文档库 最新最全的文档下载
当前位置:文档库 › 路基路面设计

路基路面设计

路基路面设计
路基路面设计

1工程概况

1.1题目:新建沥青路面设计 1.2设计资料

新疆某公路部分路段设计等级为高速公路,设计使用年限为20年,拟采用沥青路面结构,需进行路面结构设计。在使用期内,预计20年的前5年,交通量年平均增长率为8%;20年的中间10年,交通量年平均增长率为7.2%;后5年的交通量年平均增长率为5%。该公路地处Ⅱ2区,年降雨量为620mm/年,最高气温35℃,最低气温为-31℃,多年平均冻结指数为882℃·d ,极大冻结指数为1225℃·d ,一般冻结深度为1.8m 。沿线土质为中液限粘性土,平均稠度为1.20,一般路基处于中湿状态。附近有小型采石厂,筑路材料丰富。路面所用水泥和沥青均需外购。据工程可行性研究机报告得知近期交通组成和交通量如表1所示。

表1 预测交通组成

2根据设计资料要求,确定路面等级和面层类型

2.1设计年限内累计交通量的计算

将各类交通换算为BZZ-100的标准轴载作用的当量轴次,轴重小于25KN (城市道路20KN )可不计入[1]。

4.35

121k

i i i P N C C n P =??

=∑ ?

??

式中 N ——标准轴载的当量轴次,次/d ;

i n ——被换算车型的各级轴载作用次数,次/d ;

P ——标准轴载,K N ;

i P ——被换算车型的各级轴载,K N ;

1C ——轴数系数,11 1.2(1)C m =+-,m 为轴数;

2C ——轮组系数,单轮组:6.4;双轮组:1;四轮组:0.38。

当轴间距大于3m 时,按单独一个轴载计算,此时,轴数系数即为轴数;当轴间距小于3m 时,轴系数为1C 。

依交通增长率、车道分配系数由公式2推算设计年限末一个车道上的累计当量轴次e N [1]:

()

111365t

e N N γηγ

??+-??

?

=

式中 e N ——设计年限末一个车道上的累计当量轴次,次; t ——设计年限,年;

1N ——路面竣工后第一年双向日平均当量轴次,次/d

γ ——设计年限内交通量年平均增长率,%; η ——车道系数,按表2选用。

表2 车道系数η

表3 轴载换算结果表

设计车道数为4车道,所以车道系数取0.45 5

1[(10.08)1]3651525.6

0.451470051.70.08

e N +-??=?=次 102[(10.072)

1]3651525.60.453495001.30.072

e N +-??=?=次

53[(10.05)1]3651525.6

0.451384611.60.05

e N +-??=

?=次

20年间的累计当量轴次:

1231470051.73495001.31384611.66349665e e e e N N N N =++=++=次

2.2确定路面层类型

根据《路基路面工程》中结构组合设计原则中沥青路面设计规范所规定的各类面层所适应的交通范围,如下表。

表4 路面类型的选择

计当量

123

1470051.73495001.31384611.66349665e e e e N N N N =+

+=++=>400万次。

故选择的面层类型为:沥青混凝土

3计算设计弯沉值

统计资料表明,路面竣工后的第一年不利季节的弯沉值与最大刚度状态所对应弯沉值比较接近。因此,现行公路沥青路面设计规范将路面竣工后的第一年的不利季节近似地假定为路面整体结构的最大刚度状态,而取作设计状况[1]。并统一了路表弯沉的设计控制指标和竣工验收指标,由此得到沥青路面设计弯沉的计算公式。

0.2

0600R d e

c s b T

l l l N A A A A -==

=

式中 d l ——路面设计弯沉()0.01m m 0l ——竣工验收弯沉;

R l ——容许弯沉;

T A ——相对弯沉变化系数,约等于1.20; e N ——设计年限内一个车道的累积当量轴次;

,,c s b A A A ——分别为公路等级系数、面层类型系数及基层类型系数,分别如下表5,6,7所示。

表5 公路等级系数c A

表6 面层类型系数s A

表7 基层类型系数b A

所以取:b 1.0 1.0, 1.0c S A A A ===,

()

0.2

0.2

06006006349665 1.0 1.0 1.00.026R d e

c s b T

l l l N A A A cm A --==

==????=

4根据路基土类与干湿类型,确定土基回弹模量

依设计资料沿线土质为中液限粘性土,平均稠度为1.2,一般路基处于中湿状态。属于2Ⅱ区。根据《路基路面工程》中结果材料参数的确定,现行沥青路面设计规范推荐的土基回弹模量参考值

()M Pa 可得该土基的回弹模量为0

E 33.5a M P =。

5确定路面结构层次组合与厚度方案以及各结构层材料的抗压模量与劈裂强度

5.1路面结构层次

(1)磨耗层——为了车辆行驶安全,舒适而设置的具有表面服务功能的结构层,应具有平整,抗滑荷耐磨功能。

(2)面层——主要承受垂直荷载和水平荷载反复作用的结构层,可分一层,二层和三层。应具有足够的抗变形,抗水损害,抗疲劳的性能。当无磨耗层时,表面层应具有磨耗层的功能,厚度宜为30到50mm 。中下面层应具有较好的密水性,高温稳定性,耐疲劳抗剥离等性能,中面层的厚度宜为50到70mm ,下面层厚度宜为60到80mm 。

(3)基层——是设置在面层之下,并与面层一起将车轮荷载的反复作用传递到底基层,垫层和土基,是主要承重层。

(4)底基层——设置在基层之下,并与面层,基层一起承受车轮荷载的反复作用,起次要承重作用。

(5)垫层——设置在底基层与土基之间的结构层,起排水,隔水,防冻和防污等作用。 5.2路面结构组合原则

(1)适应行车荷载作用的要求。

(2)在各种自然因素作用下稳定性好。 (3)考虑结构层的特点。 5.3设计路面结构组合和厚度方案

结合设计资料要求,根据《路基路面工程》中沥青路面推荐结构,如下表。

表8 高速公路,一级公路推荐路面结构

有上述计算结果并参考有关路面结构的技术标准综合得如下路面结构组合和厚度方案: 路面组合为:沥青面层+石灰土基层。路面结构采用混合式沥青路面,表面层采用细粒式沥青混凝土(2.5cm ),表面层下采用粗粒沥青混凝土(5cm ),沥青贯入(4cm )石灰土层为待求层,路面结构层见下图。

细粒沥青混泥土 2.5cm 粗粒沥青混泥土 5.0cm 沥青贯入 4cm

碎砾石灰土(剂量12%) ? 土基

图1 结构组合方案

5.4确定各结构层材料的抗压模量与劈裂强度

表9 土基及路面材料设计参数

6.1计算系数

根据36

.0038

.011

200063.1,2,???

? ???

?

?

??==

=p E l F F E p l l l s s d s δαδ利用公式,求理论弯沉系数c α;

36

.0038

.011200063.1,2??

? ????

?

??==P E l F F E p l s s δαδ

对于cm Mp P BZZ a 65.102

3

.21,7.0,100==

=-δ

cm l l s d 026.0== ∴ 36

.038

.07.02165.1020002663.11200

65

.107.02026.0??

?

???

?

?

