文档库 最新最全的文档下载
当前位置:文档库 › 第二章ARM Cortex-M3内核结构

第二章ARM Cortex-M3内核结构

第二章ARM Cortex-M3内核结构
第二章ARM Cortex-M3内核结构

第二章井身结构设计

第二章井身结构设计 井身结构设计是钻井工程的基础设计。它的主要任务是确定套管的下入层次、下入深度、 水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。基础设计的质量是关系到油气井能否安 全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。由于地区及钻探目的层的 不同,钻井工艺技术水平的高低,国内外各油田井身结构设计变化较大。选择井身结构的客观 依据是地层岩性特征、地层压力、地层破裂压力。主观条件是钻头、钻井工艺技术水平等。井身结构设计应满足以下主要原则: 1.能有效地保护储集层; 2.避免产生井漏、井塌、卡钻等井下复杂情况和事故。为安全、优质、高速和经济钻井 创造条件; 3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流的能力。本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。 第一节地层压力理论及预测方法 地层压力理论和评价技术对天然气及石油勘探开发有着重要意义。钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制的基础。 一、几个基本概念 1.静液柱压力 静液柱压力是由液柱自身重量产生的压力,其大小等于液体的密度乘以重力加速度与液柱垂直深度的乘积,即 P h = 0.00981 rH (2-1) 式中:P h――静液柱压力,MPa;

r -- 液柱密度,g/cm 3 ; H ——液柱垂直高度, m 。 静液柱压力的大小取决于液柱垂直高度 H 和液体密度r ,钻井工程中,井愈深,静液柱压 力越大。 2.压力梯度 指用单位高度(或深度)的液柱压力来表示液柱压力随高度(或深度)的变化。 P h G h — 0.00981 H 式中:G h ――液柱压力梯度,MPa/m ; P h ――液柱压力,MPa ; H ——液柱垂直高度, m 。 石油工程中压力梯度也常采用当量密度来表示,即 P h 0.00981H 式中:r ——当量密度梯度,g/cm 3 ; 3?有效密度 钻井流体在流动或被激励过程中有效地作用在井内的总压力为有效液柱压力,其等效(或 当量)密度定义为有效 密度。 4. 压实理论 指在正常沉积条件下,随着上覆地层压力 P 0的增加,泥页岩的孔隙度 f 减小,f 的减小量 与P o 的增量dP o 及孔隙尺寸有关,即: (2-2) (2-3)

结构设计原理 第二章 混凝土 习题及答案

第二章混凝土结构的设计方法 一、填空题 1、结构的、、、统称为结构的可靠性。 2、当结构出现或或或状态时即认为其超过了承载力极限状态。 3、当结构出现或或或 状态时即认为其超过了正常使用极限状态。 4、结构的可靠度是结构在、、完成的概率。 5、可靠指标 = ,安全等级为二级的构件延性破坏和脆性破坏时的目标可靠指标分别是和。 6、结构功能的极限状态分为和两类。 7、我国规定的设计基准期是年。 8、结构完成预定功能的规定条件是、、。 9、可变荷载的准永久值是指。 10、工程设计时,一般先按极限状态设计结构构件,再按 极限状态验算。 二、判断题 1、结构的可靠度是指:结构在规定的时间内,在规定的条件下,完成预定功能的概率值。 2、偶然作用发生的概率很小,持续的时间很短,但一旦发生,其量值可能很大。 3、钢筋强度标准值的保证率为%。HPB235级钢筋设计强度210N/mm2,意味着尚有%的钢筋强度低于210N/mm2。 4、可变荷载准永久值:是正常使用极限状态按长期效应组合设计时采用的

