文档库 最新最全的文档下载
当前位置:文档库 › 探究影响空气阻力的因素

探究影响空气阻力的因素

探究影响空气阻力的因素
探究影响空气阻力的因素

探究影响空气阻力的因素

【实验目的】

探究影响空气阻力的因素

【实验原理】

设:一块平板以v的速度运动,且v的方向垂直平面S,其受流体阻力为F.

(如图1)。

以平板为参考系,则上述运动状况等效于流体以v的速度垂直撞击平板。(如图2)。

在Δt的时间内,则:流体有底面积为S

,高为的流体柱撞击平面(如图3)。

流体柱的体积V=S·vΔt

流体柱的质量m=ρV=ρSvΔt

撞击后,流体以v的速度被反射(如图4)。

在Δt时间内的全过程中:

由牛顿第三定律得:平板对流体的作用力F N=-F

由动量定理得:

F N·Δt=m(-v)-mv

解得:F合=mg-2ρv2S

对实验中的钩码-减速伞装置进行受力分析(以竖直方向为正方向)

F合=mg-F f

根据导出公式:F f=2ρv2S

得:F合=mg-2ρv2S

v

图1

v

图2

vΔt

v

图3

vΔt

v

图4

则:钩码加速度:2222v m

S g m S v mg m F a ρρ-=-==合

在Δt 时间内,钩码-减速伞装置的速度由v 变为(v +Δv ),位移了Δx .

当Δt →0时,则:Δv →0, 2

222Sv mg v

mv v m

S g v v a v v t v x ρρ-?=-?=?=?=? 移项,得:

2

2Sv m g m v

v x 设:在实验过程中,减速伞装置的位移关于速度v 的函数表 达式为x (v ). 则:2

2)('lim

Sv mg mv

v x v x v 将x '(v )积分解得x (v ).

[]

2

22022

02ln 4)2ln(ln 4)0ln(4)2ln(4)2ln(4)(2)()()(Sv m g m g S m Sv m g m g S m m g S m Sv m g S m

Sv m g S

m v d Sv m g m v v d v x v x v

v v ρρρρρρρρρρ-=--=

??

????-----=--=-?='?=

2

2ln 4)(Sv mg mg

S m v x ρρ-=

∴ 【实验器材】

8开素描纸、吸管、废旧笔芯、细棉线、硬纸板、铁架台、钩码、刻度尺、

托盘天平、滑轮、打点计时器、纸带、纸夹、学生电源、海绵垫、透明胶带

【实验步骤】

伞面制作:

1、用刻度尺测量8开素描纸的边长。

2、取8开的素描纸延其对边对折,裁剪,得到两张16开纸,取16开的素描

纸延其对边对折,裁剪,得到两张32开纸,取32开的素描纸延其对边对折,裁剪,得到两张64开纸.

3、取16开纸,测出每边中点得到一个菱形,并将其剪裁下来,取16开纸,

测出其长边中点,与另一长边的两顶点相连接,对折,剪裁,得到一三角形伞面。

骨架零部件制作:

1、用外径为5毫米,内径为3毫米的废旧笔芯,直径为3毫米,管壁较薄的

吸管,利用吸管直径与笔芯内径相同,可以用废旧笔芯连接吸管。 2、将废旧笔芯截成2厘米的十段,截出十五段制成外接管,截出10厘米的废

旧笔芯两段。

3、取一个2厘米的外接管和两段1厘米的外接管,将两个1厘米的外接管一

端加热至溶化,并对称固定在2厘米外接管中部,制得一个十字外接管,再将吸管一端烫溶,固定在一个2厘米的外接管中部,制成四个T 形架,然后将两根吸管一端烫溶,固定在一起,制成十六个直角弯管,按菱形伞面的四个顶角,制成与之匹配的四个“个”形架,在用同一种方法,按三角形的伞面的三个顶角制成三个与顶角相匹配的支架。

伞的组装:

1、将骨架零部件根据选择的伞面组装成相应的骨架,在骨架角上分别系上与

其短边长度相等的细棉线,并将棉线另一端打成一个结

2、将伞面用纸夹固定在骨架上,将调好的托盘天平的左右两盘上都放上200

实验材料—骨架(长方形)

实验材料—骨架(三角形

)

骨架零部件处理

克的砝码

3、在右盘砝码上系上细棉,细棉线一端系上一个

纸夹,同时在右盘上放一个纸夹,用以平衡重力。 4、通过定滑轮将伞的重力作用于天平右盘,使天

平平衡所需的砝码质量通过该装置可为伞陪重,用硬纸板添加于阻力伞上配重成10克,并固定于阻力伞上,调节伞线长度,使伞面水平。 正式实验:

1、将打点计时器安装在铁架台上,并接在学生电

源上,在打点计时器的正下方放上海绵垫用于保护砝码 。

2、用纸夹将纸带固定在大的长方形伞上,在细棉线上

挂上两个50克得砝码,接通电源,随后释放伞,得到一条纸带,再切断电源。

3、用纸夹将纸带固定在中等大小长方

形伞上,在细棉线上挂上两个50克得砝码,接通电源,随后释放伞,得到一条纸带,再切断电源。 4、用纸夹将纸带固定在小的长方形伞

上,在细棉线上挂上两个50克得砝码, 接通电源,随后释放伞,得到一条纸带, 再切断电源。

5、用纸夹将纸带固定在中等大小长方

形伞上,在细棉线上挂上一个50克得砝码,接通电源,随后释放伞,得到一条纸带,再切断电源。 6、用纸夹将纸带固定在中等大小长方

形伞上,在细棉线上挂上三个50克得砝码,接通电源,随后释放伞,得

实验——长方形

实验器材

伞的配重

到一条纸带,再切断电源。

7、用纸夹将纸带固定在菱形伞上,在细棉线上挂上两个50克得砝码,接通

电源,随后释放伞,得到一条纸带,再切断电源。

8、用纸夹将纸带固定在三角形伞上,在细棉线上挂上两个50克得砝码,接

通电源,随后释放伞,得到一条纸带,再切断电源。

【数据记录及处理】纸带处理

实验——长方形实验——三角形

纸带1:小的长方形伞(面积:0.132×0.975=0.01287m 2) 钩码两个(100g) 伞重:10g

00.511.522.533.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8h/m

v/m?s-1

纸带2:大的长方形伞(面积:0.264×0.195=0.05148m 2) 钩码两个(100g) 伞重:10g

h/m

0.0774 0.1064 0.1398 0.1730 0.2120 0.2500 0.2930

0.3352 0.3857 0.4312 0.4834 0.5334 0.5909 0.6509

v/m ·s -1

1.5600 1.6650 1.8050 1.9250

2.0250 2.1300 2.3175 2.4000 2.4425 2.5550 2.6875 2.9375

00.511.522.533.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7h/m

v/m?s-1

纸带3:中等大小的长方形伞(面积:0.195×0.132=0.02574m 2) 钩码1个(100g) 伞重:10g

h/m

0.0620 0.0841 0.1072 0.1273 0.1498 0.1821 0.2144

0.2543 0.2915 0.3355 0.3825 0.4260 0.4827 0.5377

v/m ·s -1

1.1300 1.0800 1.0650 1.3700 1.6150 1.8050 1.9275

2.0300 2.2750 2.2625 2.5050 2.7925

h/m

0.0947 0.1215 0.1496 0.1807 0.2179 0.2562 0.3069

0.3453 0.3973 0.4423 0.5004 0.5572 0.6112 0.6772

v/m ·s -1

1.3725 1.4800 1.7075 1.8875

2.2250 2.2275 2.2600 2.4250 2.5775 2.8725 2.7700

3.0000

:实验值 —:实验值曲线 —:理论值曲线

:实验值 —:实验值曲线 —:理论值曲线

00.511.522.530

0.1

0.2

0.3

0.4

0.5

0.6h/m

v/m?s-1

纸带4:中等大小的长方形伞(面积:0.195×0.132=0.02574m 2) 钩码2个(50g) 伞重:10g

h/m

0.0395 0.0650 0.0937 0.1227 0.1557 0.1912 0.2307

0.2752 0.3297 0.3742 0.4305 0.4817 0.5517 0.6067

v/m ·s -1

1.2125 1.3550 1.4425 1.5500 1.7125 1.8750

2.4750 2.4750 2.5200 2.6875

3.0300 3.1250

00.511.522.533.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7h/m

v/m?s-1

纸带5:中等大小的长方形伞(面积: 0.195×0.132=0.02574m 2) 钩码3个(150g) 伞重:10g

h/m

0.0199 0.0430 0.0681 0.0963 0.1283 0.1623 0.2022

0.2450 0.2922 0.3434 0.3953 0.4498 0.5118 0.5838

v/m ·s -1

1.2050 1.3325 1.5050 1.6500 1.8475

2.0675 2.2500 2.4600 2.5775 2.6600 2.9125

3.3500

:实验值 —:实验值曲线 —:理论值曲线

0.511.522.533.540

0.1

0.2

0.3

0.4

0.5

0.6

0.7h/m

v/m?s-1

纸带6:菱形伞(面积:1/2×0.264×0.195=0.05148m 2) 钩码两个(100g) 伞重:10g

h/m

0.1182 0.1462 0.1761 0.2091 0.2458 0.2833 0.3278

0.3760 0.4232 0.4837 0.5327 0.5879 0.6534 0.7236

v/m ·s -1

1.4475 1.5725 1.7425 1.8550

2.0500 2.3175 2.3850 2.6925 2.7375 2.6050

3.0175 3.3925

0.511.522.533.540

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8h/m

v/m?s-1

纸带7:三角形伞(面积:1/2×0.264×0.195=0.05148m 2) 钩码两个(100g) 伞重:10g

h/m

0.0669 0.0974 0.1285 0.1635 0.2016 0.2413 0.2854

0.3327 0.3846 0.4367 0.4885 0.5455 0.6103 0.6686

v/m ·s -1

1.5400 1.6525 1.8275 1.9450

2.0950 2.2850 2.4800 2.6000 2.5975 2.7200

3.0450 3.0775

:实验值 —:实验值曲线 —:理论值曲线

:实验值

—:实验值曲线 —:理论值曲线

00.511.522.533.5

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8h/m

v/m?s-1

【误差分析】

实验数据中,各点并不在一条曲线上,而是显现波动性,造成波动的可能有: 1、纸带与打点计时器间存在摩擦力。 2、伞面平整度不高。

3、伞面摆动,导致正对面积变化。

但纸带与打点计时器间摩擦力方向向上。

伞面摆动时,正对面积减少,导致空气阻力减小。 减少的空气阻力由纸带与打点计时器间的摩擦力补充。 所以实验误差范围不会太大,实验有较大的可信度。

【实验初步结论】

上述各图中,实际值曲线近似于理论值曲线, 所以伞的下落满足:

22ln

4Sv mg mg S m h ρρ-=

S v F Sv mg mg S m h f 2

2

22ln 4ρρρ=?-=

∴实验可说明空气阻力大小与伞面正对面积成正比,与速度的二次方成正比,与伞面形状无关。

:实验值 —:实验值曲线 —:理论值曲线

光合作用的影响因素和原理的应用(含标准答案)-(1)

第23课时光合作用的影响因素和原理的应用 [目标导读] 1.通过探究光照强弱对光合作用强度的影响实验,学会研究光合作用影响因素的方法。2.联系日常生活实际,思考影响光合作用的环境因素以及光合作用原理的实践应用。3.阅读教材,了解化能合成作用。 [重难点击]影响光合作用的环境因素以及光合作用原理的实践应用。 一探究光照强弱对光合作用强度的影响 多种环境因素对光合作用有着重要的影响,其中光照的影响最为重要。 1.光合作用强度的表示方法 错误! 2.探究光照强弱对光合作用强度的影响 (1)实验原理:抽去小圆形叶片中的气体后,叶片在水中下沉,光照下叶片进行光合作用产生氧气,充满细胞间隙,叶片又会上浮。光合作用越强,单位时间内小圆形叶片上浮的数量越多。 (2)实验流程 打出小圆形叶片(30片):用打孔器在生长旺盛的绿叶上打出(直径=1cm) ↓ 抽出叶片内气体:用注射器(内有清水、小圆形叶片)抽出叶片内气体(O2)等 ↓ 小圆形叶片沉水底:将抽出内部气体的小圆形叶片放入黑暗处盛有清水 ↓的烧杯中,小圆形叶片全部沉到水底 强、中、弱三种光照处理:取3只小烧杯,分别倒入20 mL富含CO2的清水,各放入 10片小圆形叶片,用强、中、弱三种光照分别照射 ↓ 观察并记录同一时间段内各实验装置中小圆形叶片浮起的数量 (3)实验现象与结果分析:光照越强,烧杯内小圆形叶片浮起的数量越多,说明在一定范围内,随着光照强度的不断增强,光合作用强度不断增强。 3.结合细胞呼吸,人们用下面的曲线来表示光照强度和光合作用强度之间的关系,请分析: (1)说出各点代表的生物学意义