???????=

c α

得 23.5=c α

6.2计算待求层

将该多层体系换算成当量三层体系如图2.7,其中中层后H 由5432,,h h h h 和组合而成,其计算方如下图:

图2 多层结构当量换算

667.01200

800,

23.065

.105.21

2==

==

E E h δ

查图12-10得0419.08005.33,

23.0,5.8201==

==E E h

δ

α由

查图12-101 1.61K =;由1221

c c K K K K αααα=??=

?, 5.230.4337.5 1.61

=

=?再由4.5,,

2

02=δ

δ

H h

E E K 查

cm H 5865.104.5=?= 取cm H 58=

由式44.22

1

2

h E E h H i n i i 计算∑

-==

1

23442

5.0 4.0n i H hi h h h h -==

=+=+??∑

cm h 544=

7验算整体性材料层底部的最大弯拉应力

7.1确定容许拉应力R σ 由式s

sp

R K σσ=

.由式对沥青混凝土:S

e

g s A N A K 22

.009.0=

经计算,细粒石混凝土:a sp Mp 2.1=σ,0.1=g A ,82.2=s K

粗粒石混凝土:a sp Mp 6.0=σ,1.1=g A ,10.3=s K 得细粒石混凝土容许拉应力:

a s

sp R Mp K 43.082

.22

.11===σσ 粗粒石混凝土容许拉应力:

a s

sp R Mp K 19.010

.36

.02

===σσ 碎砾石灰土允许拉应力: \ 30.25

0.131.96

R a M p σ=

= 7.2确定细粒式沥青混凝土层底拉应力1m σ 将多层结构换算为当量三层体系,如图3

细粒式沥青混凝土 h 1=2.5cm 粗粒式沥青混凝土 h 2=5cm 沥青贯入式 h 3 =4cm 石灰土 h 5 = ?cm 土基

(a ) 际路面结构

(连续)1E =1200M Pa

h 1=2.5cm

(连续)2E =800M Pa a H

0E =28M Pa

(b )当量三层体系

图3 多层结构当量换算

1

12

n j i i j H h h -+=+=+

h=h 1=2.5cm ,所以: cm

E E h E E h h H 8.39800

500548005000.40.59.09.09

.02449

.02

3321=?+?+=++=

,0419.0800

5.33,

667.01200

800,235.065

.105.22012==

==

==

y

y

y E E E E h

δ

由图12-18,查得,0'

表明该层层底承受弯曲压应力自然满足要求。 7.3确定粗粒式混凝土层底弯拉应力2m σ;

将多层结构换算为三层体系,如图4,

图4 多层结构转换

计算上层底面弯拉应力结构等效换算:1

1

j j i i H h h -==+∑所以上层厚度为:

cm h 9.88001200

5.20.59

.0=?+= cm H 58500500

540.49

.0=?+=

由33.01500500,84.065.109.812====E E h δ,查图12—18,得'

0.42σ= 202215833.55.45,

0.067,

0.33,0.3510.65

500

y y

y

E E H

m E E δ

=

==

===

。故

'

12

1

0.70.420.75 1.40.3087ml a R p m m M p σσσ=???=???=<

7.4确定石灰土层底弯拉应力3

m σ

将多层结构换算为三层体系,如图5,

细粒式沥青混凝土 h 1=2.5cm 粗粒式沥青混凝土 h 2=5cm 沥青贯入式 h 3=4cm 石灰土 h 4 =54cm

土基 (a )实际路面结构

(连续)1y E =1100M Pa

h 1=2.5cm (连续)2y E =1500M Pa

H=58cm 0E =33.5M P a

(b )当量三层体系

细粒式沥青混凝土 h 1=2.5cm 粗粒式沥青混凝土 h 2=5cm 沥青贯入式 h 3=4cm

石灰土 h 4 =54cm 土基 (a )实际路面构 (连续)E 1y =1200Mp a h

(连续)E 2y =500Mp a H

E 0=33.5Mp a

(b )当量三层体系

图5 多层结构转换

计算上层底面弯拉应力结构等效换算:

1

1

j j i i H h h -==+∑所以上层厚度为: cm h 0.19500

8005500

12005.20.49.09

.0=?+?+= 3454H h cm ==

0279.01200

5.33,

07.565

.105420==

==

y

E E h

δ

,查图12—19,得'0.21a M P σ=

20121254120033.55.07,

2.4,

0.067, 1.2;0.6810.65

500

500

y y

y

E E H

n n E E δ

=

==

==

===

3

2

1'

312.068.02.121.07.0R a m Mp n n p σσσ<=???=???=

33m R σσ<要求。满足石灰土土层底弯拉,

8验算路面面层剪应力

8.1剪应力与抗剪强度 )将5层体系换算成以细粒式沥青混凝土为计算层、以粗粒式沥青混凝土为相邻层的当量3层体系,计算剪应力时,面层位计算层,应采用高温时的参数,其余各层则采用抗压回弹模量,按式(12-16)计算当量层厚度

计算当量3层体系表面及剪应力压应力

5 4.05452.68H cm =+?=

路面最大剪应力除与荷载的大小有关外,还决定与路面水平力系数f 的大小。由汽车行驶理论可知,汽车行驶时路面摩阻力应大于汽车发动机的最大驱动力,而发动机的驱动力又须大于行车阻力即水平力。因此,路表水平力系数f 在任何情况下均应小于路表摩阻力系数?。现行城市道路设计规范()97GJJ -规定,对于停车场,交叉口等缓慢地点f 为0.2,紧急制动时,f 取0.5.因此可得:

'

12m m p ττγγ=

式中:'

m τ——剪应力系数,'0212,;,m E E h H f E E τδδ??= ???

12,γγ——与水平力系数有关的系数。

现行规范依据弹性层状体系理论计算的结果,绘制了f =0.3时的三层体系诺谟图,如教材262页图12-21及12-22所示。

667.01200

800,

704.065

.105.712==

==

y

y E E h

δ

,有图可得出'

0.414m M P a τ=,

(连续)E 1=500Mp a h

(连续)E 2=1200Mp a H 2

E=33.5Mp a

(b )当量三层体系

细粒式沥青混凝土 h 1=2.5cm 粗粒式沥青混凝土 h 2=5cm 沥青贯入式 h 3=4cm 石灰土 h 4 =54cm

土基

(a )实际路面构

10.685γ=,20.774γ=,()'0.3 1.128MPa σ=,10.869ρ=, 20.732ρ=代入上式得:

()'

120.30.70.4140.6850.7740.154m m p MPa MPa ττγγ==???=

()()'

2110.30.30.7 1.1280.8690.7320.502p MPa σσρρ==???=

8.2容许剪应力计算

路面结构层材料的容许剪应力:R v

K τ

τ=

式中:τ——路面结构层抗剪强度,可根据室内试验求的,c ?值及理论计算所得计算点的有效法向应力a σ,有库仑定律求得:tan a c τσ?=+ v K ——抗剪强度结构系数,

紧急制动时,f =0.5 1.2

v K α

=;缓慢制动时,f =0.2 0.15

0.33e

v N K α

=

e N ——停车道或交叉口设计年限内同一位置停车的标准轴载累计数

α——道路分类系数,公路设计时取α= 1.0c A =

所以:1)在缓慢制动处0.2f =

()()()()0.20.3 1.30.30.154 1.30.20.30.70.063m m f p MPa ττ=+-=+-=

()()()()10.210.30.460.30.5020.460.20.30.70.4698f p MPa σσ=+-=+-?=

2)紧急制动时0.5f =

()()()()0.50.3 1.30.30.154 1.30.50.30.70.336m m f p MPa ττ=+-=+-=

()()()()10.510.30.460.30.5020.460.50.30.70.57f p MPa σσ=+-=+-?= 3)计算破坏面上可能产生的剪应力a τ:

f =0.2时,()()0.20.2cos 0.063cos 390.048a m MPa ττ??

==?= f =0.5时,()()0.50.5cos 0.57cos 390.389a m MPa ττ??==?=

4)计算路表轮缘处容许剪应力R τ

①f =0.2时()()()()()20.210.20.21sin 0.46890.0631sin 390.366m M Pa σστ??=--=-+=

t a n 0.2490.366t a n 390.a c M P a τσ??

=+=+

=

()0.15

0.20.333.46

v N e

K α=

= 故:()0.20.55

0.1590.0483.46

R a v

M Pa M Pa K τ

ττ=

==>= 可满足要求。

②f =0.5时()()()()()20.510.50.51sin 0.570.3361sin 390.023m M Pa σστ??=-+=-+=

t a n 20.250.023t a n 390.5

c M P a τσ??

