文档库 最新最全的文档下载
当前位置:文档库 › 09-10-1-概率统计A--期末考试试卷答案

09-10-1-概率统计A--期末考试试卷答案

09-10-1-概率统计A--期末考试试卷答案
09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格

浙江大学城市学院

2009— 2010学年第 一学期期末考试试卷

《 概率统计A 》

开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人

一. 选择题 (本大题共__10__题,每题2分共__20 分)

1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B )

)(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ?

2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A )

)(A 5/2,5/3-==b a )(B 3/2,3/2==b a

)(C 2/3,2/-1==b a )(D 2/3,2/1-==b a

3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率()

σμ<-X P 满足

( C )

)(A 单调增大 )(B 单调减少

)(C 保持不变 )(D 增减不定

4、设),(Y X 的联合概率密度函数为??

???≤+=其他,

01

,1),(2

2y x y x f π,则X 和Y 为

( C )的随机变量

)(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布

得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线…

…………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

5、某型号的收音机晶体三极管的寿命X (单位 :小时)的概率密度函数为

21000,

1000()0,x f x x

?>?=???

其他

装有5只这种三极管的收音机在使用的前1500小时内正好有两只需要更换的概率是( C )

)(A 1/3 )(B 40/143

)(C 80/243 )(D 2/3

6、设()4,()1,0.6,XY D X D Y ρ===则=-)23(Y X D ( D )

)(A 40 )(B 34 )(C 17.6 )(D 25.6

7、设X ~),(2

σμN ,)(~λπY ,则下列选项中 不正确的是( B )

)(A λμ+=+)(Y X E )(B λσ+=+2)(Y X D

)(C λλμσ+++=+22222)(Y X E )(D λσμ=+=)(,)(222Y D X E

8、设一次试验成功的概率为p ,进行100次独立重复试验,当p =( B )时,成功次数的 方差最大。

)(A 2/3 )(B 1/2

)(C 3/4 )(D 1/4

9、设正态总体),(~2

σμN X ,其中2σ未知,样本容量n 和置信度α-1均不变,则对于不同的样本观测值,总体均值μ的置信区间长度L ( D )。

)(A 变短 )(B 变长

)(C 不变 )(D 不确定

10、设50021,,X X X 是独立同分布的随机变量,且),1(~p B X i ,500,,2,1 =i ,则下列不正确的为( C )

)(A ),500(~500

1i p B X i ∑=

)(B ∑=500

1

i i X 近似服从正态分布

)(C )()()(500

1i a b b X

a P i

Φ-Φ≈<<∑=

)(D ???

? ??--Φ-???? ??--Φ≈<<∑=)1(500500)1(500500)(500

1i p p p a p p p b b X a P i

二、 填空题 (本大题共__10_空格,每个空格2分共___20____分)

1、 每次试验成功的概率为p ,进行独立重复试验,直到第10次试验才取得4次

成功的概率为()6

34

91C p p - (列式表示)

2、设,5/9)1(),,3(~),,2(~=≥X P p B Y p B X 若则 ()=≥1Y P 19/27 。

3、设设随机变量X 和Y 相互独立,且具有同一分布律如下

X 0 1

p

1/2

1/2

Y 0 1 p

1/2

1/2

则随机变量),max(Y X Z =的分布律为

z 0

1 p

1/4

3/4

随机变量),min(Y X V =的分布律为

V 0

1 p

3/4

1/4

随机变量XY U =的分布律为 =

U 0

1 p

3/4

1/4

4、设随机变量Y 服从参数为1=λ的指数分布,随机变量

??

?

?

?>≤=k

Y k Y X k ,1,0

2,1=k

得分

则)(21X X E += 12e e --+。

5、设总体),(~2σμN X ,2σμ和均未知,n X X X ,,,21 为从总体X 抽取的一个样本,

则2σμ和的矩估计量分别为 1A 和21A A -。

6、单个正态总体),(~2σμN X ,方差2

σ已知时,检验μ的统计量为0

/X n

μσ-。

7、设随机变量[]2,0~U X ,则随机变量2

X Y =在[]4,0内的概率密度函数为

14y

二. 综合题 (本大题共__6__题,共60 分)

1、设连续型随机变量X 的概率密度函数为??

?

?

???≤<-≤≤=其他,021),2(10,)(x x k x kx x f ,

求:(1)常数k ;(2)X 的分布函数。(10分)

(1) 由()12

1

21kxdx k x dx +-=??得 1k = -------------- 4分

(2)当0x <时 ()()0x

F x f x dx -∞

==?