①A点:光照强度为零,只进行细胞呼吸。 ②B点:光合作用强度等于呼吸作用强度,为光补偿点。 ③C点:是光合作用达到最大值时所需要的最小光照强度,即光饱和点。 (2)说出各线段代表的生物学意义 ①OA段:呼吸作用强度。 ②AB段:随光照增强,光合作用增强,但仍比呼吸作用弱。 ③BD段:光合作用强度继续随光照强度的增强而增加,而且光合作用强度大于呼吸作用。 ④DE段:光合作用强度达到饱和,不再随光照强度的增强而增加。 归纳提炼 1.除了光照强度对光合作用有一定影响外,光谱成分也对光合作用强度有影响。红光和蓝紫光有利于光合作用,绿光不适合光合作用。太阳光中各种色光均衡,对植物最有利。 2.光合作用速率或称光合作用强度,是指一定量的植物(如一定的叶面积)在单位时间内进行光合作用生成有机物的量(通常用释放多少O2或消耗多少CO2来表示)。包括表观光合作用速率和真正光合作用速率,它们和光照强度的关系如下图: 活学活用 1.通过实验测得一片叶子在不同光照强度下CO2吸收和释放的情况如图1所示。图2所示细胞发生的情况与图1曲线中AB段(不包括A、B两点)相符的一项是() 问题导析(1)图1中A点细胞只进行细胞呼吸,与图2中的B图相对应。 (2)AB段呼吸作用强度大于光合作用强度,线粒体产生的二氧化碳除了供给叶绿体利用外,还有部分释放到细胞外,对应图2中的A图。

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

探究影响空气阻力的因素

探究影响空气阻力的因素 【实验目的】 探究影响空气阻力的因素 【实验原理】 设:一块平板以v的速度运动,且v的方向垂直平面S,其受流体阻力为F. (如图1)。 以平板为参考系,则上述运动状况等效于流体以v的速度垂直撞击平板。(如图2)。 在Δt的时间内,则:流体有底面积为S ,高为的流体柱撞击平面(如图3)。 流体柱的体积V=S·vΔt 流体柱的质量m=ρV=ρSvΔt 撞击后,流体以v的速度被反射(如图4)。 在Δt时间内的全过程中: 由牛顿第三定律得:平板对流体的作用力F N=-F 由动量定理得: F N·Δt=m(-v)-mv 解得:F合=mg-2ρv2S 对实验中的钩码-减速伞装置进行受力分析(以竖直方向为正方向) F合=mg-F f 根据导出公式:F f=2ρv2S 得:F合=mg-2ρv2S v 图1 v 图2 vΔt v 图3 vΔt v 图4

则:钩码加速度:2222v m S g m S v mg m F a ρρ-=-==合 在Δt 时间内,钩码-减速伞装置的速度由v 变为(v +Δv ),位移了Δx . 当Δt →0时,则:Δv →0, 2 222Sv mg v mv v m S g v v a v v t v x ρρ-?=-?=?=?=? 移项,得: 2 2Sv m g m v v x 设:在实验过程中,减速伞装置的位移关于速度v 的函数表 达式为x (v ). 则:2 2)('lim Sv mg mv v x v x v 将x '(v )积分解得x (v ). [] 2 22022 02ln 4)2ln(ln 4)0ln(4)2ln(4)2ln(4)(2)()()(Sv m g m g S m Sv m g m g S m m g S m Sv m g S m Sv m g S m v d Sv m g m v v d v x v x v v v ρρρρρρρρρρ-=--= ?? ????-----=--=-?='?= 2 2ln 4)(Sv mg mg S m v x ρρ-= ∴ 【实验器材】 8开素描纸、吸管、废旧笔芯、细棉线、硬纸板、铁架台、钩码、刻度尺、 托盘天平、滑轮、打点计时器、纸带、纸夹、学生电源、海绵垫、透明胶带 【实验步骤】 伞面制作: 1、用刻度尺测量8开素描纸的边长。 2、取8开的素描纸延其对边对折,裁剪,得到两张16开纸,取16开的素描 纸延其对边对折,裁剪,得到两张32开纸,取32开的素描纸延其对边对折,裁剪,得到两张64开纸. 3、取16开纸,测出每边中点得到一个菱形,并将其剪裁下来,取16开纸,

探究动能大小与什么因素有关

课题探究动能大小与哪些因素有关 (教学设计) 主备人:钱文德指导教师:叶斌苏海国陈德寿审核人:物理备课组一、内容及其分析 (一)内容 本节课主要学习的内容是认识动能及探究影响动能大小的因素。 课时安排:1课时 本课重点是探究影响动能大小的因素,难点为如何引导学生用控制变量法、转换法来设计实验并通过实验分析得出影响动能大小的因素,突破教学重难点关键是做好实验及分析好实验现象。 (二)分析 本节课是人教版八年级物理第十一章第三节的内容。它包括动能、势能的概念,以及动能、势能大小的决定因素。本节内容是在机械运动,功的基础上展开的,是前面知识的延伸,又为后面《机械能及其转化》的学习奠定基础。本节课主要完成探究影响动能大小的因素,本实验是《课标》中规定的学生必做的实验之一,因此组织好本次探究活动是非常重要的。 二、目标及其分析: (一)目标 1.知道什么物体具有动能; 2.通过实验,知道动能大小与什么因素有关;能用动能知识解释简单的物理现象。 3.通过探究实验,培养学生严谨的科学态度、敢于探索创新的科学精神及交流合作的团队意识。 (二)分析 要求学生通过日常生活实例认识动能,通过探究实验知道影响动能大小的因素。本节课在认识动能的基础上,引导学生自己动手设计实验,使学生的知识技能得到发展,过程方法得到领悟,情感态度价值观得到树立。同时,在此基础上,培养学生用动能来解释日常生活中的有关现象的意识,通过本节课的学习不仅使学生掌握知识,还要让学生从课堂