=+=?+

= ()0

.5

1.2

1.2v K α

==

故 0.517

0.43250.3891.2

R v

M P a M P a

K τ

τ=

=

=>

0.43250.389

100%10.1%5%0.4325

R a

R

τττ--=

?=>

可见,该结构路面面层剪应力满足要求,但其差值超过要求范围,可在材料配比方面做调整。

9验算防冻层厚度

Ⅱ区的最低气温-31C 应考虑防冻要求,一般冻结深度为1.8m。沿线土质为中液限粘土,一2

般路基处于中湿状态,路面采用半刚性基层,由表10可查的路面最小防冻厚度为60cm。该路面结构方案总厚度为65.5cm。大于最小防冻层厚度。满足防冻要求。

表10 最小防冻厚度

参考文献

1、《公路沥青路面设计规范》(JTJ014-97)

2、刘福臣主编.土力学.北京中国水利水电出版社,2005

3、资建民主编.路基路面工程.广州:华南理工大学出版社,2002.08

4、夏连学主编.路面结构北京:人民交通出版社,2002.06

5、何兆益、杨锡武主编.路基路面工程.重庆:重庆大学出版社,2001.10

塔里木大学课程设计

路基路面工程课程设计(+心得)

《路基路面工程》课程设计

沥青路面设计 方案一: (1)轴载换算及设计弯沉值和容许拉应力计算 序号车型名称前轴重(kN) 后轴重(kN) 后轴数后轴轮组数后轴距(m) 交通量 1 三菱T653B 29.3 48 1 双轮组2000 2 日野KB222 50.2 104. 3 1 双轮组1000 3 东风EQ140 23.7 69.2 1 双轮组2000 4 解放CA10B 19.4 60.8 5 1 双轮组1000 5 黄河JN163 58. 6 114 1 双轮组1000 设计年限12 车道系数 1 序号分段时间(年) 交通量年增长率 1 5 6 % 2 4 5 % 3 3 4 % 当以设计弯沉值为指标及沥青层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4606 设计年限内一个车道上累计当量轴次: 2.745796E+07 当进行半刚性基层层底拉应力验算时: 路面竣工后第一年日平均当量轴次: 4717 设计年限内一个车道上累计当量轴次: 2.811967E+07 公路等级二级公路 公路等级系数 1.1 面层类型系数 1 基层类型系数 1 路面设计弯沉值: 21.5 (0.01mm) 层位结构层材料名称劈裂强度(MPa) 容许拉应力(MPa) 1 细粒式沥青混凝土 1 .28 2 粗粒式沥青混凝土.8 .21 3 石灰水泥粉煤灰土.8 .3 4 天然砂砾 (2)新建路面结构厚度计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 路面设计弯沉值: 21.5 (0.01mm)

路面设计层层位: 4 设计层最小厚度: 10 (cm) 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 容许应力(MPa) (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 1.2 2 粗粒式沥青混凝土7 1200 1300 .8 3 石灰水泥粉煤灰土25 900 900 .4 4 天然砂砾? 250 250 5 土基32 按设计弯沉值计算设计层厚度: LD= 21.5 (0.01mm) H( 4 )= 80 cm LS= 22.2 (0.01mm) H( 4 )= 85 cm LS= 21.5 (0.01mm) H( 4 )= 85 cm(仅考虑弯沉) 按容许拉应力验算设计层厚度: H( 4 )= 85 cm(第1 层底面拉应力验算满足要求) H( 4 )= 85 cm(第2 层底面拉应力验算满足要求) H( 4 )= 85 cm(第3 层底面拉应力验算满足要求) 路面设计层厚度: H( 4 )= 85 cm(仅考虑弯沉) H( 4 )= 85 cm(同时考虑弯沉和拉应力) 验算路面防冻厚度: 路面最小防冻厚度50 cm 验算结果表明,路面总厚度满足防冻要求. 通过对设计层厚度取整, 最后得到路面结构设计结果如下: 细粒式沥青混凝土 3 cm 粗粒式沥青混凝土7 cm 石灰水泥粉煤灰土25 cm 天然砂砾85 cm 土基 (3)竣工验收弯沉值和层底拉应力计算 公路等级: 二级公路 新建路面的层数: 4 标准轴载: BZZ-100 层位结构层材料名称厚度(cm) 抗压模量(MPa) 抗压模量(MPa) 计算信息 (20℃) (15℃) 1 细粒式沥青混凝土 3 1500 1600 计算应力

全长1.40km路基宽度26米一级公路路基路面综合设计

第一章绪论 毕业设计是教学环节中一个重要环节,是一个实践的环节,也是一个检验的环节。它充分锻炼我们综合应用所学的专业知识,收集、查阅资料,接触和深入了解专业文献、规范,培养自学能力、收集知识和吸收知识的能力。通过毕业设计使我树立了正确的设计思想和设计思路。 本次毕业设计的任务是进行某一级公路(K15+300~K16+700)路基路面的综合设计,设计的主要依据有:给定的地形图,相关的设计规范、施工手册,沿线的地形状况、地质状况。通过这次毕业设计巩固大学四年里所学的专业知识,熟悉相关的设计规范、手册、施工规范以及工程实践中常用的方法。掌握一级公路路基路面设计的全过程,从而培养正确的设计思想和设计过程,严谨的科学态度,系统而又全面地考虑设计过程中遇到的困难。 按时、按量顺利地完成课题任务需要相关方面的的设计规范和专业施工技术以及相应的计算机辅助软件,如路基横断面图绘制软件Cross、涵洞结构图绘制软件GClud 以及海地道路、海地桥梁设计软件Hard2004。面对专业设计规范紧缺、不全面的问题,通过互联网以及图书资料库下载或笔录与设计有关的的资料,使设计内容更完善。在毕业设计过程中按照毕业设计进度计划及任务书的内容要求逐步完成,以达到使自己通过本次设计,巩固已学知识,接受新事物、新方法、新理论、新工艺方面的知识,提高搜集资料、运用资料的能力。 课题介绍:本设计路段,是某国道的一部分,是一条公路运输的主干线,担负着重要的运输任务,设计路段起于K15+300止于K16+700。根据我国的《公路自然区 ),大陆季风型湿润气候,春秋温和,夏热冬寒,划标准》,属于江南丘陵过湿区(IV 5 四季分明,光照充足,雨量充沛,多年平均降雨量为1200~1500mm,春夏多暴雨,4~8月份年降雨量子60%以上,8月份以后降雨量减少,年平均气温16.5oC一月份最低气温4.3oC,七月份最高气温29oC。全线按平原微丘区一级公路修建,设计车速为100km/ h。路基宽度为26.00米。路幅划分方式为:中央分隔带2.00米。土路肩为2×0.75米,硬路肩为2×3.0米,行车道为2×7.5米,左路缘带为2×0.75米。设计