------------- 1分

当01x ≤≤时 2

01()()2x

x

F x f x dx xdx x -∞===

?? ----------- 2分

当12x <≤时 ()12011

()()2212x

x F x f x dx xdx x dx x x -∞

==+-=--?

?? ------------ 2分

当2x >时 ()1

2

1

()()21x

F x f x dx xdx x dx -∞

==+-=?

?? --------------- 1分

得分

2、设),(Y X 的联合概率密度函数为,01,

0(,),0,

A y x y

f x y ≤≤≤≤??=?

??其他

, (1)求常数A ;(2)求关于X 及Y 的边缘密度;(3) )(Y X E + (4)),(Y X Cov (16分) (1)由

(,)1D

f x y d σ=??得 2A = ---------4分

(2)()121,01

2,01()(,)0,0,x X x x dy x f x f x y dy +∞

-∞

??-≤≤≤≤?===??

???

??

其他其他 ----------2分

02y,01

2,01()(,)0,0,y

Y y dx y f y f x y dx +∞

-∞?≤≤≤≤??===??

?????其他其他 -------------- 2分 (3) ()3

1

)12)(10=-=?dx x x X E -------------- 1分

1

202

()23

E Y y dy ==

? ------------ 1分

13

2

31)()()(=+=+=+Y E X E Y X E ----------2分

(4)1101

()24

x E XY dx xydy ==?? ------------ 2分

36

1

323141)()()(),(=?-=-=Y E X E XY E Y X Cov ---------------- 2分

3、已知总体X 的密度函数为??

?

??>=-其他,00,21)(x e x f x

σ

σ,0>σ为未知常数,

n X X X ,,,21 为从总体X 抽取的一个样本,n x x x ,,,21 是它的样本观测值。

(1) 求未知参数σ的极大似然估计量σ

?。 (2) 判断σ

?是否为σ的无偏估计。(12分)

(1) 似然函数 1

1()2n

i

i x n

L e

σ

σσ=-∑??= ???

------------------ 4分 取对数 1

1ln ()ln 2n

i

i x L n σσσ=??=-

???

12ln ()0n

i i x d L n

d σσσσ

==-+=∑ 得?x σ= -------------- 4分

从而极大似然估计量为 ?X σ

= ---------------- 2分

(2) 由0

?()()()22

x

x E E X E X e dx σσ

σ

σσ-+∞

====≠?

σ

?不为σ的无偏估计 --------------- 2分

4、设一批产品的次品率为0.1,从中有放回地取出100件,设X 为100件中次品的件数。 (1) 写出X 的分布律;

(2) 用中心极限定理求X 与10之差的绝对值小于3的概率的近似值. (10分)

(备用数据:5.0)0(,8413.0)1(,99.0)3263.2(,

9332.0)1.5=Φ=Φ=Φ=Φ()

(1)~(100,0.1)X B -------- 3分

(2)由中心极限定理得~(10,9)X N (近似) --------3分

则(103)(713)(1)(1)2(1)10.6826P X P X -<=<<=Φ-Φ-=Φ-=----4分

5、已知某种苹果的重量),(~2σμN X ,且平均重g 220,施用某种农药后,随机取10个苹果,得样本均值g x 2.227=,样本标准差g s 3.9=,给定显著性水平0.05=α,问这种农药对苹果的重量是否有显著影响?(,检验220:0=μH 220):1≠μH ( 8分)

备用数据: 0301.2)9(025.0=t 6883.1)9(05.0=t 0281.2)10(025.0=t

6896.1)10(05.0=t

645.105.0=u 96.1025.0=u

3.162

10=

取检验统计量0

/X t s n

μ-=

--------2分

0H 的拒绝域为0.025(9)t t >--------2分

由题意计算得0/X t s n

μ-=

的观测值为

227.2220

2.4489.3/10-=-------2分

落入拒绝域,故认为此农药对苹果的重量有显著影响。--------2分

6、某保险公司制定赔偿方案:若在一年内顾客的投保事件A 发生,该公司就赔偿顾客a 元。已知一年内事件A 发生的概率为p ,为使公司收益的期望值等于a 的5%,该公司要求

顾客交纳多少元的保费? (4分)