走进生活。 三、教学问题诊断分析 教学过程中可能会出现以下问题:(1)学生在猜想什么因素影响动能大小时可能会想到是重力的大小,出现这个问题,我将通过分析物体运动方向和重力方向,来引导学生走出这个误区。(2)在探究过程中,学生可能没有注意控制斜面的倾斜程度和被撞的物体位置要一致,在教学中,我将注意引导学生对变量的控制。(3)学生通过探究实验,可能会得出动能的大小与高度有关,针对这个问题,我将引导学生分析从高处自由滚下的物体高度和速度的关系。 四、教学方法 (一)方法:瑞丽三中课堂教学“育人生生课堂”(三环六步教学法) (二)说明: 第一步课前环节:教师完成教学设计及学案的设计,经备课组集体讨论确定后提前发放给学生结合课本进行预习。 第二步课中环节:“六环教学法” 一是教师对学案设计完成情况进行检查及评价; 二是小组对实验进行猜想与假设,展示实验设计; 三是其它小组补充、质疑; 四是小组进行实验,分析数据得出结论; 五是教师及时评价、点拨及总结; 六是目标检测及小组课堂表现总评。 第三步课后环节:学生通过作业进行巩固和提升,教师进行反思和总结。 五、教学支持条件分析 (一)所需设备:教学课件、黑板、探究动能大小因素实验装置。 (二)具备条件 教学课件:展示教学信息。 黑板:板书设计,构建知识框架。 探究动能大小因素实验装置:进行实验探究。 六、教学过程设计

影响散热性能的各种因素

影响散热性能的各种因素 晨怡热管2007—11-29 22:46:39 三、影响散热性能的各种因素 在当前的所有芯片中,以CPU的功耗、发热量最高,因此CPU散热器的发展最为强劲与引人注目,诞生了极其多样化的产品,代表了计算机散热技术的最高发展水平.只要对CPU 散热技术有了全面了解,其它产品的散热原理也就无师自通了。因此,本专题重点就讨论CPU 散热技术.在介绍各种散热技术之前,我们还要先确认几个散热的基本概念. 热力学基本知识 我们先从物理的角度来探讨一下散热的原理,因为知道了原理才能从根本上找出解决问题的方法。虽然这部分有些枯燥难懂,但只要您能耐心看完,相信很多问题就可迎刃而解,对今后彻底了解散热器有很大的用处。 物理学认为,热主要通过三种途径来传递,它们分别是热传导、热对流、热辐射。为了保证良好的散热器性能,就要已符合上述三种途径的要求来设计产品,于是在材料的热传导率、比热值;散热器整体的热阻、风阻;风扇的风量、风压等等方面都提出了要求。以下针对这些概念进行集中讲解。 热传导 定义:通过物体的直接接触,热从温度高的部位传到温度低的部位.热能的传递速度和能力取决于: 1。物质的性质。有的物质导热性能差,如棉絮,有的物质导热性能强,如钢铁.这样就有了采用不同材质的散热器,铝、铜、银。它们的散热性能依次递增,价钱当然也就成正比啦。 2。物体之间的温度差。热是从温度高的部位传向温度低的部位,温差越大热的传导越快。 热传导是散热的最主要方式,也是散热技术需要解决的核心问题之一.所以我们通常都能看到,几乎所有散热在与CPU相接触的部分都采用热传导性能良好的材料。比如Intel 原包CPU中附带的散热器,采用铜芯与CPU接触,就是为了将热量尽快传导出来。

滚动阻力成因分析与影响因素分析培训资料

滚动阻力的成因分析与影响因素分析报告 车辆1203班第2组 汽车在水平道路上等速行驶时受到的道路在行驶方向上的分力称为滚动阻力,主要有车轮的弹性变形、路面变形和车辙摩擦等。本文主要针对滚动阻力的成因和影响因素研究分析。 一、滚动阻力的成因分析 近代摩擦学关于滚动摩擦的理论认为:滚动体在力的推动下滚动,在赫兹接触区内除存在赫兹正压力外,还存在切向力,从而使接触区被分为微观滑动区和黏着区,在黏着区内只有滚动而无滑动,微观滑动区内还存在着滑动,认为滚动摩擦阻力由以下四个因素构成:弹性滞后、黏着效应、微观滑动、朔性滞后。 但在车轮滚动过程中,热弹性滞后、黏着效应、微观滑动、朔性滞后引起的能量损失所占比例很小,因此,主要原因在于弹性滞后。 当弹性轮胎在硬路面(混凝土路、沥青 路)上滚动时,轮胎的变形是主要的。由于弹 性材料的粘弹性性能,弹性轮胎在硬支撑路面 上行驶时,加载变形曲线和卸载变形曲线不重 合导致能量损失,此能量系损耗在轮胎各部分 组成相互间的摩擦以及橡胶、棉线等物质间的 分子间摩擦,最后转化为热能消失在空气中, 是轮胎变形时做的工不能全部收回。这种损失 称为弹性物质的迟滞损失。(如右图) 这种迟滞损失表现为一种阻力偶。当车轮 不滚动时,地面对车轮的法向反作用力的分布 是前后对称的;当车轮滚动时,由于弹性迟滞现象,处于压缩过程的前部点的地面法向反作用力就会大于处于压缩过程的后部点的地面法向反作用力,这样,地面 法向反作用力的分布前后不对称,而使他们的合力z F相对于法线前移一个距离a, 它随弹性迟滞损失的增大而变大。即滚动时有滚动阻力偶矩T Fz f a =? ,阻碍车 轮滚动。(如下图)

影响光合作用的因素教案

影响光合作用的因素教学设计 一、教材分析 教材上关于光合作用这一部分内容只介绍了光合色素、光合作用的原理和应用、光合作用的过程和化能合成作用,而影响光合作用的因素以及这些因素是怎样影响光合作用的,并没有过多提及。但是,在实际应用中,这些与农业生产息息相关,在历年高考中也占据了十分重要的地位,所以,这一部分的内容是不可忽略的。 二、学情分析 这节课的授课对象是高一年级的学生,是在学习了光合作用的相关知识后的一个拓展内容。虽然他们刚刚进入高中,但是已经具备了一定的逻辑思考能力。而且经过前几节课的铺垫,对光合作用相关知识也已经有了一定的理论知识基础。 三、教学目标 1、掌握光合作用过程中,外界条件的变化对光合作用的进行有着怎样 的影响。 2、通过对影响因素的分析,培养学生良好的思维品质,初步学会科学 研究的一般方法,锻炼科学探究能力。 3、能够将所学知识与实际生活相联系,更好的应用于生产生活实践, 使学生认识到生物科学的价值,从而提高对生物的兴趣。 四、教学方法设计 板书和多媒体相结合,利用板书进行上节课有关光合作用过程的回顾,并引出本节课的内容。因为课程所需要的图像比较多,所以本节课以多媒体教学为主,板书为辅。 五、教学设计 通过上节课的学习,同学们已经了解了光合作用的大致过程,那么咱们首先来回顾一下这个过程(利用板书进行一个简单的复习) 根据光合作用的过程,我们可以看到二氧化碳和光照都会影响光合作用的进行,那么它们的变化会使光合作用有怎样的改变呢?我们今天一起来探讨一下。 在探讨光合作用的变化之前,咱们先来看几个概念(PPT给出):呼吸速率、净光合速率、总(真正)光合速率,并用二氧化碳的释放、二氧化碳的吸收、氧气的释放、氧气的吸收、有机物的积累来表示上述三个概念。 了解以上几个概念,那么开始进行今天的主要内容: 1、光照强度与光合作用的关系 (1)

