE线包括PEN线)与该接地点连接的系统。按照中性线(N)与保护线的组合情况,TN系统又分为以下三种型式: ---TN-S系统:整个系统中保护线PE与中性线N是分开的,见图5-2; ---TN-C-S系统:系统中有一部分保护线PE与中性线N是分开的,见图5-3;---TN-C系统:整个系统中保护线PE与中性线N是合一的,见图5-4。

图1-1TN-S配电系统实例 图1-2TN-C-S配电系统实例 如图5-4在系统的某一部分中,中线和保护接地功能合并在一根单独的导线上(PEN) 注:将PEN导线分解成保护接地线和中线的点可在建筑物入口处或建筑物的配电板上。

电力供电系统最常用的几种供电方式

单相也就就是220V家用电路一般适用于照明电力电路; 三相也就就是工厂设备用电力电路也可称工程电路,它根据场合需要有3线,4线与5线几种方式: 三线----------3根火线(没有零线N与接地线PE) 四线----------3根火线+1根零线N (TN-C系统) 五线----------3根火线+1根零线N+1根接地线PE (TN-S系统) TN 方式供电系统这种供电系统就是将电气设备的金属外壳与工作零线相接的保护系统,称作接零保护系统,用TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为短路电流,这个电流很大,就是TT 系统的5、3 倍,实际上就就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 ) TN 系统节省材料、工时,在我国与其她许多国家广泛得到应用,可见比TT 系统优点多。TN 方式供电系统中,根据其保护零线就是否与工作零线分开而划分为TN-C 与TN-S 等两种。 3 ) TN-C 方式供电系统它就是用工作零线兼作接零保护线,可以称作保护中性线,可用NPE 表示 4 ) TN-S 方式供电系统它就是把工作零线N 与专用保护线PE 严格分开的供电系统,称作TN-S 供电系统, TN-S 供电系统的特点如下。 1 )系统正常运行时,专用保护线上不有电流,只就是工作零线上有不平衡电流。PE 线对地没有电压,所以电气设备金属外壳接零保护就是接在专用的保护线PE 上,安全可靠。 2 )工作零线只用作单相照明负载回路。 3 )专用保护线PE 不许断线,也不许进入漏电开关。 4 )干线上使用漏电保护器,工作零线不得有重复接地,而PE 线有重复接地,但就是不经过漏电保护器,所以TN-S 系统供电干线上也可以安装漏电保护器。 5 ) TN-S 方式供电系统安全可靠,适用于工业与民用建筑等低压供电系统。在建筑工程工工前的“三通一平”(电通、水通、路通与地平——必须采用TN-S 方式供电系统。 5 ) TN-C-S 方式供电系统在建筑施工临时供电中,如果前部分就是TN-C 方式供电,而施工规范规定施工现场必须采用TN-S 方式供电系统,则可以在系统后部分现场总配电箱分出PE 线, TN-C-S 系统的特点如下。 1 )工作零线N 与专用保护线PE 相联通,如图1-5ND 这段线路不平衡电流比较大时,电气设备的接零保 护受到零线电位的影响。D 点至后面PE 线上没有电流,即该段导线上没有电压降,因此, TN-C-S 系统可以降低电动机外壳对地的电压,然而又不能完全消除这个电压,这个电压的大小取决于ND 线的负载不平衡的

低压配电系统的接线方式及特点

低压配电系统的接线方式及特点 (1)带电导体的形式:所谓带电导体是指正常通过工作电流的相线和中性线(包括PEN线但不包括PE线).宜选用单相两线、两相三线、三相三线、三相四线. (2)系统接地的形式:所谓配电系统接地是指电源点的对地关系和负荷侧电气装置(指负荷侧的所有电气设备及其间相互连接的线路的组合)的外露导电部分(指电气设备的金属外壳、线路的金属支架套管及电缆的金属铠装等)的对地关系. 以三相系统为例,系统接地的型式有TN、TT、IT三种系统.TN系统按N线(中性线)与PE线(保护线)的组合情况还分TN-S、TN-C-S和TN-C三种系统. 配电系统设计的基本原则 (1)低压配电系统应满足生产和使用所需的供电可靠性和电能质量的要求,同时应注意接线简单,操作方便安全,配电系统的层次不宜超过二级. (2)在正常环境的车间或建筑物内,当大部分用电设备为中小容量,又无特殊要求时,宜采用树干式配电. (3)当用电设备容量大,或负荷性质重要,或在有潮湿、腐蚀性环境的车间、建筑内,宜采用放射式配电. (4)当一些用电设备距供电点较远、而彼此相距很近、容量很小的次要用电设备,可采用链式配电.但每一回路链接设备不宜超过5台、总容量不超过10kW.当供电给小容量用电设备的插座,采用链式配电时,每一回路的链接设备数量可适当增加. (5)在高层建筑内,当向楼层各配电点供电时,宜用分区树干式配电;但部分较大容量的集中负荷或重要负荷,应从低压配电室以放射式配电.