设公司收益为,Y 顾客缴纳x 元保费,则,,A x Y x a ?=?-?若A 不发生

若发生

------ 2分

要使 ()()()15%E Y x p x a p a =-+-= 则得 ()5%x p a =+ --------------- 2分

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题汇总

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i表示事件“第i次射击命中目标”,i=1,2,B表示事件“仅第一次射击命中目标”,则B=()A.A1A2B.21A A C.21A A D.21A A 2.某人每次射击命中目标的概率为p(0

6.设随机变量X 与Y 相互独立,X 服从参数2为的指数分布,Y ~B (6,2 1),则D(X-Y)=( ) A .1- B .74 C .54- D .12 - 二、填空题(本题共9小题,每小题2分,共18分) 7.同时扔3枚均匀硬币,则至多有一枚硬币正面向上的概率为________. 8.将3个球放入5个盒子中,则3个盒子中各有一球的概率为= _______ _. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是= . 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度 f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ???, 则相关系数,X Y ρ= ________. 13. 二维随机变量(X ,Y ) (1,3,16,25,0.5)N -:,则X : ;Z X Y =-+: . 14. 随机变量X 的概率密度函数为 51,0()50,0x X e x f x x -?>?=??≤?,Y 的概率密度函数为1,11()20,Y y f y others ?-<

09-10-1-概率统计A--期末考试试卷答案

诚信应考 考出水平 考出风格 浙江大学城市学院 2009— 2010学年第 一学期期末考试试卷 《 概率统计A 》 开课单位: 计算分院 ;考试形式: 闭卷; 考试时间:2010年 1 月24日; 所需时间: 120 分钟 题序 一 二 三 总 分 得分 评卷人 一. 选择题 (本大题共__10__题,每题2分共__20 分) 1、已知()0.87.0)(,8.0)(===B A P B P A P ,,则下列结论正确的是(B ) )(A 事件B A 和互斥 )(B 事件B A 和相互独立 )(C )()()(B P A P B A P += )(D B A ? 2、设)(1x F 和)(2x F 分别为随机变量1X 和2X 的分布函数,为使)()()(21x bF x aF X F -=为某一随机变量的分布函数,在下列各组数值中应取( A ) )(A 5/2,5/3-==b a )(B 3/2,3/2==b a )(C 2/3,2/-1==b a )(D 2/3,2/1-==b a 3、设随机变量X 服从正态分布),(2σμN ,随着σ的增大,概率() σμ<-X P 满足 ( C ) )(A 单调增大 )(B 单调减少 )(C 保持不变 )(D 增减不定 4、设),(Y X 的联合概率密度函数为?? ???≤+=其他, 01 ,1),(2 2y x y x f π,则X 和Y 为 ( C )的随机变量 )(A 独立且同分布 )(B 独立但不同分布 )(C 不独立但同分布 )(D 不独立 且不同分布 得分 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名:__________________ …………………………………………………………..装………………….订…………………..线… …………………………………………………… 年级:_____________ 专业:_____________________ 班级:_________________ 学号:_______________ 姓名________________ …………………………………………………………..装………………….订…………………..线………………………………………………………

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.9 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计期中试卷(1-4章)附答案及详解

X,

23π+=X Y 5.设随机变量1X ,2X ,3X 相互独立,1X 在)5,1(-服从均匀分布,)2, 0(~22N X ,)2(~3Exp X (指数分布),记32132X X X Y +-=,则)(Y E )(Y D 6. 设二维正态分布的随机变量)0,3,4,2 ,1( ),(2 2-N ~Y X ,且知8413.0)1(=Φ,则 -<+)4(Y X P 7. 已知随机变量X 的概率密度2 01()0 a bx x f x ?+<<=??其他, 且41)(=X E ,则a b ) (X D 8. 设4. 0,36)(,25)(===XY Y D X D ρ,则=+)(Y X D =-)(Y X D 二. (10分) 某车间有甲乙两台机床加工同一种零件,甲机床加工的零件数量比乙机床多一倍,甲乙机床加工零件的废品率分别为0.03,0.02. 两机床加工出的零件放在一起. 试求 (1)任取一个零件是合格品的概率; (2)任取一个零件经检验是废品,试求它是由乙机床生产的概率. 解:设“从放在一起的零件中任取一件发现是甲/乙机床加工的”分别记为事件,A .A 再记“从放在一起的零件中任取一件发现是废品”为事件.B 由已知得 .02.0)(,03.0)(;3 1 )(,32)(====A B P A B P A P A P …… 3’ (1)由全概率公式知 027.075 2 02.03103.032)()()()()(≈=?+?= +=A B P A P A B P A P B P . …… 3’ 故任取一个零件是合格品的概率73 ()1()0.973.75 P B P B =-= ≈ …… 1’ (2)由贝叶斯公式知 .4 102.03 103.03202.031 )()()()()()()(=?+??=+=A B P A P A B P A P A B P A P B A P …… 3’