可变荷载代表值。 5、结构设计的基准期一般为50年。即在50年内,结构是可靠的,超过50年结构就失效。 6、构件只要在正常使用中变形及裂缝不超过《规范》规定的允许值,承载力计算就没问题。 7、某结构构件因过度的塑性变形而不适于继续承载,属于正常使用极限状态的问题。 8、请判别以下两种说法的正误:(1)永久作用是一种固定作用;(2)固定作用是一种永久作用。 9、计算构件承载力时,荷载应取设计值。 10、结构使用年限超过设计基准期后,其可靠性减小。 11、正常使用极限状态与承载力极限状态相比,失效概率要小一些。 12、没有绝对安全的结构,因为抗力和荷载效应都是随机的。 13、实用设计表达式中的结构重要性系数,在安全等级为二级时,取 00.9 γ=。 14、在进行正常使用极限状态的验算中,荷载采用标准值。 15、钢筋强度标准值应具有不少于95%的保证率。 16、结构设计的目的不仅要保证结构的可靠性,也要保证结构的经济性。 17、我国结构设计的基准期是50年,结构设计的条件:正常设计、正常施工、正常使用。 18、结构设计中承载力极限状态和正常使用极限状态是同等重要的,在任何情况下都应计算。 19、结构的可靠指标β愈大,失效概率就愈大;β愈小,失效概率就愈小。 20、(结构的抗力)R

第二章ARM_Cortex-M3内核结构

第二章ARM Cortex-M3内核结构教学目标 通过本章的学习,要理解ARM Cortex-M3内核结构,结合MCS-51单片机,分析其优缺点;掌握ARM Cortex-M3内核寄存器组织、处理器运行模式、存储器映象、异常及其操作;了解存储器保护单元及应用;了解ARM Cortex-M3调试组件的工作原理及应用。 本章是ARM Cortex-M3微控制器体系结构分析,内容涉及内核结构、CPU寄存器组织、存储器映射、异常形为及操作,在学习过程中与8位单片机(MCS-51单片机、PIC系列单片机等)结合分析,以期达到良好学习效果。 ARM Cortex-M3处理器简介 2.1.1 概述 ARM公司成立于上个世纪九十年代初,致力于处理器内核研究,ARM 即 Advanced RISC Machines 的缩写,ARM公司本身不生产芯片,只设计内核,靠转让设计许可,由合作伙伴公司来生产各具特色的芯片。这种运行模式运营的成果受到全球半导公司以及用户的青睐。目前ARM体系结构的处理器内核有:ARM7TDMI、ARM9TDMI、ARM10TDMI、ARM11以及Cortex等。2005年ARM推出的ARM Cortex系列内核,分别为:A系列、R系列和M系列,其中A系列是针对可以运行复杂操作系统(Linux、Windows CE、Symbian 等)的处理器;R系列是主要针对处理实时性要求较高的处理器(汽车电子、网络、影像系统);M系列又叫微控制器,对开发费用敏感,对性能要求较高的场合。 Cortex-M系列目前的产品有M0、M1、M3,其中M1用在FPGA中。Cortex-M系列对微控制器和低成本应用提供优化,具有低成本、低功耗和高性能的特点,能够满足微控制器设计师进行创新设计的需求。其中,ARM Cortex-M3处理器的性能是ARM7的两倍,而功耗却只有ARM7的1/3,适用于众多高性能、极其低成本需求的嵌入式应用,如微控制器、汽车系统、大型家用电器、网络装置等,ARM Cortex-M3提供了32位微控制器市场前所未有的优势。 Cortex-M3内核,内部的数据路径为32位,寄存器为32位,存储器接口也是32位。Cortex-M3采用了哈佛结构,拥有独立的指令总线和数据总线,可以让取指与数据访问分开进行。Cortex-M3还提供一个可选的MPU,对存储器进行保护,而且在需要的情况下也可以使用外部的cache。另外在Cortex-M3中,存储器支持小端模式和大端存储格式。Cortex-M3内部还附赠了很多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等。另外,为支持更高级的调试,还有其它可选组件,包括指令跟踪和多种类型的调试接口。 2.1.2 内核结构组成及功能描述 Cortex-M3微控制器内核包括处理核心和许多的组件,目的是用于系统管理和调试支持。如图为Cortex-M3内核方框图。