影响密封性能的几大因素

影响密封性能的几大因素 .运动速度 运动速度很低(<0.03m/s)时,要考虑设备运行的平稳性和是否出现"爬行"现象。运动速度很高(>0.8m/s)时,起润滑作用的油膜可能被破坏,油封因得不到很好的润滑而摩擦发热,导致寿命大大降低。 建议聚氨脂或橡塑油封在0.03m/s~0.8m/s速度范围内工作比较适宜。 2.温度 低温会使聚氨脂或橡塑油封弹性降低,造成泄露,甚至整个油封变得发硬发脆。高温会使油封体积膨胀、变软,造成运动时油封摩擦阻力迅速增加和耐压能力降低。建议聚氨脂或橡塑油封连续工作温度范围-10℃~+80℃。 3.工作压力 油封有最低启动压力(minimum service pressure)要求。低压工作须选用低摩擦性能、启动阻力小的油封。在2.5MPa以下,聚氨脂油封并不适合;高压时要考虑油封受压变形的情况,需用防挤出挡圈,沟槽加工方面也有特殊要求。 此外,不同材质的油封具有不同的最佳工作压力范围。对于聚氨脂油封的最佳工作压力范围为2.5~31.5MPa。 温度、压力对密封性能的影响是互相关联的,因此要做综合考虑。见表: 进口聚氨脂PU材料 最大工作压力 最大温度范围温度范围 运动速度-25~+80 -25~+110 0.5m/s 28MPa 25MPa 0.15m/s 40MPa 35MPa 4.工作介质 除了严格按照生产厂家的推荐意见选取工作介质外,保持工作介质的清洁至关重要。油液的老化或污染不仅会使系统中的元件发生故障,加快油封的老化和摩损,而且其中的脏物可能划伤或嵌入油封,使密封失效。因此,必须定期地检查油液品质及其清洁度,并按设备的维护规范更换滤油器或油液。在油缸里油液中残留的空气经高压压缩会产生高温使油封烧坏,甚至炭化。为避免这种情况发生,在液压系统运行初始时,应进行排气处理。液压缸也应在低压慢速运行数分钟,确认已排完油液中残留的空气,方可正常工作。 5.侧向负载 活塞上一般必须装支承环,以保证油缸能承受较大的负载。密封件和支承环起完全不同的作用,密封件不能代替支承环负载。有侧向力的液压缸,必须加承载能力较强的支承环(重载时可用金属环),以防油封在偏心的条件下工作引起泄露和异样磨损。 6.液压冲击 产生液压冲击的因素很多,如挖掘机挖斗突然碰到石头,吊机起吊或放下重物的瞬间。除外在因素外,对于高压大流量液压系统,执行元件(液压缸或液压马达等)换向时,如果换向阀性能不太好,很容易产生液压冲击。液压冲击产生的瞬间高压可能是系统工作压力的几倍,这样高的压力在极短时间内会将油封撕裂或将其局部挤入间隙之内,造成严重损坏。一般有液压冲击的油缸应在活塞杆上安装缓冲环和挡圈。缓冲环装在油封的前面吸收大部分冲击压力,挡圈防止油封在高压下挤入间隙,根部被咬坏。 补充一点: 密封部位零件表面的加工粗糙度对密封性能有极大的影响。在设计动密封时,与密封件接触的旋

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

影响光合作用的因素

影响光合作用的因素: 光合作用是在植物有机体的内部和外部的综合条件的适当配合下进行的。因此内外条件的改变也就一定会影响到光合作用的进程或光合作用强度的改变。影响光合作用强度的因素主要有光照强度、CO2浓度、温度和矿质营养。 ①光照强度:植物的光合作用强度在一定范围内是随着光照强度的增加,同化CO2的速度也相应增加,但当光照强度达到一定时,光合作用的强度不再随着光照强度的增加而增强。植物在进行光合作用的同时也在进行呼吸作用,当植物在某一光照强度条件下,进行光合作用所吸收的CO2与该温度条件下植物进行呼吸作用所释放的CO2量达到平衡时,这一光照强度就称为光补偿点,这时光合作用强度主要是受光反应产物的限制。当光照强度增加到一定强度后,植物的光合作用强度不再增加或增加很少时,这一光照强度就称为植物光合作用的光饱和点,此时的光合作用强度是受暗反应系统中酶的活性和CO2浓度的限制如图。 光补偿点在不同的植物是不一样的,主要与该植物的呼吸作用强度有关,与温度也有关系。一般阳生植物的光补偿点比阴生植物高。光饱和点也是阳生植物高于阴生植物。所以在栽培农作物时,阳生植物必须种植在阳光充足的条件下才能提高光合作用效率,增加产量;而阴生植物应当种植在阴湿的条件下,才有利于生长发育,光照强度大,蒸腾作用旺盛,植物体内因失水而不利于其生长发育,如人参、三七、胡椒等的栽培,就必须栽培于阴湿的条件下,才能获得较高的产量。 植物在进行光合作用的同时也在进行着呼吸作用,总光合作用是指植物在光照下制造的有机物的总量(吸收的CO2总量)。净光合作用是指在光照下制造的有机物总量(或吸收的CO2总量)中扣除掉在这一段时间中植物进行呼吸作用所消耗的有机物(或释放的CO2)后,净增的有机物的量。 ②温度:植物所有的生活过程都受温度的影响,因为在一定的温度范围内,提高温度可以提高酶的活性,加快反应速度。光合作用也不例外,在一定的温度范围内,在正常的光照强度下,提高温度会促进光合作用的进行。但提高温度也会促进呼吸作用。如图所示。所以植物净光合作用的最适温度不一定就是植物体内酶的最适温度。 ③CO2浓度:CO2是植物进行光合作用的原料,只有当环境中的CO2达到一定浓度时,植物才能进行光合作用。植物能够进行光合作用的最低CO2浓度称为CO2补偿点,即在此CO2浓度条件下,植物通过光合作用吸收的CO2与植物呼吸作用释放的CO2相等。环境中的CO2低于这一浓度,植物的光合作用就会低于呼吸作用,消耗大于积累,长期如此植物就会死亡。一般来说,在一定的范围内,植物光合作用的强度随CO2浓度的增加而增加,但达到一定浓度后,光合作用强度就不再增加或增加很少,这时的CO2浓度称为CO2的饱和点。如CO2浓度继续升高,光合作用不但不会增加,反而要下降,甚至引起植物CO2中毒而影响植物正常的生长发育。如图所示。 ④必需矿质元素的供应:绿色植物进行光合作用时,需要多种必需的矿质元素。如氮是催化光合作用过程各种酶以及NADP+和ATP的重要组成成分,磷也是NADP+和ATP的重要组成成分。科学家发现,用磷脂酶将离休叶绿体膜结构上的磷脂水解掉后,在原料和条件都具备的情况下,这些叶绿体的光合作用过程明显受到阻碍,可见磷在维持叶绿体膜的结构和功能上起着重要的作用。又如绿色植物通过光合作用合成糖类,以及将糖类运输到块根、块茎和种子等器官中,都需要钾。再如镁是叶绿体的重要组成成分,没有镁就不能合成叶绿素。等等。 5、有氧呼吸和无氧呼吸的比较 有氧呼吸和无氧呼吸的公共途径是呼吸作用第一阶段(糖酵解),是在细胞质基质中进行。在没有氧气的条件下,糖酵解过程的产物丙酮酸被[H]还原成酒精和CO2或乳酸等,在不同的生物体由于酶的不同,其还原的产物也不同。在有氧气的条件下,丙酮酸进入线粒体继续被氧化分解。如图。由于无氧呼吸哪有机物是不彻底的,释放的能量很少,转移到A TP中的能量就更少,还有大量的能量贮藏在不彻底的氧化产物中,如酒精乳酸等。有氧呼吸在有氧气存在的条件下能把糖类等有机物彻底氧化分解成CO2和H2O,把有机物中的能量全部释放出来,约有44%的能量转移到ATP中。所以有氧呼吸为生命活动提供的能量比无氧呼吸多得多,在进化过程中绝大部分生物选择了有氧呼吸方式,但为了适应不利的环境条件还保留了无氧呼吸方式。 6、影响呼吸作用的因素: ①温度:温度能影响呼吸作用,主要是影响呼吸酶的活性。一般而言,在一定的温度范围内,呼吸强