概率论与数理统计期末考试

一 填空 1.设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 2. 设B A 、是两相互独立事件,4.0)(,8.0)(==A P B A P ,则._____)(=B P 3. .__________)3(,3)(,2)(=-==Y X D Y X Y D X D 独立,则、且 4. 已知._________)20(,533.0)20(4.06.0=-=t t 则 5. n X X X ,,,21 是来自正态总体),(2σμN 的样本,S 是样本标准差,则 ________)( 2 2 =σ nS D 6. 设._______}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式 7. 假设一批产品中一、二、三等品各占%10%20%70、、 ,从中随意取一种,结果不是三等品,则取到的是一等品的概率是____________. 8、m X X X ,,,21 是取自),(211σμN 的样本,n Y Y Y ,,,21 是来自),(2 22σμN 的样本,且这两种样本独立,则___ ___ Y X -服从____________________. 9. 设____}3|{|,)(,)(2≤>-==σμσμX P X D X E 则由车比雪夫不等式得. 10、已知.__________)12(2)(=-=X D X D ,则 11、已知分布服从则变量)1(___________),1(~),,(~22--n t n Y N X χσμ 12设随机变量X 服从)1,1(-R ,则由切比雪夫不等式有{}≤≥1X P 。 13.已知1 1 1(),() ,()432 P A P B A P A B ===,则()P AB = , ()P A B = 。 14.若()0.5,()0.4,()0.3,P A P B P A B ==-=则()P A B = 。 15.若随机变量X 服从(1,3)R -,则(11)P X -<<= 。 16.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )= 。 17.设随机变量,X Y 相互独立,且X 服从(2)P ,Y 服从(1,4)N ,则(23)D X Y -= 。

概率论与数理统计期末考试题及答案

创作编号: GB8878185555334563BT9125XW 创作者: 凤呜大王* 模拟试题一 一、 填空题(每空3分,共45分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = 。 P( A ∪B) = 。 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ; 4、已知随机变量X 的密度函数为:, ()1/4, 020,2 x Ae x x x x ??

8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本, 1 1n i i X X n ==∑为样本均值,则θ的矩估计量为: 。 9、设样本129,, ,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =, 求参数a 的置信度为95%的置信区间: ; 二、 计算题(35分) 1、 (12分)设连续型随机变量X 的密度函数为: 1, 02()2 0, x x x ??≤≤?=???其它 求:1){|21|2}P X -<;2)2 Y X =的密度函数()Y y ?;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为 1/4, ||,02,(,)0, y x x x y ?<<??

概率论期中考试试卷及答案

将 个不同的球随机地放在 个不同的盒子里,求下列事件的概率 个球全在一个盒子里 恰有一个盒子有 个球 解 把 个球随机放入 个盒子中共有45 种等可能结果 ( ) 个球全在一个盒子里 共有 种等可能结果 故 个盒子中选一个放两个球,再选两个各放一球有 30 2 415=C C 种方法 个球中取 个放在一个盒子里,其他 个各放在一个盒子里有 种方法 因此, 恰有一个盒子有 个球 共有 × 种等可能结果 故 12572 625360)(= = B P 某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为 小时和 小时,设甲、乙在 小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设 分别为两船到达码头的时刻。 由于两船随时可以到达,故 分别等可能地在 上取值,如 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

右图 方形区域,记为Ω。设 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 ()x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 设商场出售的某种商品由三个厂家供货,其供应量之比是 : : ,且第一、二、三厂家的正品率依次为 、 、 ,若在该商场随机购买一件商品,求: 该件商品是次品的概率。 该件次品是由第一厂家生产的概率。 解 1231122331, (1) ()()(|)()(|)()(|) =60%*(1-98%)+20%*(1-98%)+20%*(1-96%) =0.024 (2) (|)A B B B P A P B P A B P B P A B P B P A B P B A =++= 设为该产品为次品,,分别为三个厂家产品,则由全概率公式可知由贝叶斯公式可知 111()()(|)60%*(1-98%) ()()0.024 =0.5P AB P B P A B P A P A == 甲乙丙三台机床独立工作,在同一时间内他们不需要工人照顾的概率分别为 ,求在这段时间内,最多只有一台机床需人照顾的概率。 解: 设123A A A 、、分别代表这段时间内甲、乙、丙机床需要照管,i B 代表这段时