(6)平行的生产流水线或互为备用的生产机组,根据生产要求,宜由不同的母线或线路配电;同一生产流水线的各用电设备,宜由同一母线或线路配电. (7)在TN及TT系统接地型式的低压电网中,宜选用Dyn11结线组别的三相变压器作为配电变压器. (8)单相用电设备的配置应力求三相平衡. (9)当采用220/380V的TN及TT系统接地型式的低压电网时,照明和其他电力设备宜由同一台变压器供电.必要时亦可单独设置照明变压器供电. (10)配电系统的设计应便于运行、维修,生产班组或工段比较固定时,一个大厂房可分车间或工段配电;多层厂房宜分层设置配电箱,每个生产小组可考虑设单独的电源开关.实验室的每套房间宜有单独的电源开关. (11)在用电单位内部的邻近变电所之间宜设置低压联络线. (12)由建筑物外引来的配电线路,应在屋内靠近进线点,便于操作维护的地方装设隔离电器.

电力系统运行方式及潮流分析实验报告.doc

电力系统第一次实验报告 ——电力系统运行方式及潮流分析实验

实验 1电力系统运行方式及潮流分析实验 一、实验目的 1、掌握电力系统主接线电路的建立方法 2、掌握辐射形网络的潮流计算方法; 3、比较计算机潮流计算与手算潮流的差异; 4、掌握不同运行方式下潮流分布的特点。 二、实验内容 1、辐射形网络的潮流计算; 2、不同运行方式下潮流分布的比较分析 三、实验方法和步骤 1.辐射形网络主接线系统的建立 输入参数(系统图如下): G1:300+j180MVA (平衡节点) 变压器 B1:Sn=360MVA ,变比 =18/121,Uk% =14.3%,Pk=230KW,P0=150KW,I0/In=1 %; 变压器B2、B3: Sn=15MVA ,变比 =110/11 KV ,Uk %=10.5%, Pk=128KW ,P0=40.5KW,I0/In=3.5 %; 负荷 F1:20+j15MV A ;负荷 F2:28+j10MVA ; 线路 L1、L2 :长度: 80km,电阻: 0.21 Ω/km,电抗: 0.416 Ω/km,电纳: 2.74 ×10-6 S/km。 辐射形网络主接线图

( 1)在 DDRTS中绘出辐射形网络主接线图如下所示: ( 2)设置各项设备参数: G1:300+j180MVA (平衡节点)

变压器 B1:Sn=360MVA ,变比 =18/121,Uk% =14.3%,Pk=230KW,P0=150KW,I0/In=1 %; 变压器B2、B3: Sn=15MVA ,变比 =110/11 KV ,Uk %=10.5%, Pk=128KW ,P0=40.5KW,I0/In=3.5 %;

低压配电系统三种形式

根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。 TN系统: 电源变压器中性点接地,设备外露部分与中性线相连。 TT系统: 电源变压器中性点接地,电气设备外壳采用保护接地。 IT系统: 电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳采用保护接地。 1、TN系统 电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类: 即TN—C系统、TN—S系统、TN—C—S系统。下面分别进行介绍。 1.1、TN—C系统 其特点是: 电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。 (1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;

(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位; (3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。 由上可知,TN-C系统存在以下缺陷: (1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。 (2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。 (3)、对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。 (4)、重复接地装置的连接线,严禁与通过漏电开关的工作零线相连接。 TN-S供电系统,将工作零线与保护零线完全分开,从而克服了TN-C供电系统的缺陷,所以现在施工现场已经不再使用TN-C系统。 1.2、TN—S系统 整个系统的中性线(N)与保护线(PE)是分开的。 (1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源; (2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位; (3)TN—S系统PE线首末端应做重复接地,以减少PE线断线造成的危险。 (4)TN—S系统适用于工业企业、大型民用建筑。

相关文档