影响材料性能的因素

1.0 影响材料性能的因素 2.01.1 碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提咼,会使珠光体量减少,铁素体量增加。因此,碳当量的提咼将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2 合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo 等促进珠光体生成 元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较咼的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3 炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制 参数。因此炉料配比对铸铁材料的机械性能有着直接的影响,是熔炼控制的重点。

金属材料屈服强度的影响因素.

金属材料屈服强度及其影响因素 屈服强度是指材材料开始产生宏观塑性变形时的应力。对于屈服现象明显的材料,屈服强度就屈服点的应力—屈服值;对于屈服现象不明显的材料,通常将应力-应变曲线上以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 屈服强度通常用作固体材料力学机械性质的评价指标,是材料的实际使用极限。 影响屈服强度的因素 影响屈服强度的内在因素有: 1.金属本性及晶格类型——纯金属单晶体的屈服强度由位错运动时所受的阻力决定。这些阻力有晶格阻力和位错间交互作用产生的阻力之分。其中晶格力与位错宽度和柏氏矢量有关,而两者又与晶体结构有关。位错间交互产生的阻力包括平行位错间交互产生的阻力和运动位错与林位错交互产生的阻力。用公式表示:T=αGb/L,式中α为比例系数,又因为密度ρ与1/L2成正比,因此,T=αGb ρ1/2,由此可见,密度增加,屈服强度也随之增加。 2.晶粒大小和亚结构——晶粒大小的影响是晶界影响的反映,减小晶粒尺寸将增加位错运动障碍的数目,减小晶粒内位错塞积群的长度,将使屈服强度提高。许多金属与合金的屈服强度与晶粒大小的关系均符合霍尔佩奇公式σ s =σ j +k y d-1/2,式中,σ j 是位错在基体金属中运动的总阻力,亦称摩擦阻力,它决定于 晶体结构和位错密度;k y 是度量晶界对强化贡献大小的钉扎常数,或表示滑移带端部的应力集中系数;d为晶粒平均尺寸。亚晶界的作用和晶界类似,也阻碍位错的运动。 3.溶质元素——纯金属中融入溶质原子形成间隙型或置换型固溶合金将会显著提高屈服强度,此即为固溶强化。这主要是由于溶质原子和溶剂原子直径不同,在溶质周围形成了晶格畸变应力场,该应力场产生交互作用,使位错运动受阻,从而提高屈服强度。 4.第二相——工程上的金属材料,其显微组织一般是多相的。第二相对屈服强度的影响与质点本身在金属材料屈服变形过程中能否变形有很大关系。据此可将第二相质点分为不可变形和可变形的两类。 根据位错理论,位错线只能绕过不可变形的第二相质点,为此,必须克服弯曲位错的线张力。不可变形第二相质点的金属材料,其屈服强度与流变应力就决定于第二相质点之间的间距。对于可变形的第二相质点,位错可以切过,使之同基体一起变形,由此也能提高屈服强度。 第二相的强化效果还与其尺寸、形状、数量和分布以及第二相与基体的强度、塑性相应硬化特性、两相间的晶体学配合和界面能等因素有关。在第二相体积比相同的情况下,长形质点显著影响位错运动,因而具有此种组织的金属材料,其屈服强度就比球状的高。 综上所述,表征金属微量塑性变形抗力的屈服强度是一个对成分、组织极其敏感的力学性能指标,受许多内在因素的影响,改变合金成分或热处理工艺可使屈服强度产生明显变化。

影响光合作用的因素练习题

影响光合作用的因素练习题 一、内部因素对光合作用速率的影响及应用 1.同一植物的不同生长发育阶段 曲线分析:在外界条件相同的情况下,光合作用速率由弱到强依次是___________、_________、__________ 应用:根据植物在不同生长发育阶段__________速率不同,适时、适量地提供水肥及其他环境条件,以使植物茁壮成长。 2.同一叶片的不同生长发育时期 曲线分析:随幼叶发育为壮叶,叶面积增大,叶绿体不断增多,叶绿素含量不断增加,光合速率______;老叶内叶绿素被破坏,光合速率随之______。 应用:农作物、果树管理后期适当摘除老叶、残叶及茎叶蔬菜及时换新叶,都是根据其原理,可降低其___________消耗的有机物。 二、外界因素对光合作用速率的影响及应用 1.单因子因素 (1)光照强度 ①原理分析:光照强度影响光合速率的原理是通过影响____________阶段,制约________________________的产生,进而制约__________阶段。 ②图像分析:A点时只进行_________;AB段随着光照强度的增强,________强度也增强,但是仍然小于____________强度;B点时代谢特点为__________________;BC段随着光照强度的增强,光合作用强度仍不断增强;