概率统计 期末考试试卷及答案

任课教师 专业名称 学生姓名 学号 密 封 线 X X 工业大学概率统计B 期末考试试卷(A 卷) } 分 分 108

求:(1)常数k ,(2)P(X<1,Y<3) (3) P(X<1.5); (4) P(X+Y ≤4) 解:(1)由()1)6(1 )(20 4 =--=???? +∞∞-+∞ ∞ -dx dy y x k dxdy xy f 即 解得24 1 = k 2分 (2)P(X<1,Y<3)=()dx dy y x )6241(1030--??=2 1 4分 (3) P(X<1.5)=()16 13 )6241(5.1040=--??dx dy y x 7分 (4)P(X+4≤Y ) =()9 8 21616241)6241(2202040=+-=--???-dx x x dx dy y x x 10分 4. 已知随机变量)3,1(~2N X ,)4,0(~2N Y ,且X 与Y 相互独立,设 2 3Y X Z += (1) 求)(Z E ,)(Z D ; (2) 求XZ ρ 解:(1)??? ??+=23)(Y X E Z E )(21)(3 1 y E X E += 021131?+?= 3 1 = 2分 =??? ??+=23)(Y X D Z D ()()2 2 22)23(23?? ? ??+-??? ??+=-Y X E Y X E EZ Z E =22 2)2 3()439( EY EX Y XY X E +-++ = 9 1 4392 2 -++EY EXEY EX 又因为()10192 2=+=+=EX DX EX 16016)(22=+=+=EY DY EY 所以DZ= 59 1 416910=-+ 6分 (2)),(Z X Cov ) ,(1 1Y X X Cov += =EX( 23Y X +)-EXE(23Y X +) EXEY -EX -EXEY +EX =21 )(31213122 233 1 ?==3 则XZ ρ= ()DZ DX Z X Cov ,= 5 5 5 33= 10分 5. 设二维随机变量),(Y X 的概率密度为 ?????≤≤≤≤=其它, 00,20,163),(2x y x xy y x f (1) 求X 的数学期望EX 和方差DX (2) 求Y 的数学期望EY 和方差DY 解:(1)dx x xf X E X )()(? ∞ +∞ -= ()()xyd dy y x f x f x x ? ? ==∞ +∞ -20 16 3 ,y dx x xf X E X )()(? ∞ +∞ -= = 分 27 12)163(2 2 =? ?dx xydy x x () ()分 549 3)712( 33)16 3 (22 2 22 2 22 =-====EX EX -EX =???∞ +∞ -DX dx xydy x dx x f x DX x X () ()分 72)16 3 (),()()(24 02====?? ???+∞∞ -+∞ ∞ -∞ +∞ -dy xydx y dy dx y x yf dy y yf Y E y Y ()()5 24 4323)163(),()(4034 02 2 22 2 =-====?????? +∞ ∞ -+∞∞ -∞ +∞-dy y y dy xydx y dy dx y x f y dy y f y EY y Y DY=()分 105 4452422 =-=EY -EY 6. 设随机变量X 的概率密度为) 1(1 )(2 x x f X += π,求随机变量 31X Y -=的概率密度函数。 ()()( )( ) ()() ( ) ()()()() ()()()()( )() ()() 分 分 解:10111311311315)1(111)1(16 2 3 2 2 33 3 3 3y y y f y y y f dy y dF y f y F y X y X y X y Y y F X X Y Y X Y -+-= --=----== ∴ --=-

北京邮电大学概率论期末考试试卷及答案

第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中随 机地取一个球,求取到红球的概率。 §1 .7 贝叶斯公式 1. 某厂产品有70%不需要调试即可出厂,另30%需经过调试,调试后有80%能出厂,求(1) 该厂产品能出厂的概率,(2)任取一出厂产品, 求未经调试的概率。 2. 将两信息分别编码为A 和B 传递出去,接收站收到时,A 被误收作B 的概率为,

《概率论与数理统计》期中考试试题汇总,DOC

《概率论与数理统计》期中考试试题(一) 一、选择题(本题共6小题,每小题2分,共12分) 1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( ) A .A 1A 2 B .21A A C .21A A D .21A A 2 345C 68.将3个球放入5个盒子中,则3个盒子中各有一球的概率为=________. 9.从a 个白球和b 个黑球中不放回的任取k 次球,第k 次取的黑球的概率是=. 10.设随机变量X ~U (0,5),且21Y X =-,则Y 的概率密度