公路路基路面设计中的软基处理 操彦

公路路基路面设计中的软基处理操彦 发表时间:2018-06-04T11:32:14.300Z 来源:《基层建设》2018年第9期作者:操彦 [导读] 摘要:路基是路面的基础,影响着公路路基路面的设计效果。由于路基路面承载着很大的负荷,只有保证路基的牢固度与稳定性,才能发挥它的作用。 武汉综合交通研究院湖北武汉 430014 摘要:路基是路面的基础,影响着公路路基路面的设计效果。由于路基路面承载着很大的负荷,只有保证路基的牢固度与稳定性,才能发挥它的作用。施工单位在施工时,要注意优化设计施工方案,做好软基的处理工作,从而做到将路基路面的损坏降低到最小限度。关键词:公路工程;软基处理;路基路面设计 1导言 路基主要起到支撑的作用,所以施工人员必须加强对路基工程的重视。公路工程的质量关系到人们的出行安全。软土路基是人们经常碰到的一种路基形式,对其设计的好坏关系到整个软基工程质量。 2公路建设设计中软土地基处理特点 在公路建设中,对路基路面的设计效果是衡量工程质量的重要标准,在进行设计时需综合考虑多方面因素,提高工程建设质量,获得良好建设效果。随着公路工程建设项目增多,公路工程遍布的范围也逐渐扩大,受到地形地质条件的影响,出现软土地基的现象也随之增多。软土地基具有路基路面结构含水量较大,压缩性较高,所能承受的承载力较弱的特点,是一种处于软塑状的粘性土。在软土路基中,其孔隙较大,在路基路面中容易出现粉砂或粉土,受到这种特点的影响,软土地基容易产生水分堆积现象,并容易影响土质结构。另外,软土地基的稳定性弱,而触变性较强,容易受到外力的干扰而改变形状,从而影响整个公路工程的使用情况。 3公路路基路面设计中软基处理现状 3.1软基处理问题不受重视 与其他工程项目相比,公路工程施工具有施工过程复杂、环节多、难度大的特点,由于施工人员忽视软土路基的设计,将工作的重点放在施工环节,这不利于后期的处理工作。如果路基工程不符合国家规定的标准,这直接会对公路的质量问题产生影响。今年来随着交通量的不断扩大,路面的荷载量也在不断上升,这时刻考验着公路路基路面的牢固度与稳定性。可以说,软基处理是公路路基路面设计的重要的项目之一。然而,在实际的公路施工过程看,依然存在着不少问题,由于在重点考虑范围之中没有纳入软基处理,造成缺乏有效的设计指导,软基处理不达标。 3.2软基处理技术不科学 由于忽视了对软土地基的重视,造成当前各个施工单位、设计单位没有建立一套健全且规范的软基处理技术。在不同的地域环境下,软基处理技术与方法和地层、地质、以及土壤的性质有着很大的关系。因此,这需要公路的设计与施工单位切实做到实地的勘查工作,然后再制定科学合理的施工与设计方案。但是,在实际的公路路基路面设计过程中,很多公路的施工设计单位忽视公路路基路面设计,盲目施工,由此引发一系列问题。 3.3软基处理人员水平低下 路基路面软基处理是一项技术水平较高、专业能力较强的工作,对软基处理人员的专业素质以及技术水平要求很高。但是,当前,很多路面设计与施工单位的软基处理工作人员缺乏责任意识,专业素养较差,在施工中,经常出现技术错误或者失误的情况,导致路面工程质量出现问题,带来巨大的财产损失。 4公路路基路面设计中的软基处理措施 4.1对软基处理工作的重视 就目前的情况来说,我国高速公路的里程数同发达国家相比还有一定的差距,由于我国经济增长的需要,国家对高速公路建设有着持久的需求。在具体的设计和施工中,软基问题的处理一直制约着高速公路质量的提高,所以相关工作人员一定要在思想上对此问题加以重视。部门领导也要以身作则,时常召开会议对相关设计及施工负责人下达一定的质量指标,并针对软基处理问题召开座谈会,用实际施工软基处理问题所引发的工程事故或者交通事故来警示广大设计施工人员,敦促他们重视这种问题,防范于未然。另外,高速公路设计及施工单位的领导还应当警示设计和施工人员需要对传统的设计和施工方法加以改进,因为当前高速公路上的车流量和汽车吨位相比以往已经增加了不少,设计和工作人员如果继续沿用传统的设计和施工方法就不能适应当前的高速公路建设需要,进而对交通运输带来隐患。另外,针对设计和施工人员的专业素养不足的问题,设计和施工单位领导应当积极的组织员工进行技术培训,鼓励员工通过自学考取相应的设计和施工证书。并对在技术上取得创新和高级证书的人员进行薪资奖励,由此激发员工们专研技术、对技术进行改进的能力。 4.2路基回填土处理技术 利用此种技术有利于公路工程路基路面结构建设系统的有效性,需要技术人员掌握好相关流程和技术。第一,将路基中的软土挖出,并通过晾晒回填、换新土回填的方式进行替换,需进行分层回填;第二,在回填完成后通过推土机(或平地机)进行路基路面的平整工作,并进行压实,确保施工质量;第三,要对施工材料进行严格把控,并规定所需采用的施工材料种类、规格等具体明细,以确保路基路面的强度;第四,加强对软基处理技术的质量控制,加强指导和监督,确保公路工程路基路面的质量。 4.3强夯置换处理技术 在软土和路面距离较大,约在3.0m~6.0m的范围时,不适合采用换填软基处理技术。强夯置换处理技术本对淤泥质土不适用,不过,在淤泥层浅显的情况下是可以选用抛填块石、矿渣等材料之后,进行夯实。这样可以迫使大石块在地层硬土上掉落,从而将大部分淤泥挤出。此外,强夯要重视选取夯击能的工作,确保点夯之间足够的时间间隔。 4.4排水砂垫层处理技术 土层较单薄而蓄水量较多是进行软土路基处理过程中常遇到的问题,为解决这一问题,设计人员加强处理,采用排水砂垫层处理技术进行。这一技术是在软土路基铺砂进行垫层,以便进行软土的固结,解决含水量较大和土层较薄的问题。 4.5高压喷射注浆处理技术 为进一步提高软土路基的稳定性,加强路基面结构建设,建成稳定的路基结构,采用高压喷射注浆处理技术。此种技术能够进行高压

路基路面课程设计完整版

《路基路面工程》课程设计 学院:土木工程学院 专业:土木工程 班级:道路二班 姓名:黄叶松 指导教师:但汉成 二〇一五年九月

目录 一、重力式挡土墙设计 第一部分设计任务书 (3) (一)设计内容和要求 (3) (二)设计内容 (3) (三)设计资料 (3) 第二部分设计计算书 1. 车辆换算荷载 (4) 2. 主动土压力计算 (5) 3. 设计挡土墙截面 (9) 4. 绘制挡土墙纵横截面(附图1) (30) 二、沥青路面结构设计 1.设计资料 (12) 2. 轴载分析 (12) 3. 拟定路面结构方案 (16) 4. 各材料层参数 (16) 5. 设计指标确定 (17) 6. 确定设计层厚度 (18) 7. 底层弯拉应力验算 (21) 8. 防冻层厚度验算 (29) 9. 方案可行性判定 (29) 10. 绘制路面结构图 (31)

一、重力式挡土墙 第一部分 设计任务书 (一)设计的目的要求 通过本次设计的基本训练,进一步加深对路基路面工程有关理论知识的理解,掌握重力式挡土墙设计的基本方法与步骤。 将设计任务书、设计说明书及全部设计计算图表编好目录,装订成册。 (二)设计内容 ①车辆荷载换算; ②土压力计算; ③挡土墙截面尺寸设计; ④挡土墙稳定性验算。 (三)设计资料 1.墙身构造 拟采用细粒水泥混凝土砌片石重力式路堤墙(如草图1),墙高H =?m ,墙顶宽1b =?m ,填土高度2.4m ,填土边坡1:1.5,墙背仰斜,1:0.25(α=—14°02′),基底倾斜1:5(0α=—11°18′),墙身等厚,0b =7.0 m 。 2.车辆荷载 车辆荷载等级为公路—Ⅱ级,挡土墙荷载效应组合采用荷载组合Ⅰ、Ⅱ,路基宽度33.5m ,路肩宽度0.75m 。 3.土壤工程地质情况

遵毕高速公路路基路面综合设计毕业论文

遵毕高速公路路基路面综合设计毕业论文 第一章 路线设计 1.1 平面线形设计原则 道路平面线形设计,是根据汽车行驶的力学性质和行驶的轨迹要求,合理地确定各线形的几何参数,保持线形的连续性和均衡性,避免采用长直线,并注意使线形与地形、地物、环境和景观等协调。在设计中注意直线的长度符合规范要求,对于同反向曲线间的直线要满足直线最小长度要求。规范规定当设计速度≥60km/h 时,同向直线最小长度以不小于设计速度的六倍为宜。对于反向曲线间的直线不应小于设计速度的两倍为宜。对于圆曲线半径的选择应遵循如下原则:在地形条件许可的情况,应力求半径尽可能接近不设超高最小半径;选取半径时,最大半径值一般不应超过10000m 。 1.2 平面线形要素计算 已知:1JD 桩号:K 50+125.372,偏角:右'"123701.6o , 1R =1000 m ,缓和曲线长 度1Ls =50m ; 计算: =-=2131112402R Ls Ls q 24.999m =-=31 411211238424R Ls R Ls p 0.104m ==1 1016479.28 R Ls β 1.432 曲线总长: 11011112180)2(2Ls R Ls L L ?+? ?-=+=πβα圆总=50m 切线长:11111()t a n 185.6422 T Rp q α =++= 外距:11112sec )(R p R E -?+=α =7.0354m