第二章井身结构设计

第二章 井身结构设计 井身结构设计是钻井工程的基础设计。它的主要任务是确定套管的下入层次、下入深度、水泥浆返深、水泥环厚度、生产套管尺寸及钻头尺寸。基础设计的质量是关系到油气井能否安全、优质、高速和经济钻达目的层及保护储层防止损害的重要措施。由于地区及钻探目的层的不同,钻井工艺技术水平的高低,国内外各油田井身结构设计变化较大。选择井身结构的客观依据是地层岩性特征、地层压力、地层破裂压力。主观条件是钻头、钻井工艺技术水平等。井身结构设计应满足以下主要原则: 1.能有效地保护储集层; 2.避免产生井漏、井塌、卡钻等井下复杂情况和事故。为安全、优质、高速和经济钻井创造条件; 3.当实际地层压力超过预测值发生溢流时,在一定范围内,具有处理溢流的能力。 本章着重阐明地下各种压力概念及评价方法,井身结构设计原理、方法、步骤及应用。 第一节 地层压力理论及预测方法 地层压力理论和评价技术对天然气及石油勘探开发有着重要意义。钻井工程设计、施工中,地层压力、破裂压力、井眼坍塌压力是合理钻井密度设计;井身结构设计;平衡压力钻井;欠平衡压力钻井及油气井压力控制的基础。 一、几个基本概念 1.静液柱压力 静液柱压力是由液柱自身重量产生的压力,其大小等于液体的密度乘以重力加速度与液柱垂直深度的乘积,即 0.00981h P H (2-1) 式中:P h ——静液柱压力,MPa ; ——液柱密度,g/cm 3 ; H ——液柱垂直高度,m 。 静液柱压力的大小取决于液柱垂直高度H 和液体密度,钻井工程中,井愈深,静液柱压力越大。 2.压力梯度 指用单位高度(或深度)的液柱压力来表示液柱压力随高度(或深度)的变化。 ρ00981.0== H P G h h (2-2) 式中:G h ——液柱压力梯度,MPa/m ; P h ——液柱压力,MPa ; H ——液柱垂直高度,m 。 石油工程中压力梯度也常采用当量密度来表示,即

Linux内核结构详解教程

Linux内核结构详解教程 ─────Linux内核教程 linux内核就像人的心脏,灵魂,指挥中心。 内核是一个操作系统的核心,它负责管理系统的进程,内存,设备驱动程序,文件和网络系统,决定着系统的性能和稳定性。内核以独占的方式执行最底层任务,保证系统正常运行。协调多个并发进程,管理进程使用的内存,使它们相互之间不产生冲突,满足进程访问磁盘的请求等等. 严格说Linux并不能称做一个完整的操作系统.我们安装时通常所说的Linux,是有很多集合组成的.应称为GNU/Linux. 一个Linux内核很少1.2M左右,一张软盘就能放下. 内容基础,语言简短简洁 红联Linux论坛是致力于Linux技术讨论的站点,目前网站收录的文章及教程基本能满足不同水平的朋友学习。 红联Linux门户: https://www.wendangku.net/doc/0817598316.html, 红联Linux论坛: https://www.wendangku.net/doc/0817598316.html,/bbs 红联Linux 论坛大全,所有致力点都体现在这 https://www.wendangku.net/doc/0817598316.html,/bbs/rf/linux/07.htm

目录 Linux内核结构详解 Linux内核主要五个子系统详解 各个子系统之间的依赖关系 系统数据结构 Linux的具体结构 Linux内核源代码 Linux 内核源代码的结构 从何处开始阅读源代码 海量Linux技术文章

Linux内核结构详解 发布时间:2006-11-16 19:05:29 Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。

Linux内核主要五个子系统详解 发布时间:2006-11-16 19:05:54 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。