2 f Y (y )=________. 11.设二维随机变量(X ,Y )的概率密度f (x ,y )=? ??≤≤≤≤,y x ,其他,0,10,101则P {X +Y ≤1}=________. 12.设二维随机变量(,)X Y 的协方差矩阵是40.50.59?? ??? ,则相关系数,X Y ρ=________. 13.二维随机变量(X ,Y )(1,3,16,25,0.5)N -,则X ;Z X Y =-+. (-1,31),(2,0),且取这些值的概率依次为61,a ,121,125. 求(1)a =?并写出(X ,Y )的分布律;(2)(X ,Y )关于X ,Y 的边缘分布律;问X ,Y 是否独立;(3){0}P X Y +<;(4)1X Y =的条件分布律; (5)相关系数,X Y ρ

18.(8分)设测量距离时产生的随机误差X ~N (0,102)(单位:m),现作三次独立测量,记Y 为三次测量中误差绝对值大于19.6的次数,已知Φ(1.96)=0.975. (1)求每次测量中误差绝对值大于19.6的概率p ; (2)问Y 服从何种分布,并写出其分布律;求E (Y ). 1取出的3件中恰有一件次品的概率为( ) A .601 B .457 C .51 D .15 7 2.下列选项不正确的是() A .互为对立的事件一定互斥 B .互为独立的事件不一定互斥 C .互为独立的随机变量一定是不相关的 D .不相关的随机变量一定是独立的 3.某种电子元件的使用寿命X (单位:小时)的概率密度为

《概率论与数理统计》期末考试试题及解答(DOC)

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(的概率密 度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤==- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计期末考试试题及解答

《概率论与数理统计》期末试题 一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为,且5.0)()(=+B P A P ,则B A ,至少有一个不发生的 概率为__________. 答案: 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P Y . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()()((Y X X F y P Y y P X y P X F F =≤=≤=≤≤=- 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F =

北京邮电大学概率论期末考试试卷及答案

北京邮电大学概率论期末考试试卷及答案

第1章概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A:出现奇数点,则 A= ;B:数点大于2,则B= . (2) 一枚硬币连丢2次, A:第一次出现正面,则A= ; B:两次出现同一面,则= ; C:至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A、B、C为三事件,用A、B、C的运算关 系表示下列各事件: (1)A、B、C都不发生表示为: .(2)A 与B都发生,而C不发生表示为: . (3)A与B都不发生,而C发生表示为: .(4)A、B、C中最多二个发生表示为: . (5)A、B、C中至少二个发生表示为: .(6)A、B、C中不多于一个发生表示为: .

2. 设}4 B =x ≤ x ≤ A S:则 x x = x < 3 1: }, { 2: { }, ≤ = {≤< 5 0: (1)= A,(2) ?B = AB,(3)=B A, (4)B A?= ,(5)B A= 。 §1 .3 概率的定义和性质 1.已知6.0 A P ?B = P A B P,则 ( ,5.0 ( ) ) ,8.0 (= ) = (1) =) (AB P, (2)() P)= , (B A (3)) P?= . (B A 2. 已知, 3.0 P A P则 =AB ( (= ) ,7.0 ) P= . A ) (B §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是。 2. 已知,2/1 A P =B A P则 = A P B | ( | ) ,3/1 ) ) ,4/1 ( (=

概率论与数理统计期中考试试题1

概率论与数理统计期中考试试题1 一.选择题(每题4分,共20分) 1.设,,A B C 为三个随机事件,,,A B C 中至少有一个发生,正确的表示是( ) A. ABC B. ABC C. A B C D. A B C 2.一个袋子中有5个红球,3个白球,2个黑球,现任取三个球恰为一红,一白,一黑的概率为 ( ) A. 12 B. 14 C. 13 D. 15 3.设,A B 为随机事件,()0.5,()0.6,(|)0.8P A P B P B A ===,则()P A B =( ) A .0.7 B. 0.8 C. 0.6 D. 0.4 4. 一总机每分钟收到呼唤的次数服从参数为2的泊松分布,则某一分钟恰有4次呼唤的概率为( ) A. 423e - B. 223e - C. 212e - D. 312 e - 5.若连续性随机变量2 (,)X N μσ,则X Z μσ -= ( ) A .2(,)Z N μσ B. 2(0,)Z N σ C. (0,1)Z N D. (1,0)Z N 二. 填空题(每题4分,共20分) 6. 已知1 ()2 P A =,且,A B 互不相容,则()P AB = 7. 老今年年初买了一份为期一年的保险,保险公司赔付情况如下:若投保人在投保后一年因意外死亡,则公司赔付30万元;若投保人因其他原因死亡,则公司赔付10万元;若投保人在投保期末生存,则公司无需付给任何费用。若投保人在一年因意外死亡的概率为 0.0002,因其他原因死亡的概率为0.0050,则保险公司赔付金额为0元的概率为 8. 设连续性随机变量X 具有分布函数 0,1()ln ,11,x F x x x e x e