切曲差:1 112总L T D -==1.073m 1.3 各主点桩号的计算 已知:1JD 的桩号为:K 50+125.372 计算: 直缓点桩号为ZH=1JD --T 1= K49+937.730 缓圆点桩号为HY=ZH+Ls 1= K50+089.730 曲中点桩号为QZ=HY+2 1L 1圆= K50+124.835 圆缓点桩号为YH=HY+L 1圆= K50+124.835 缓直点桩号为HZ=YH+Ls 1= K50+309.940 1.4 纵断面线形设计 纵断面设计首先要注意坡度的选择符合各级道路规定的最大坡度。本次设计速度为100km/h ,根据规定允许最大坡度为3%。其次为了保证排水,防止水渗入路基影响稳定性,应设置不小于0.3%的纵坡。对于坡长也是有限制的,主要是对较陡纵坡的最大长度和一般纵坡的最小长度加以限制。纵断面设计里面最重要的设计就是竖曲线的设计。纵断面上两个坡段的转折处,为了行车安全,舒适以及视距的需要用一段曲线缓和称为竖曲线。竖曲线的线形有圆曲线,也有用抛物线形的,本次设计中有一个竖曲线,采用二次抛物线形。 1.4.1 竖曲线要素的计算 纵向拉坡图包括两个变坡点: 起点:K49+400,设计高程:87.3615m 变坡点:K50+130,设计高程:80.9303m, 形竖曲线半径12000 1=R m 竖曲线起点桩号:()1 4940050017.605K T K +-=+ 竖曲线终点桩号:()1 5013050242.395K L K ++=+ 12121.873%0ii ω=-=> ,为凹形 曲线长2223 370.354L R ω==m

二级公路路基路面设计计算书

二级公路路基路面 设 计 计 算 书

目录 1 道路概况 2 路基设计 2.1 几何尺寸确定 2.2 稳定性验算 2.3 防护措施 2.4 排水设计 3 路面设计 3.1 水泥混凝土路面设计 3.2 沥青路面设计 设计总结及改进意见 参考文献

1、道路概况 长江中下游平原中湿区是我国最湿热的地区,春、夏东南季风造成的梅雨和夏雨形成本区公路的明显不利季节。东南沿海台风暴雨多,由地表径流排走影响相对较小。低温较高,易引起沥青路面泛油。加大水泥路面翘曲应力。地形以丘陵、平原为主,公路通过条件尚好。主要自然灾害包括泥泞、冲涮、路基强度较低等。 该地区拟新建山岭重丘区二级公路,路基宽8.5m,路面宽7.0m。全线交通量为3100辆/d,交通组成见表1,主要车型参数见表2。交通量年平均增长率γ= 5%。 表1 交通组成 2、路基设计 2.1几何尺寸确定 (1)选择二级公路路基断面形式,路基宽8.5m,路面宽7.0m,两侧土路肩0.75m; (2)选择路基填料为砂土,压实度95%; (3)填方边坡形式采用一级台阶,H1=6m,W1=1.5m,P1=1:1.5,

挖方边坡形式采用一级台阶,H1=6m ,W1=1.5m ,P1=1:0.5; 2.2 稳定性验算 取全线未设挡土墙处最高路堤处进行边坡稳定性验算,桩号为 K0+160。粘性土质采用圆弧滑动面法,并用条分法进行土坡稳定性分析。其中圆心辅助线确定方法采用36°法。 (1)圆心辅助线确定:过坡顶B 作水平线,作BF 与水平线交于36°, 则BF 为辅助线。 (2)绘出三条不同位置的滑动曲线(都过坡脚): ①一条过路基中线(图1); ②一条过路基边缘(图2); ③一条过距右边缘1/4半路基宽度处(图3); (3)通过平面几何关系找出三条滑动曲线各自的圆心。 (4)将土基分段。 (5)计算滑动曲线每一份段中点与圆心竖线之间的偏角i α, R X i i =αsin 并计算分段面积和以路堤纵向长度1m 计算出各段的重力i G ,进而 将i G 分化为两个分力:a)在滑动曲线法线方向分力i i i G N αcos ?=;b)在滑动曲线切线方向力i i i G T αsin ?=。

路基路面设计内容

山东交通学院 路基路面工程课程设计 院(系)别土木工程系 专业土木工程 班级 学号 姓名 指导教师 成绩 二○一一年十二月

课程设计任务书 题目新建沥青路面(水泥混凝土路面)设计 系(部) 土木工程系 专业土木工程 班级 学生姓名 学号 12 月12 日至12 月16 日共 1 周 指导教师(签字) 系主任(签字) 2010 年12月15日

山东交通学院

山东交通学院

第1章 新建沥青路面设计 1.1交通资料 根据设计任务书的交通资料表1-1要求,确定路面等级和面层类型、设计年限内一个车道的累计当量轴次以及确定设计弯沉值。 根据交通调查,进行综合分析,交通调查资料为2007年,设计计算年限的起算年为2009年,预测其交通增长率在前五年为8%、之后十年取7.2 %、最后三年为5%。 交通资料 当以设计弯沉值为指标及沥青层层底拉应力验算时,凡轴载大于25KN 的各级轴载P i 的作用次数n i ,均应按下式换算成标准轴载P 的当量作用次数N : 式中 N ——标准轴载的当量轴次(次/d ); n i ——被换算车型的各级轴载作用次数(次/d ); P ——标准轴载(kN ); C 1——被换算车型各级轴载的轴数系数。当轴间距大于3m 时,按单独的一个轴计算,轴数系数即为轴数m ;当轴间距小于3m 时,按双轴或多轴计算,轴数系数为C 1,i =1+1.2(m-1); C 2——被换算轴载的轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 3. 当进行半刚性基层层底拉应力验算时,各级轴载P i 的作用次数n i ,匀应按下 式换算成标准轴载P 的当量作用次数' N 。 式中:C 1’——被换算车型各级轴载的轴数系数。当轴间距大于3m 时,按单独的一个轴计算,轴数系数即为轴数m ;当轴间距小于3m 时,按双轴或多轴计算,轴数系数为 C 1,i =1+1.2(m-1); C 2‘ ——被换算轴载的轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。 1.2轴载分析: 4.35 121 ( ) k i i i p N C C n P == ∑ ' '' 8 121 ( ) k i i i p N C C n P == ∑