linux系统内核结构详解

Linux内核主要由五个子系统组成:进程调度,内存管理,虚拟文件系统,网络接口,进程间通信。 1.进程调度(SCHED):控制进程对CPU的访问。当需要选择下一个进程运行时,由调度程序选择最值得运行的进程。可运行进程实际上是仅等待CPU资源的进程,如果某个进程在等待其它资源,则该进程是不可运行进程。Linux使用了比较简单的基于优先级的进程调度算法选择新的进程。 2.内存管理(MM)允许多个进程安全的共享主内存区域。Linux的内存管理支持虚拟内存,即在计算机中运行的程序,其代码,数据,堆栈的总量可以超过实际内存的大小,操作系统只是把当前使用的程序块保留在内存中,其余的程序块则保留在磁盘中。必要时,操作系统负责在磁盘和内存间交换程序块。内存管理从逻辑上分为硬件无关部分和硬件有关部分。硬件无关部分提供了进程的映射和逻辑内存的对换;硬件相关的部分为内存管理硬件提供了虚拟接口。 3.虚拟文件系统(VirtualFileSystem,VFS)隐藏了各种硬件的具体细节,为所有的设备提供了统一的接口,VFS提供了多达数十种不同的文件系统。虚拟文件系统可以分为逻辑文件系统和设备驱动程序。逻辑文件系统指Linux所支持的文件系统,如ext2,fat等,设备驱动程序指为每一种硬件控制器所编写的设备驱动程序模块。 4.网络接口(NET)提供了对各种网络标准的存取和各种网络硬件的支持。网络接口可分为网络协议和网络驱动程序。网络协议部分负责实现每一种可能的网络传输协议。网络设备驱动程序负责与硬件设备通讯,每一种可能的硬件设备都有相应的设备驱动程序。 5.进程间通讯(IPC) 支持进程间各种通信机制。 处于中心位置的进程调度,所有其它的子系统都依赖它,因为每个子系统都需要挂起或恢复进程。一般情况下,当一个进程等待硬件操作完成时,它被挂起;当操作真正完成时,进程被恢复执行。例如,当一个进程通过网络发送一条消息时,网络接口需要挂起发送进程,直到硬件成功地完成消息的发送,当消息被成功的发送出去以后,网络接口给进程返回一个代码,表示操作的成功或失败。其他子系统以相似的理由依赖于进程调度。 各个子系统之间的依赖关系如下: 进程调度与内存管理之间的关系:这两个子系统互相依赖。在多道程序环境下,程序要运行必须为之创建进程,而创建进程的第一件事情,就是将程序和数据装入内存。 进程间通信与内存管理的关系:进程间通信子系统要依赖内存管理支持共享内存通信机制,这种机制允许两个进程除了拥有自己的私有空间,还可以存取共同的内存区域。 虚拟文件系统与网络接口之间的关系:虚拟文件系统利用网络接口支持网络文件系统(NFS),也利用内存管理支持RAMDISK设备。 内存管理与虚拟文件系统之间的关系:内存管理利用虚拟文件系统支持交换,交换进程(swapd)定期由调度程序调度,这也是内存管理依赖于进程调度的唯一原因。当一个进程存

uCOS-II内核架构解析

目录 嵌入式RTOS (3) 1.嵌入式系统基本模型 (3) 2.RTOS设计原则 (3) 3.GPOS与RTOS (3) 4.嵌入式开发模式 (4) 5.(不)可重入 (4) 6.互斥条件 (4) 7.临界状态 (4) uC/OS-II基本介绍 (5) 1.uC/OS-II文件结构 (5) 2.uC/OS-II组成部分 (5) 3.uC/OS-II任务状态 (6) uC/OS-II系统核心 (6) 1.uC/OS-II任务调度 (6) (1)uC/OS-II调度算法 (6) (2)任务就绪表 (7) (3)任务级任务调度 (7) (4)中断级任务调度 (8) (5)调度器上锁与解锁 (9) (6)中断管理函数 (9) (7)中断相关问题 (10) 2.uC/OS-II系统启动 (10) (1)初始化函数OSInit() (10) (2)启动函数OSStart() (11) (3)统计任务OSTaskStat (12) 3.uC/OS-II系统时钟 (12) 4.uC/OS-II事件管理 (12) (1)事件控制块 (12) (2)ECB管理机制 (13) (3)ECB管理函数 (13) uC/OS-II任务管理 (13) 1.C可执行代码结构 (13) 2.任务结构 (14) 3.任务栈 (14) 4.任务控制块 (14) (1)TCB描述 (14)