C点对应的光照强度为____________,限制C点的环境因素可能有_________________等。 ③完成填空后,在下面的四幅图中标出A点、AB段、B点和B点之后的氧气和二氧化碳转移方向。 ④应用分析:欲使植物正常生长,则必须使光照强度大于____点对应的光照强度;适当提高_________可增加大棚作物产量。 (2)光照面积 ①图像分析:OA段表明随叶面积的不断增大,光合作用实际量不断增大,A点 为光合作用面积的饱和点。随叶面积的增大,光合作用强度不再增加,原因是_____________________ ②OB段表明干物质量随光合作用增加而增加,而由于A点以后 不再增加,但叶片随叶面积的不断增加,(OC段)不断增加,所以干物质积累量不断(BC段)。 ②应用分析:适当间苗、修剪,合理施肥、浇水,避免徒长。封顶过早,使中下层叶子所受的光照往往在光补偿点以下,白白消耗有机物,造成不必要的浪费。 (3)CO2浓度 ①原理分析:CO2浓度影响光合作用的原理是通过影响阶段,制约生

探究安培力的影响因素参考资料

师:[设疑]前面学习了电场和磁场,电和磁之间是否存在着某种内在联系? [flash演示]奥斯特实验 [提问] 小磁针的偏转说明了什么? [分析与讨论] 小磁针在磁场中受磁场力的作用才会发生偏转,实验结果说明,不仅磁铁能产生磁场,电流也能产生磁场。通电导线通过周围产生的磁场对磁体有力的作用(电流→磁场→磁体)。那根据牛顿第三定律可知,磁体通过周围的磁场对通电导线也应该有力的作用(磁体→磁场→电流?)。下面我们就用一个迷你小实验来探究一下磁场对通电导线是否也有力的作用呢? 2、学生回答:不仅磁铁能产生磁场,电流也能产生磁场。 [板书] 一、探究磁场对电流的作用 1、安培力 [迷你实验] 第一种第二种第三种第四种 [分析与讨论] 实验中观察到什么现象?可以得到什么实验结果? [总结] 当通电导线附近有磁体时,通电导线会受到力的作用。物理学上把磁场对电流的作用力称为安培力。 2、方向的判断—— [提出问题] 从前面的实验中发现,当通电导线的电流方向改变或磁体的磁极位置交换时,通电导线的受力方向也会发生改变。说明安培力的方向与电流方向和磁场方向有关。怎样具体确定安培力的方向? [过渡] 安培力是个矢量,之前我们已经研究了它的方向,那么它的大小到底会与哪些因素有哪些? 3、大小的探究——控制变量法 [提出问题] 请同学们在上述实验的基础上提出猜想,安培力的大小可能与哪些因素有关? [猜想与假设] 引导学生在上述实验的基础上提出猜想,安培力可能与通电导线的长度

(通电导线在磁场中的长度)、电压(电流)以及磁场(磁感应强度)等因素有关。(导线材料?横截面积?) [总结] 基于有些因素前任已经排出了其可能性,今天我们就研究一下安培力与电流大小I、磁场中导线长度L及磁感应强度B的关系。 (引导学生进行讨论交流设计实验) [研究方法] 从上面的分析可知,影响安培力的因素很多,如果将它们混在一起考虑,无法知道每个因素是怎样影响安培力的。因此,实验中通常只让某个因素(变量)变化,不让其他因素变化(控制变量),这样便知道这个因素是如何影响安培力的了。这就是物理学中一种重要的思想方法——控制变量法。(类似于探究牛顿第二定律a与F、m的关系) [设计实验] (1)研究F与I的关系: 控制B、L不变 如何改变I?通过调整滑动变阻器的滑片位置改变电流的大小(一种短路,一种较大电阻)如何通过现象判断F与I的关系?观察通电导线摆动后悬线与竖直方向的夹角(安培力越大,摆动角度越大) [实验方案] ①将导体棒用细铜丝悬挂起来,细铜丝与电源相连,导体棒置于蹄形磁铁中,并与磁感线垂直。(蹄形磁铁中间的磁场可以近似认为是匀强磁场) ②在磁感应强度和通电导线在磁场中的长度不变的情况下,合上开关,移动滑片位置改变电流的大小,探究电流的大小对安培力的影响。观察其现象。 [由学生分析现象] 当增大流过通电导线的电流时,通电导线摆动后悬线与竖直方向的夹角变大。(由力的平衡条件可得,F越大,夹角越大)→(定性研究得出)I越大,F越大;I越小,F越小→(经物理学家的进一步定量研究得出)F与I成正比。 (2)研究F与L的关系: 控制B、I不变(使滑动变阻器处于被短路状态) 如何改变L?通过并列放置2块磁感应强度磁铁改变磁场中导体的长度。

光合作用-影响光合作用的因素

1.影响光合作用速率的环境因素(Ⅱ) (1)分析影响光合作用速率的内外因(从底物、条件和产物分析) (2)总结光合作用原理在农业生产方面的应用 分析影响光合作用的因素,我们要从光合作用的反应式出发,从反应物、产物和反应条件三个方面入手。 光合作用强度(光合速率):植物在单位时间内通过光合作用制造糖类的数量。用一定时间内原料消耗或产物生成的数量来定量表示。 对坐标曲线分析采用:识轴→明点→析线 一、单因子变量对光合作用影响的曲线分析 1.光照强度 (1)原理:影响光反应阶段,制约ATP及NADPH的产生,进而制约暗反应 (2)曲线 光补偿点:光合作用强度与呼吸作用强度相等时刻的光照强度。光照强度>光补偿点,植物才能生长。 光饱和点:光合作用强度达到饱和时的最低光照强度。 (3)应用:温室大棚适当提高光照强度可以提高光合作用速率。 判断光补偿点的移动 (1)光合作用增强,呼吸作用不变或减弱 若外因使光合速率大于呼吸速率,左移。 (2)光合作用不变或减弱,呼吸作用增强 若外因使光合速率小于呼吸速率,右移。