探析公路路基路面设计

探析公路路基路面设计 发表时间:2017-11-15T16:01:43.447Z 来源:《基层建设》2017年第23期作者:黄家骏[导读] 摘要:随着我国的公路建设项目逐渐增多,极大方便了人们的交通出行及物流运输。 中设设计集团股份有限公司佛山分公司 528000 摘要:随着我国的公路建设项目逐渐增多,极大方便了人们的交通出行及物流运输。公路路基及路面设计对于公路的运营具有十分重要的作用和意义,为了提高公路的建设质量,有必要在工程路基与路面设计上进行优化与改进。在公路建设运营过程中必须综合考虑各方面的因素,有效提高公路路基以及路面设计的科学性和合理性,更好推动我国公路的建设。 关键词:路基设计;路面设计 引言:公路工程中路基及路面设计所需要着重考虑的影响因素包括:路基的压实、路面的强度以及路面的厚度,但除此之外,还有路基路面排水设计,其也是路基及路面设计重要的组成部分,并且排水系统对于路基路面也具有着极为重要的意义和影响。对于每一个潜在的公路建设项目,设计者均面临着在保证公路行车安全与将所设计公路充分融入周围环境之间寻求一种协调和统一的任务,这就要求设计者必须灵活、创造性地进行公路设计。 一、公路路基路面基本性能的要求 路基路面应根据公路等级和当地自然条件(包括地质、水文、材料情况等),并结合施工方案进行设计,既应有足够的强度和稳定性,又要经济合理。路基填筑宜采用水稳性好的材料,严格控制路基压实,满足强度和稳定性要求。路基路面强度、稳定性和压实度达不到要求的路段不得铺筑沥青或水泥路面。通过特殊地质、水文条件地带的路基,应做好调查研究,结合当地实践经验进行特别设计。 1.1平整度 公路平整直接与驾驶员行车的舒适性与安全性密不可分。若想更好的控制好公路的平整度,就要从公路一开始设计阶段进行控制,如果对公路的平整度检查不重视,公路一旦建成投入使用。将会给公路通车后的车辆带来极大的阻力与震动冲击,最终给驾驶带来安全隐患。 1.2耐久性 一条公路建成投入使用,需要耗费大量的人力及财力,要求公路一定要具有耐久性。国家对公路的使用都有明确规定,我国一般规定的公路工程使用年限为二十年以上,这二十年以上还包括路基路面的车辆碾压与承重部分。要使公路使用年限达到标准,就要对公路进行严格的耐久性检查,保证其寿命达到国家标准。 1.3稳定性 公路稳定性也是在公路建设阶段时所变动,在公路建设阶段必然会出现人为改变自然地表平衡的行为,有一些行为也是不可避免的,这会在一定程度上给公路整体稳定性带来影响。人为改变自然地表平衡的行为并不是影响公路稳定性的唯一因素,造成公路路基路面整体稳定性下降的因素很多,例如:地方工作路段的温度变化及湿度变化、雨水、土地沉降等多方因素。 1.4承载能力 公路建设完工,交付使后,车辆行驶带来的荷载会通过轮胎传递到路面与路基,车辆的压力会对路面与路基内部的结构带来变化,如果路面与路基施工时质量不过关,时间久了就会形成车辙,最终影响着公路的使用年限。要求在最初的设计与安全性检查时,充分考虑公路整体的承载能力。 二、公路工程路基设计 2.1路基填土与压实设计 对于特殊路基填土设计,如河塘、沼泽等地的填土设计中,首先需要将水抽干净,将淤泥等软土土壤排净,在回填碎石土,增强路基的坚固度,碎石与土的比例控制在8:2的数值上,碎石的最大直径也应控制在10cm以下。对于软土地基沉降控制设计,设计中针对多种情况制定处理措施:(1)如果区段附近存在土质较好或者含水量达到标准的土壤时,可以就地取材,将其回填到软土地基部分;(2)如果周围的土质较差,软土层较深,进行土质换填工作显然与经济性原则相违背。设计可以考虑根据不同路段的软土深度选择合理的软土路基处理方式,在软土深度少于15m且施工工期允许时,可采用排水固结处理,例如袋装砂井+堆载预压处理。在施工工期有要求时,可采用复合地基处理,例如当软土深度少于15m时,可考虑选择水泥搅拌桩处理。当软土深度大于15m且少于25m时可采用CFG桩处理;(3)对于长年积水、排水困难、土质流动缓慢的区域,采取填石的方法来加固地基。 2.2路基排水设计 在路基排水中,边沟是公路施工常用的排水设计方法,在公路路基路面配水中占据很大的比重,但在具体设计方面,目前边沟排水设计比较单一,忽略了地形对路基边沟排水的影响,导致许多路基排水工程的使用效果不理想。例如,在路基排水设计中,经常出现边沟尺寸与公路设计规格不统一的情况,导致在施工过程中,路基施工的泥土与地表土等进入到排水沟中,造成阻塞。在施工过程中,没有考虑到边沟的引流设计,使雨水长期囤积在排水系统中,造成排水效果不佳的情况经常发生。 (1)边沟设计原则 首先,边沟施工采取填筑的方式进行,尽可能减少路基边沟积水情况的发生,保证边沟内部的平整,使边沟中的水能够及时排出,避免边沟积水对路基强度造成影响。其次,在路基边沟设计上,要遵循严格的施工设计规范,采取浆砌片进行公路边沟施工是常用的施工样式,边沟的坡度达到一定的要求才能保证边沟中的水顺利排除,同时,结合当地地质地貌,合理调整坡度。再次,对边沟施工需要跨越涵洞或者通道的情况,要实现进行处理,将水进行引流,如果周边有耕种土地,可以考虑将排水设计到连接农田渠道中,对于公路干线与支线连接口,要采取封闭施工的方式,加盖边沟盖板。 (2)路基边沟尺寸设计 在公路路基边沟排水设计时,必须实现考虑几个关键因素,比如公路所在的自然天气情况,周边土质情况、边沟尺寸大小、边沟水流速度等。在实际的公路边沟设计中,同城采取梯形开口设计,根据公路设计的具体要求,通过计算排水速度进行合理设计。 三、公路工程路面设计 3.1路面设计的基本内容及要求

路基路面课程工程设计

广东工业大学华立学院本科课程设计任务书 课程名称路基路面工程课程设计 系部城建学部 专业土木工程 班级10土木5、6班 ㈠、课程设计的目的 (1)本课程设计为路基挡土墙设计和沥青路面设计,是《路基路面工程》课程的主要教学环节之一。本设计要求根据所给资料,分析工程的特点和当地实际情况,综合运用所学的专业技术知识,完成相应的重力式挡土墙设计和新建沥青路面设计。 (2)通过本课程设计,达到掌握上述涉及内容的步骤和方法,巩固所学的理论知识,培养分析和解决工程路基路面设计中的技术方面的能力。 ㈡、课程设计的内容与要求 设计一重力式挡土墙设计 1、设计基本资料 某二级公路重力式路肩墙设计资料如下: (1)墙身构造:墙高5m,墙背仰斜坡度为1:0.25(=14°02′),墙身分段长度20m,其余初始拟采用尺寸如下图所示;

(注:h 1=190mm,H 1 =4810mm,墙高H=5000mm,b 1 =980mm) (2)土质情况:墙背填土重度γ=18kN/m3,内摩擦角 =35°;填土与墙背间的摩擦角δ=17.5°;地基为岩石地基容许承载力[σ]=500kPa,基底摩擦系数 f=0.5; (3)墙身材料:砌体重度γ=20kN/m3,砌体容许压应力[σ]=500kPa,容许剪应力[τ]=80kPa。 2、设计内容与要求 (1)车辆荷载换算; (2)挡土墙后土压力计算; (3)稳定性验算; ①抗滑稳定性验算; ②抗倾覆稳定性验算; (4)基底应力及合力偏心距验算; (5)墙身截面强度验算; (6)施工图绘制:挡土墙立面图、平面图、断面图(要求绘图使用A3图纸)。 设计二新建沥青路面设计 1、设计基本资料 (1)交通量资料:据调查,起始年交通组成及数量见表1;公路等级为一级;

8路基排水综合设计

第次课教学整体设计

教学过程(教学设计实施步骤及时间分配)步骤1:复习提问(10分钟) 1.地面排水设施有哪些种类?适用性如何? 2.地下排水设施有哪些种类?适用性如何? 3.路基排水系统的总体规划应遵循哪些原则? 4.渗沟按作用不同可分不哪几种?其作用是什么? 5.边沟和截水沟的主要区别是什么? 步骤2:讲授仿真综合设计的意义和基本要求(10分钟) 对于某些重点路段还需要进行路基排水的综合设计,以提高排水效果,降低工程费用。因此,路基排水设计必须包括两部分内容,即首先是进行排水系统的总体规划,或者称为排水系统设计,以及在此基础上进行各单项结构物的设计。 综合设计的含义,应包括地面与地下设备的协调配合,路基排水设备与桥涵等泄水物的合理布置,路基路面的综合治理,排水工程与防护加固工程的相互配合,以及路基排水与沿线农田水利规划及有关其他基本建设项目之间的联系。但主要目的在于确保路基的强度与稳定性,提高道路的使用效果。 实践经验证明,排水系统综合设计的好坏,关系到路基的强度与稳定性。特别是在多雨的山区、黄土高原地区、寒冷潮湿地段、水网密布地基软弱的平原区,以及水文地质条件不良等情况下,修建高等级道路时,必须重视路基排水的综合设计。 2.仿真综合设计的基本要求 排水综合设计,宜在路线平面图、地形图上予以进行。设计时应结合路线的平面图、纵断面图和沿线地质、地形、水文条件进行。对高等级公路中排水不良、易受水流冲刷的特殊地段,如:滑坡路段、隧道洞口、干线交叉道口、连续回头曲线等排水复杂路段,应作专项公路排水综合设计。 设计中应考虑以下几点:

⑴流向路基的地面水和地下水,分别采取边沟、暗沟、渗沟或渗井汇集或降低水位,也可在路基外适当位置设置截水沟或渗沟拦截,并引致路基范围以外指定地点,若冲刷较为严重,必要时可设置跌水或急流槽、倒虹吸、桥涵等。 ⑵对明显的天然沟槽,一般宜“一沟一涵”,不要勉强改、并;对沟槽不明显的漫流,应在上游设置束流设施加以调节,尽量汇成沟槽,导流排除。对于较大水流,注意因势利导,不要轻易改变流向,必要时配以防护加固工程,进行分流或束流。 ⑶为了提高截流效果,节省工程,地面沟渠应大体沿等高线布置,并尽可能垂直于流水方向直线布置。在转弯处以圆弧相接,减小水流的阻力。 ⑷各种排水结构物均应设置于稳固的地基上,不得渗流、溢水或滞留,冲刷严重时应予以加固,防止危害路基和引起水土流失。 ⑸水流应遵循最短通路迅速排出路基范围以外。 ⑹路基排水综合设计,须先做事先调查,查明水源和有关现状,测绘现场图纸,进行必要的水力水文计算,做出总体规划,提出总体布置方案,逐段逐项进行细部设计计算,并进行效益分析和经济核算。 步骤3:下发案例,学生分组进行设计(40分钟) 如图5-16所例:某路段路基排水系统综合设计平面布置图。 平面布置上,需要注明的主要内容有:桥涵位置、中心里程、水流方向、进出口沟底标高及其附属工程等;地形等高线、主要沟渠、必要的路堤坡脚和路堑坡顶线;沿线取土坑、弃土坑的位置;路线交叉设施、防护与加固工程、不良地质边界、农田排灌渠道等;各种路基排水设备的类型、位置、排水方向与纵坡、长度、出水口与分界点的位置等; 此外,根据工程设计的需要,还应附有路线及主要排水设备的纵、横断面和结构设计图。

道路路基路面设计word文档

目录 第一章主要设计内容 (1) 第二章路基路面概况 (2) 第三章边坡稳定性分析 (3) 第四章挡土墙设计 (5) 第五章路面结构设计 (7) 一、沥青混凝土路面设计 (7) 二、水泥混凝土路面设计 (9) 第六章路基防护与加固 (10) 第七章路基、路面排水设计 (12) 附录专题问题分析 (14) 参考文献 (21)

第一章主要设计内容 一、原始设计数据如下 自然区划、干湿类型:V4 ,中湿 我设计的路基位置(桩号):K82+545到K82+651 挡土墙位置(桩号): 二、通过对交通量的计算确定车道信息 设计年限 20 车道系数 0.65 交通量平均年增长率 5.4 % 一个车道上大客车及中型以上的各种货车日平均交通量 Nh= 3050 ,属特重交通等级 当以设计弯沉值和沥青层层底拉应力为指标时 : 路面营运第一年双向日平均当量轴次 : 2934 设计年限内一个车道上的累计当量轴次 : 2.401438E+07 属重交通等级 当以半刚性材料结构层层底拉应力为设计指标时 :

路面营运第一年双向日平均当量轴次 : 2379 设计年限内一个车道上的累计当量轴次 : 1.947178E+07 属重交通等级 路面设计交通等级为特重交通等级 公路等级 高速公路 三、横断面设计 通过对交通量的计算,设计高速公路四车道,计车速为100km /h 。路基宽度为27.0m 。路幅划分方式为:中央分隔带3.00m 。土路肩为2×0.75m ,硬路肩为2×3.0m ,行车道为2×7.5m ,左路缘带为2×0.75m 。设计洪水频率为1/100。 设计横断面如下图: 图1 横断面设计图 第二章路基路面概况 一、沿线地质、地层情况描述、不良地质地段及相关物理力学指标 1、沿线地质、地层情况 全线分松散岩组、泥岩夹砂岩软岩组、砂岩夹页岩及煤层半坚硬岩组、碳酸盐岩夹碎屑岩坚硬岩组工程地质区;线路区内零星分布第四系松散层,出露侏罗系遂宁组、上沙溪庙组、下沙溪庙组、新田沟组、自流井组、珍珠冲组、三叠系须家河组、雷口坡组、嘉陵江组地层,岩性主要为泥岩、砂岩、页岩、泥灰岩、灰岩、白云岩。 2、不良地质地段 项目区为丘陵、低山地貌,在线路选线中以横穿背斜、向斜或沿向斜或背斜翼部宽缓处布置线路,穿越地层主要为侏罗系、三叠系泥岩、砂岩、页岩、灰岩,断裂构造相对不发育,除缙云山、云雾山、 巴岳山隧道外工程地质条件相对简单。

道路横断面和路基设计word文档

3 道路横断面和路基设计 3.1横断面布置 本段路为双向四车道一级公路,根据公路《规范》和《标准》进行设计。 路基总宽度为24.5m,桥梁和隧道路基断面设置见后面桥梁和隧道设计。 表3.1 路基宽度组成 车道宽度(m)中间带宽度(m)硬路肩(m)土路肩(m)路基总宽(m)3.75×2+3.75×20.5+2.00+0.5 2.5+2.50.75+0.7524.5 3.2路基设计 3.2.1一般路基设计 1)填方路基设计 (1)填方路基断面形式 图3.1填方路基断面形式 (2)填料选择 此段路位于山区,可以利用挖方的土石进行填筑,碎石土强度高、水稳定性好、易于碾压,而且透水性好有利于路基的排水。填料岩芯抗压强度不小于15 MPa (用于护坡的不小于20MPa),在石方爆破时采取相应的爆破工艺,按比例分出三类石料:①路基的主填料,要求石块粒径不超过25 cm,供粗粒层用;②石屑等细料,供细粒层用;③码砌边坡用的块石,主要是粒径为0. 3~0. 5m 的块石,选用表面比较平整的石块。 路基底层首先进行地表处理,清除表土15cm。采用分层摊铺,分层碾压。每层厚度为40cm左右,采用大型压路机进行碾压。在与路床接触的那层填筑一层40 cm 厚的碎石、石屑过渡层。相邻段采用不同材料土填筑时采用斜坡连接。 (3)压实标准 路基土石经充分压实后,变得相当紧密,可减少压缩性,透水性及体积变化,提高强度,抗变形能力和水稳定性,消除自重,行车荷载干湿作用引起的沉降和压实变形。路基压实标准见表 表3.2 路基压实度标准(%) 路床顶面以下深度(cm)0~3030~8080~150>150压实度标准≥96≥96≥94≥93

路基路面教案(3章 一般路基设计)