(2)TCB主要成员 (14) (3)TCB全局变量 (14) 5.任务状态切换 (15) 6.任务管理函数 (15) uC/OS-II通信与同步 (16) 1.消息邮箱Mbox (16) 2.消息队列msgQ (16) (1)msgQ基本内容 (16) (2)msgQ全局变量 (17) (3)msgQ管理函数 (17) (4)msgQ几个问题 (18) 3.信号量Sem (18) 4.互斥锁Mutex (19) (1)Mutex基本原理 (19) (2)提升/恢复优先级 (19) (3)Mutex管理函数 (19) 5.事件组标志Flag (20) (1)Flag基本原理 (20) (2)Flag数据结构 (20) (3)Flag管理函数 (21) 6.Task就绪状态判断??? (22) uC/OS-II内存管理 (23) 1.memPart基本原理 (23) 2.memPart管理函数 (23) 3.memPart几个问题 (24) uC/OS-II应用开发 (24) 1.开发步骤 (24) 2.编写任务函数 (24) 3.堆栈设计扩展 (25) 4.一些借鉴经验 (25) uC/OS-II内核移植 .................................................................... 错误!未定义书签。 1.uC/OS-II正常运行的条件............................................ 错误!未定义书签。 2.运行态代码分布............................................................ 错误!未定义书签。 3.移植的几个问题............................................................ 错误!未定义书签。

第二章球罐结构设计

第二章 球罐结构设计 球壳球瓣结构尺寸计算 设计计算参数: 球罐内径:D=12450mm []2 3341-表P 几何容积:V=974m 3 公称容积:V 1=1000m 3 球壳分带数:N=3 支柱根数:F=8 各带球心角/分块数: 上极:°/7 赤道:°/16 下极:°/7 图 2-1混合式排板结构球罐 混合式结构排板的计算: 1.符号说明: R--球罐半径6225 mm N--赤道分瓣数16 (看上图数的) α--赤道带周向球角° (360/16) 0β--赤道带球心角70° 1β--极中板球心角44° 2β--极侧板球心角11° 3β--极边板球心角22° 2赤道板(图2-2)尺寸计算:

图2-2 弧长L )=1800βR π =180 70 622514.3??= 弦长L =2Rsin(20β)=2x6225×sin(2 70 )=7141mm 弧长1B )=N R π2cos(20β)=16 14.362252?x ×cos 270 = 弦长1B =2Rcos(20β)sin(2α)=2x6225×cos35sin 2 5 .22= 弧长2B )=N R π2=16 14 .362252?x = 弦长2B =2Rsin 2α=2x6225×sin(2 5 .22)= 弦长D =2R )2 (cos )2( cos 120 2α β- =2x6225x )2 5.22(cos )270( cos 122- = 弧长D )=90R πarcsin(2R D )=903.14x6225arcsin(2x6225 7413.0 ) = 极板(图2-3)尺寸计算: 图2-3 对角线弧长与弦长最大间距: H=)2 ( sin 121 2ββ++=)112 44 ( sin 12++ = 1B ) = L ) = 1B ) = 2B )= 0D )=

第二章-混凝土结构设计原理

第2章混凝土结构材料的物理力学性能 2.1 混凝土的物理力学性能 2.1.1 单轴向应力状态下的混凝土强度 虽然实际工程中的混凝土结构和构件一般处于复合应力状态,但是单轴向受力状态下混凝土的强度是复合应力状态下强度的基础和重要参数。 混凝土试件的大小和形状、试验方法和加载速率都影响混凝土强度的试验结果,因此各国对各种单轴向受力下的混凝土强度都规定了统一的标准试验方法。 1 混凝土的抗压强度 (1) 混凝土的立方体抗压强度f cu,k和强度等级 我国《混凝土结构设计规范》规定以边长为150mm的立方体为标准试件,标准立方体试件在(20±3)℃的温度和相对湿度90%以上的潮湿空气中养护28d,按照标准试验方法测得的抗压强度作为混凝土的立方体抗压强度,单位为“N/mm2”。 用上述标准试验方法测得的具有95%保证率的立方体抗压强度作为混凝土的强度等级。《混凝土结构设计规范》规定的混凝土强度等级有C15、C20、C25、C30、C35、C40、C45、C50、C55、C60、C65、C70、C75和C80,共14个等级。例如,C30表示立方体抗压强度标准值为30N/mm2。其中,C50~C80属高强度混凝土范畴。 图2-1 混凝土立方体试块的破坏情况 (a)不涂润滑剂;(b) 涂润滑剂 (2) 混凝土的轴心抗压强度 混凝土的抗压强度与试件的形状有关,采用棱柱体比立方体能更好地反映混凝土结构的实际抗压能力。用混凝土棱柱体试件测得的抗压强度称为轴心抗压强度。 图2-2 混凝土棱柱体抗压试验和破坏情况