判断光饱和点的移动 植物出现光饱和点实质是强光下暗反应跟不上光反应从而限制了光合速率随着光强的增加而提高。影响暗反应的因素如CO2浓度、温度(影响酶的活性)、pH(影响酶的活性)会影响光饱和点。所以我们在分析时要抓住这一本质,如果外界因素使暗反应增强,则光饱和点右移,反之,则左移。 分析表中数据可知,若其他条件不变,当pH由9.0增大到10.0时水葫芦的光补偿点最可能(左移/右移/不移动)。光饱和点最可能(左移/右移/不移动)。 【例2】图甲表示某植物体在30℃恒温时的光合速率(以植物体对O2的吸收或释放量计算)与光照强度的关系。

影响端子性能的几大因素

影响端子性能的几大因素 随着我国汽车工业的快速发展和汽车电器系统的日益完善,对汽车端子的精细化和可靠性要求越来越高。汽车端子的传输性能是判断连接性能的标准,通过对以往端子在使用过程中存在的问题总结发现,影响端子传输能力的分别有以下几种因素:端子的材料、端子的设计结构、端子的表面处理品质以及端子的压接等。 1、端子的材料选择 端子的材料应考虑到功能性和经济性要求。目前国内端子类产品使用的材料大致有以下几种:黄铜,磷青铜,紫铜,铍青铜,根据以上各种材料的特性差异进行选用,黄铜一般适用于孔式插片插头类别。磷青铜抗疲劳性,抗腐蚀性好,具有良好的弹性,适合用于插座。紫铜的电导率和热导率仅次于银,适用于大电流高压连接器与充电接口的端子。铍青铜以铍为主要合金元素的铜合金,又称之为铍铜,它是铜合金中性能更好的有弹性材料,有很高的强度、弹性、硬度、疲劳强度、弹性滞后小、耐蚀、耐磨、耐寒、高导电、无磁性、冲击不产生火花等一系列优良的物理、化学和力学性能适用于高压连接器与充电接口的簧片。 2、端子的设计结构 端子设计要遵循的原则为:在满足传输的前提下,尽可能减小端子的用料量,降低产品的设计成本。在设计过程中,影响端子导电特性的一个重要因素就是端子的瓶颈指端子导电面中最小截面处结构,该结构直接决定端子的载流能力,在设计的过程中,要使该截面必须满足端子的导电需求。

3、端子的表面处理 电镀可改变固体表面特性从而改变外观,提高耐蚀性,抗磨性,增强硬度。镀锡是目前端子采用的一种比较常见的电镀工艺,目前镀金与镀银的工艺是更好的电镀工艺。检验镀层的是否优良的方法是通过控制镀层的厚度来判断镀层的品质,可通过相应的盐雾实验进行检验。 4、端子间的插入力 端子使用过程中,主要存在的问题是端子与端子之间的插入力控制不稳定,究其原因为端子弹片的正压力不稳定造成,从而引起端子接触面电阻增加,导致端子的温升增加,引起连接器的烧蚀和导电功能丧失等一系列问题。严重时会引起由于热量的增加而烧车等严重后果。 5、尾部压接 压接品质将直接影响端子的传输品质。压接啮合长度及其压接高度对压接品质影响很大。较紧密的压接其机械强度和电气性能要好于较松的压接.所以应严格控制压接截面的尺寸。影响端子与导线压接效果的因素有很多。任何一种端子,它适应的线径都有一定的范围,而线径是影响压接品质的一个重要因素。其次导线本身也是值得研究的地方,国内外的产品都有各自不同的特点。 在实际的生产中,应遵循以下原则: ①导线的线径要符合端子的尾部; ②导线剥头部分的长度要适中; ③选择合适的压接模具; ④端子压接后要进行拉脱力试验。 检验端子压接方式为:检验端子的压接剖面和端子的拉脱力。剖面可以直观判断压接的效果。压接结果不得出现漏铜丝和触底等缺陷。拉脱力可以判断压接的可靠性。 通过以上对影响端子电性能的因素分析,不难看出,影响端子性能的因素很多。既有设计前期的选材,也有结构设计的合理性,以及后续产品压接等。所以,在该类产品的设计过程中,应多角度分析问题,找出更优的设计方案。

高中物理练习:探究安培力

5.4 探究安培力 [学科素养与目标要求] 物理观念:1.知道安培力的概念,掌握安培力的公式.2.知道左手定则的内容. 科学思维:1.会用左手定则判定安培力的方向.2.会用安培力的公式F=ILBsinθ进行有关计算. 科学探究:能设计方案、选择器材进行实验,探究安培力F与I、L、B的定量关系,体会控制变量法在实验中的应用. 一、安培力的方向 利用如图1所示的实验装置进行实验. 图1 (1)上下交换磁极的位置以改变磁场方向,导线受力的方向是否改变? (2)改变导线中电流的方向,导线受力的方向是否改变? 仔细分析实验结果,说明安培力的方向与磁场方向、电流方向有怎样的关系? 答案(1)导线受力的方向改变 (2)导线受力的方向改变 安培力的方向与磁场方向、电流方向的关系满足左手定则 [要点总结] 1.左手定则:伸开左手,使大拇指跟其余四个手指垂直,且都跟手掌在同一个平面内,让磁感线穿入手心,使四指指向电流方向,则大拇指所指的方向就是安培力的方向,如图2所示. 图2 2.判断电流的磁场方向用安培定则(右手螺旋定则),确定通电导体在磁场中的受力方向用左手定则.

3.安培力方向的特点 安培力的方向既垂直于电流方向,也垂直于磁场方向,即安培力的方向垂直于电流I和磁场B所决定的平面. (1)当电流方向与磁场方向垂直时,安培力方向、磁场方向、电流方向两两垂直,应用左手定则时,磁感线垂直穿过掌心. (2)当电流方向与磁场方向不垂直时,安培力的方向仍垂直于电流方向,也垂直于磁场方向.应用左手定则时,磁感线斜着穿入掌心. [延伸思考] 电流周围可以产生磁场,磁场又会对放在其中的电流产生力的作用,如果有两条相互平行的、距离很近的通电直导线,它们之间会不会有力的作用?若有力的作用,那么同向电流之间的作用力如何?反向电流之间的作用力如何? 答案有力的作用,同向电流相互吸引,反向电流相互排斥. 例1 画出图3中各磁场对通电导线的安培力的方向(与纸面垂直的力只需用文字说明). 图3 答案如图所示 解析无论B、I是否垂直,安培力总是垂直于B与I决定的平面,且满足左手定则. 学科素养例1用左手定则来判断安培力的方向,这是从物理学视角对客观事物的内在规律及相互关系进行分析,是对基于经验事实建构的理想模型的应用过程,体现了“科学思维”的学科素养.

相关文档
相关文档 最新文档