第三章 一般路基设计 §3-1 路基设计的一般要求 路床:原路槽底面以下0-80cm 范围内的路基。行车荷载主要的应力作用区,其强度和稳定性要根据路基路面综合设计的原则确定。 路基设计的基本内容: 1、选择断面形式,确定路基宽与高 2 3、确定边坡形状与坡度 4、路基路面排水 5、坡面防护与加固 6、附属设施设计 一般路基特殊路基:超过规范规定的高填深挖路基;地质水文等条件特殊的路基。需进行单独设计和验算。 §3-2 路基的类型与构造 路基横断面的三种典型形式: 路堤:路基设计标高>天然地面标高,全部用岩土填筑 路堑:路基设计标高<天然地面标高,全部在天然地面开挖而成的路基 填挖结合路基:一侧开挖,另一侧填筑而成的路基 一、路堤 1、按填土高度 矮路堤:填土高度<1.0-1.5m p60图3-1 a ) 高路堤:填土高度>18m(土质)或20m(石质) 一般路堤:填土高度在1.5-18m 之间 b ) 2、条件和加固类型 浸水路堤 p60图3-1 c ) 护脚路堤 d ) 挖沟填筑路堤 e ) 3、矮路堤和一般路堤设计 ⑴ 平坦地区取土困难时选用。满足最小填土高度要求,不低于临界高度,处于干燥、中湿。设边沟 ⑵ 矮路堤<Za 时,路堤本身和天然地面都要稳定,压实度达标 ⑶ 保护填方坡脚不受流水侵害,在沟渠、坡脚间设护坡道,宽1~2m 或>4m ⑷ 自然横坡较陡时(一般陡于1:5),防止路堤沿山坡下滑,将天然地面挖成台阶或设置石砌护脚 4、高路堤和浸水路堤 ⑴ 填方量大,占地多;需个别设计 ⑵ 边坡采用上陡下缓的折线形或台阶形,如在边坡中部设护坡道 ⑶ 防止流水侵蚀、冲刷坡面,边坡要进行防护和加固

路基路面设计

1.1道路工程 1)道路等级:城市次干路 2)设计车速:40km/h 3)路面结构设计荷载:BZZ-100型标准轴载 4)路面结构设计基准期:15年 5)交通流量设计年限:15年 1.2路基处理 1)一般路基处理 (1)设计标准 道路路基压实度标准见下表,如压实度不能合理过渡路段,应相应进行反开挖回填处理,增加压实度过渡层。原槽应满足90%压实度要求。设计采用城市次干路重型压实标准控制。 表1-1 路基压实度要求(重型) 填挖类型路槽底面以下深度(cm)填料最小强度 (CBR)(%) 压实度(%) 填方0~30 6 95 30~80 4 95 80~150 3 94 >150 2 92 零填及挖方0~30 6 95 30~80 4 95 路床顶部回弹模量需满足不小于30MPa。 (2)原槽处理 拟建场地位于长兴岛镇西区,根据邻近工程初勘报告,场地土层分布较稳定,土层自上而下可划分为四大层及5个亚层、1个夹层,其中①层为填土,②~⑤为全新世Q4沉积层,沿线主要软弱土层分布在埋深15m以下的④层灰色淤泥质软土,对一般路段影响较小。因此本工程主要针对表层填土松散以及地下水位埋深较浅的特点,进行一般路基设计。

表层填土主要为灰黄、灰色粉土性、粘性土混合组成,局部表层为杂填土,主要为低液限粉性土和低液限粘性土,结构较松散,在未作处理的情况下施工一般很难达到压实度要求,造成路基填料强度较低。因此,路基施工填土前,须清除原地面上杂草、树根、农作物残根、腐殖土、垃圾等30cm耕植土。对路基底部原槽底采用30cm碎石换填,碾压密实后作为施工操作面。 (3)一般路基填料 结合长兴岛当地工程经验,目前已建江南大道,潘圆公路,合作路等多条道路均采取二灰砂(石灰:粉煤灰:长江砂1:3:6)作为路基填料,是利用改良后长江砂代替一般路基填料使用,目前使用效果良好。综合考虑长兴岛缺少土源,大批工程同步建设造成路基土方稀缺,应尽量采用当地筑路材料来解决难题。因此,本工程设计一般路基填筑采用二灰砂(石灰:粉煤灰:长江砂1:3:6)作为路基填料,外侧采用1m素土包边。 二灰砂填料需至少保证30cm上路床及20cm过渡层,不足处需反开挖,分层回填压实。 2)浜塘路段路基处理 本工程范围内浜塘均为暗浜,必须采取适当处理措施,浜和渠底的淤泥必须清除,清淤至原状土后再用30cm碎石回填河底,并加铺土工布,然后用二灰分层回填,回填至原地面,在路基坡脚范围内浜塘顶面铺设两层土工隔栅。填浜处理范围为红线外5米。 原地面以上采用与一般路基相同的处理方式。 3)路基防护 本工程一般路段采用1:1.5放坡,植草防护处理,待地块实施开发时再结合处理。 1.3路面结构 根据交通流量及轴载组成情况分析,本工程为城市次干路,路面主要考虑因素为造价及施工控制难易程度、与周围环境的协调等。考虑到目前发展的趋势和沥青混凝土路面越来越显现出的优势,本工程推荐采用沥青混凝土路面。针对路面结构及材料选择详见下述:

浅析农村公路路基路面的设计

浅析农村公路路基路面的设计 摘要:随着国家对三农问题的重视,农村公路得到了大力发展,农村公路具有 面广,等级低,投入资金有限等特点,决定着农村公路的设计需要紧密结合实际,考虑资金投入和规划等要求,做好公路路基路面的设计。 关键词:农村公路;路基;路面;设计 农村公路等级较低,多为四级公路,但是对路基路面的设计要求却不低,路 面多以水泥混凝土路面为主,首先应该结合好农村规划做好路线的选择,结合现 场实际情况,做好路基路面的设计,重视设计的过程和质量,合理的控制投资, 从源头严把质量关。 1引起农村公路路基路面质量问题的原因 1.1施工方法不当 在路面施工的过程中,应该采取必要的措施防止路面开裂,比如说路面厚度满足 耍求,做好切缝处理等。若材料路或施工方法不当,将引起路面开裂或者早期破坏。 1.2设计中的问题 在农村公路路基路面的设计的时候,首先应该对现场的地质情况有所了解, 若地质条件与现场不符合,将会导致设计的不合理,将会引起一系列的质量问题。特别是高填方的路基,会埋下更多的安全隐患。在路面设计的时候,确定路面所 选用的材料,农村公路多采用水泥混凝土路面,对于路面厚度应该根据当地车流 量等进行合理的设计。 2 公路路基设计的要点分析 2.1软土地基路段的路基加固设计 在农村公路建设过程中,难以避免的会出现软土地基,我们常用的方法是采 用固化剂加固法。这是一种常见的软土地基的处理方式,若高填方路段需要处理 的填料数量又不是很大,就可以采用此方式进行处理,加入一定的固化剂在原来 的填料中,对于软土地基的处理方式有很多种,不仅限于此方法,比较经济的是 换填分层夯实,特别是农村公路修建过程中,因为某小段经过湿地、池塘边缘等 的处理,小范围处理比采用各种桩基更节约成本。 2.2路基排水系统的设计 路基排水系统的设计对于农村公路的使用寿命有着重要的影响,要尽可能的 减少水体冲刷对路基路面的影响。在路基排水系统中,应该做以下方面进行着手。 2.2.1路基边坡排水设计 在农村公路路基边坡排水沟的设计前,应该对当地降水量和地形地势有所了解,是否会因为下雨导致山体流水冲刷路基路面,对于路面的排水量应该了解, 特别是雨季的时候,最大雨量的信息要掌握,再按照要求设计一定深度的水渠用 来排水,防止雨水对路基的侵蚀和冲刷。 2.2.2公路临近河流排水的设计 农村公路临近河流的时候,河流对路基的冲刷影响是很大的,在设计的时候,无法避开河流的时,应该设置合理的排水渠,在河流的汛期能有效的排水,同时 要加强河堤的建设,还要做好洪水、泥石流等自然灾害的防护工作,提供路基的 安全系数。 2.3公路路基填挖交界处设计 农村公路填挖交界处,应该所使用的材料不同,他们的结构性能也不同,这 就容易引起地基固结不均匀而引起下沉,在设计和施工的过程中,若处理的不好,

相关文档
相关文档 最新文档