我国《普通混凝土力学性能试验方法标准》(GB/T 50081—2002)规定以 150mm×150mm×300mm 的棱柱体作为混凝土轴心抗压强度试验的标准试件。 《混凝土结构设计规范》规定以上述棱柱体试件试验测得的具有95%保证率的抗压强度为混凝土轴心抗压强度标准值,用符号f ck 表示,下标c 表示受压,k 表示标准值。 图2-3 混凝土轴心抗压强度与立方体抗压强度的关系 考虑到实际结构构件制作、养护和受力情况等方面与试件的差别,实际构件强度与试件强度之间将存在差异,《混凝土结构设计规范》基于安全取偏低值,轴心抗压强度标准值与立方体抗压强度标准值的关系按下式确定: k cu c c ck f f ,2188.0αα= 1c α为棱柱体抗压强度与立方体抗压强度之比,对混凝土强度等级为C50及以下的取0.76,对C80取0.82,两者之间按直线规律变化取值。 2c α为高强度混凝土的脆性折减系数,对C40及以下取1.00,对C80取0.87,中间按直线规律变化取值。 0.88为考虑实际构件与试件混凝土强度之间的差异而取用的折减系数。 国外常采用混凝土圆柱体试件来确定混凝土轴心抗压强度。例如美国、日本和欧洲混凝土协会(CEB)都采用直径6英寸(152mm)、高12英寸(305mm)的圆柱体标准试件的抗压强度作为轴心抗压强度的指标,记作f′c 。 对C60以下的混凝土,圆柱体抗压强度f′c 和立方体抗压强度标准值fcu,k 之间的关系可按下式计算。当f cu,k 超过60N/mm 2后随着抗压强度的提高,f′c 与f cu,k 的比值(即公式中的系数)也提高。CEB-FIP 和MC-90给出:对C60的混凝土,比值为0.833;对C70的混凝土,比值为0.857;对C80的混凝土,比值为0.875。 k cu c f f ,,79.0= 2 混凝土的轴心抗拉强度

第二章结构设计原则

第二章结构设计原则 第一节结构体系 结构体系应根据建筑的抗震设防类别、抗震设防烈度、建筑高度、场地条件、地基、结构材料和施工等因素,经技术、经济和使用条件综合比较确定。 一、结构体系应符合下列各项要求: 1、应具有明确的计算简图和合理的地震作用传递途径。 2、应避免因部分结构或构件破坏而导致整个结构丧失抗震能力或对重力荷载的承载能力。 3、应具备必要的抗震承载力,良好的变形能力和消耗地震能量的能力。 4、对可能出现的薄弱部位,应采取措施提高抗震能力。 二、结构体系尚宜符合下列各项要求: 1、宜有多道抗震防线;提高抗连续倒塌能力。 2、宜具有合理的刚度和承载力分布,避免因局部削弱或突变形成薄弱部位,产生过大的应力 集中或塑性变形集中。 3、结构在两个主轴方向的动力特性宜相近。 三、结构体系分类 1、多层结构体系 多层住宅一般为4~7层,采用的结构体系为多孔砖砌体结构体系、混凝土空心小砌块结构体系、异形柱框架结构体系等。多层公共建筑一般为2~10层左右,结构体系为框架结构体系、框架-剪力墙结构体系。 2、高层结构体系 高层结构适用于10层及10层以上或高度大于28m的住宅建筑以及房屋高度大于24m的其他高层民用建筑混凝土结构。高层住宅一般采用的结构体系为框架结构体系、剪力墙结构体系(包括短肢剪力墙结构体系)、部分框支剪力墙结构体系、框架—剪力墙结构体系;高层公共建筑一般采用框架结构体系、剪力墙结构体系(包括短肢剪力墙结构体系)、部分框支剪力墙结构体系、框架—剪力墙结构体系、框架—核心筒结构体系、筒体结构体系等。