概率论与数理统计期末考试题及答案

模拟试题 填空题(每空3分,共45 分) 1、已知P(A) = 0.92, P(B) = 0.93, P(B| A) = 0.85,则P(A| B)= P( A U B)= 1 2、设事件A与B独立,A与B都不发生的概率为—,A发生且B不发生的概率与 B 9 发生且A不发生的概率相等,则A发生的概率为:_______________________ ; 3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 I Ae x, X c 0 4、已知随机变量X的密度函数为:W(x) = {1/ 4, 0 < X V 2,则常数A= 0, x>2

分布函数F(x)= ,概率P{—0.51} =5/ 9,贝U p = 若X与丫独立,则Z=max(X,Y)的分布律: 6、设X ~ B(200,0.01), Y - P(4),且X 与丫相互独立,则D(2X-3Y)= COV(2X-3Y , X)= 7、设X1,X2,III,X5是总体X ~ N(0,1)的简单随机样本,则当k = 时, 丫"⑶; 8、设总体X~U(0,巧日:>0为未知参数,X i,X2,lil,X n为其样本, -1n X =—S X i为 n i 二 样本均值,则日的矩估计量为: 9、设样本X i,X2,川,X9来自正态总体N(a,1.44),计算得样本观察值X = 10,求参 数a的置信度为95%的置信区间: 计算题(35分) 1、(12分)设连续型随机变量X的密度函数为:

概率论期中考试试卷及答案

1.将4个不同的球随机地放在5个不同的盒子里,求下列事件的概率: (1) 4个球全在一个盒子里; (2) 恰有一个盒子有2个球. 解: 把4个球随机放入5个盒子中共有45=625种等可能结果. (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P(A)=5/625=1/125 (2) 5个盒子中选一个放两个球,再选两个各放一球有 30 2415=C C 种方法 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有12×30=360种等可能结果. 故 12572 625360)(= =B P 2.某货运码头仅能容纳一只船卸货,而,甲乙两船在码头卸货时间分别为1小时和2小时,设甲、乙在24小时内随时可能到达,求它们中间任何一船都不需要等待码头空出的概率。 解: 设x,y 分别为两船到达码头的时刻。 由于两船随时可以到达,故x,y 分别等可能地在[0,60]上取值,如右图 方形区域,记为Ω。设A 为“两船不碰面”,则表现为阴影部分。 222024,024024,024,2111 ()24576,()2322506.522 () ()0.8793 () x y x y x y y x m m A m A P A m Ω≤<≤<≤<≤<->->Ω===?+?===Ω={(x,y)}, A={(x,y)或},有所以, 3.设商场出售的某种商品由三个厂家供货,其供应量之比是3:1:1,且第一、二、三厂家的正品率依次为98%、98%、96%,若在该商场随机购买一件商品,求: (1) 该件商品是次品的概率。 (2) 该件次品是由第一厂家生产的概率。 解: 厦门大学概统课程期中试卷 ____学院___系___年级___专业 考试时间

概率统计期末考试试题附答案

中国计量学院2011 ~ 2012 学年第 1 学期 《 概率论与数理统计(A) 》课程考试试卷B 开课二级学院: 理学院 ,考试时间: 2011 年 12_月26 日 14 时 考试形式:闭卷√、开卷□,允许带 计算器 入场 考生姓名: 学号: 专业: 班级: 1.某人射击时,中靶的概率为4 3 ,若射击直到中靶为止,则射击次数为3的概率为( ). (A) 43412?)( (B) 343)( (C) 41432?)( (D) 34 1)( 2.n 个随机变量),,3,2,1(n i X i =相互独立且具有相同的分布并且a X E i =)(,b X Var i =)(,则这些随机变量的算术平均值∑= =n i i X n X 1 1的数学期望和方差分别为( ). (A ) a ,2n b (B )a ,n b (C)a ,n b 2 (D )n a ,b 3.若100张奖券中有5张中奖,100个人分别抽取1张,则第100个人能中奖的概率为( ). (A) 01.0 (B) 03.0 (C) 05.0 (D) 0 4. 设 )(),(21x F x F 为两个分布函数,其相应的概率密度)(),(21x f x f 是连续函数,则必为概率密度的是( ). (A) )()(21x f x f (B))()(212x F x f (C))()(21x F x f (D) )()()()(1221x F x f x F x f + 5.已知随机变量X 的概率密度函数为?????≤>=-0,00 ,)(22 22x x e a x x f a x ,则随机变量X Y 1 = 的期望 =)(Y E ( ).