第二节各种结构体系的适用范围 一、多层、高层结构体系适用的最大高度应符合表1。 各种结构体系适用的最大高度(m)表1 注:1、结构体系的高度指室外地面到主要屋面板顶的高度(不包括局部突出屋顶部分),砌体房屋的半地下室从地下室室内地面算起,全地下室和嵌固条件好的半地下室应允许从室外地面算起,对带阁楼的坡屋面应算到山尖墙的1/2高度处; 2、表中高度和层数仅适用于丙类建筑,其他类根据本地具体情况另行确定。

Linux内核结构详解

Linux内核结构详解 于具体结构,我们的划分没有严格依照源代码的目录结构,且和子系统的 分组也不完全匹配,但是,它很接近源代码的目录结构。尽管前面的讨论的 抽象结构显示了各个子系统之间只有很少的依赖关系,但是具体结构的5 个子 系统之间有高度的依赖关系。我们可以看出,具体结构中的很多依赖关系并没 有在抽象结构中出现。Linux 内核源代码目前,较新而又稳定的内核版本是 2.0.x 和2.2.x,因为版本不同稍有差别,因此如果你想让一个新的驱动程序既 支持2.0.x,又支持2.2.x,就需要根据内核版本进行条件编译,要作到这一点, 就要支持宏LINUX_VERSION_CODE,假如内核的版本用a.b.c 来表示,这个宏 的值就是216a+28b+c。要用到指定内核版本的值,我们可以用 KERNEL_VERSION 宏,我们也可以自己去定义它。对内核的修改用补丁文 件的方式发布的。Patch 实用程序用来用来对内核源文件进行一系列的修改。 例如:你有2.2.9 的源代码,但想移到2.2.10。就可以获得2.2.10 的补丁文件, 应用patch 来修改2.2.9 源文件。例如:$nbspcd /usr/src/linux $nbsppatch –pl nbsppatch-2.2.10 Linux 内核源代码的结构nbspLinux 内核源代码位于/usr/src/linux 目录下。/include 子目录包含了建立内核代码时所需的大部分 包含文件,这个模块利用其他模块重建内核。/init 子目录包含了内核的初始 化代码,这是内核工作的开始的起点。/arch 子目录包含了所有硬件结构特定 的内核代码。如:i386,alpha /drivers 子目录包含了内核中所有的设备驱动程序, 如块设备和SCSI 设备。/fs 子目录包含了所有的文件系统的代码。如:ext2,vfat 等。/net 子目录包含了内核的连网代码。/mm 子目录包含了所有内存管理代码。/ipc 子目录包含了进程间通信代码。/kernel 子目录包含了主内核代码。 从何处开始阅读源代码?在Internet,有人制作了源代码导航器,为阅读源代码

windows内核架构

Architecture of the Windows Kernel Berlin April 2008 Dave Probert, Kernel Architect Windows Core Operating Systems Division Microsoft Corporation MS/HP 2008 v1.0a? Microsoft Corporation 2008

NT – the accidental secret Historically little information on NT available –Microsoft focus was end-users and Win9x –Source code for universities was too encumbered Much better internals information today –Windows Internals, 4th Ed., Russinovich & Solomon –Windows Academic Program (universities only):?CRK: Curriculum Resource Kit (NT kernel in PowerPoint) ?WRK: Windows Research Kernel (NT kernel in source) ?Design Workbook: soft copies of the original specs/notes –Chapters in leading OS textbooks (Tanenbaum, Silberschatz, Stallings) ? Microsoft Corporation 20087

钢筋混凝土结构设计 第二章 单项选择精选.