《概率论》期末考试试题A卷及答案

07级《概率论》期末考试试题A 卷及答案 一、 填空题(满分15分): 1.一部五卷的文集,按任意次序放到书架上,则“第一卷及第五卷出现在旁边”的概率为 10 1 。 解答:10 1 !5!321=?= p 2.设,)(,)(,)(r B A P q B P p A P =?==则=)(B A P q r - 。 解答:q r B P B A P B B A P B A P B A P -=-?=-?=-=)()()])[()()( 3.设随机变量ξ的分布列为 ,...2,1,0,3 )(===k a k X P k 则a = 3 2 . 解答:32233 111310 =?=-?== ∑ ∞ =a a a a k k 4.设随机变量为ξ与η,已知D ξ=25,D η=36,4.0,=ηξρ, 则D(ξ-η)= 37 . 解答: 37 4.065236252)(),cov() ,cov(2)(,,=???-+=-+=-= -+=-ηξηξρηξηξηξη ξηξρηξηξηξD D D D D D D D D D 5. 设随机变量ξ服从几何分布,...2,1,)(1 ===-k p q k P k ξ。则ξ的特征函数 =)(t f ξ 。 ()() .1)(:1 1 1 1it it k k it it k k itk it qe pe qe pe p q e e E t f -====∑∑∞ =--∞ =ξ ξ解 二、 单项选择题(满分15分): 1.设.A 、B 、C 为三个事件,用A 、B 、C 的运算关系表示“三个事件至多一个发生”为( ④ ). ① C B A ??. ② C B A C B A C B A ++

概率统计期末试卷 答案

2013年下学期概率统计模拟卷参考答案 1. 设A, B, C 是三个随机事件. 事件:A 不发生, B , C 中至少有一个发生表示为(空1) . 2. 口袋中有3个黑球、2个红球, 从中任取一个, 放回后再放入同颜色的球1个. 设B i ={第i 次取到黑球},i =1,2,3,4. 则1234()P B B B B =(空2) . 解 用乘法公式得到 )|()|()|()()(32142131214321B B B B P B B B P B B P B P B B B B P = .32a r b a r a r b r a r b a b r b b +++?++?+++?+= =3/70 3. 在三次独立的重复试验中, 每次试验成功的概率相同, 已知至少成功一次的概率为1927 . 则每次试验成 功的概率为(空3) .. 解 设每次试验成功的概率为p , 由题意知至少成功一次的概率是27 19,那么一次都没有成功的概率是278. 即278)1(3 = -p , 故 p =3 1 . 4. 设随机变量X , Y 的相关系数为5.0, ,0)()(==Y E X E 2 2 ()()2E X E Y ==, 则2 [()]E X Y +=(空4) . 解 2 2 2 [()]()2()()42[Cov(,)()()]E X Y E X E XY E Y X Y E X E Y +=++=++ 42420.52 6.XY ρ=+=+??= 5. 设随机变量X 的方差为2, 用切比雪夫不等式估计{||}P X E X -()≥3=(空5) . 解 由切比雪夫不等式, 对于任意的正数ε, 有 2() {()}D X P X E X εε -≥≤, 所以 2 {||}9 P X E X -()≥3≤ . 6. 设总体X 的均值为0, 方差2σ存在但未知, 又12,X X 为来自总体X 的样本, 2 12()k X X -为2σ的无 偏估计. 则常数k =(空6) . 解 由于2 2 2 121122[()][(2)]E k X X kE X X X X -=-+ 22211222[()2()()]2k E X E X X E X k σσ=-+==, 所以k = 1 2 为2σ的无偏估计. 1. 若两个事件A 和B 同时出现的概率P (AB )=0, 则下列结论正确的是( ). (A) A 和B 互不相容. (B) AB 是不可能事件. (C) P (A )=0或P (B )=0.. (D) 以上答案都不对.

相关文档
相关文档 最新文档