一、单项选择: 1. 地面粗糙度类别为B类的地区指的是() A.有密集建筑群的大城市市区 B.有密集建筑群且房屋较高的城市市区 C.中小城镇和大城市郊区 D.海岸、湖岸、海岛地区 2. 在进行单层厂房柱控制截面内力组合时,每次组合都必 须包括() A.屋面活荷载B.恒荷载 C.风荷载D.吊车荷载 3. 关于变形缝,下列不正确 ...的说法是() A.伸缩缝应从基础顶面以上将缝两侧结构构件完全分开B.沉降缝应从基础底面以上将缝两侧结构构件完全分开C.伸缩缝可兼作沉降缝 D.地震区的伸缩缝和沉降缝均应符合防震缝的要求 4. 下述单层单跨厂房中,整体空间作用较大的是()A.无檩屋盖,两端无山墙B.有檩屋盖,两端有山墙C.有檩屋盖,两端无山墙D.无檩屋盖,两端有山墙

5. 单层厂房抗风柱与屋架上弦之间采用弹簧板连接,弹簧板 () A.只传递水平力B.只传递竖向力 C.只传递弯矩D.不传递力 6. 单层厂房钢筋混凝土柱下独立基础底板配筋主要由() A.地基抗压承载力确定 B.基础底板抗剪承载力确定 C.基础抗冲切承载力确定 D.基础底板抗弯承载力确定 7. 在对框架柱进行正截面设计的内力组合时,最不利组合一般不包括 ...() A.|M|max及相应的N B.|M|min及相应的N C.|N|max及相应的M D.|N|min及相应的M 8.在设计厂房结构吊车荷载时,根据吊车达到其额定起吊 值的( ),将吊车工作制度分为轻级、中级、重级和超重级四种工作制。 A.50% B.2倍 C.频繁程度 D.大小

9.在计算单层厂房排架的风荷载时,柱顶至屋脊的屋盖部 分的风荷载可以取均布,但其对排架的作用则按作用在柱顶的水平集中力考虑。这时的风压高度变化系数对于有矩形天窗时应该取( )。 A.柱顶标高的 B.屋脊标高的 C.柱顶到屋脊中点标高的 D.天窗檐口处的 10. 单层厂房的抗风柱只承受山墙风荷载和其自重时,设计时可近似按() A.轴拉构件计算B.轴压构件计算 C.偏拉构件计算D.受弯构件计算 11. 单层厂房预制柱吊装验算时,一般情况下柱自重应乘以动力系数() A.1.2B.1.4 C.1.5 D.1.7 12. 吊车横向水平荷载作用在() A.吊车梁轨道顶面B.吊车梁顶面 C.吊车梁轨道中部D.吊车梁中部

Linux源代码目录树结构及内核版本号

Linux 内核版本号及源代码目录树结构 一、linux内核版本号的命名机制 Linux内核版本有两种:稳定版和开发版。稳定的内核具有工业级的强度,可以广泛地应用和部署。新的稳定内核相对于较旧的只是修正一些bug或加入一些新的驱动程序。而开发版内核由于要试验各种解决方案,所以变化很快。这两种版本是相互关联,相互循环的。 Linux内核的命名机制: num.num.num 其中第一个数字是主版本号,第二个数字是次版本号,第三个数字是修订版本号。如果次版本号是偶数,那么该内核就是稳定版的;若是奇数,则是开发版的。头两个数字合在一齐可以描述内核系列。如稳定版的2.6.0,它是2.6版内核系列。最新的内核源代码可以在https://www.wendangku.net/doc/0817598316.html,以tar包或者增量补丁的形式下载.。 Linux还有各种发行版本,除了最熟悉的Redhat,Debian,Bluepoint,红旗,还有 Slackware,Mandarke,Turbo。 二、linux源代码目录树结构 Linux用来支持各种体系结构的源代码包含大约4500个C语言程序,存放在270个左右的子目录下,总共大约包含200万行代码,大概占用58MB磁盘空间。 在阅读源码之前,还应知道Linux内核源码的整体分布情况。现代的操作系统一般由进程管理、内存管理、文件系统、驱动程序和网络等组成。Linux内核源码的各个目录大致与此相对应,其组成如下: arch目录包括了所有和体系结构相关的核心代码。它下面的每一个子目录都代表一种Linux支持的体系结构,例如i386就是Intel CPU及与之相兼容体系结构的子目录。PC机一般都基于此目录。 include目录包括编译核心所需要的大部分头文件,例如与平台无关的头文件在include/linux子目录下。

第二章 结构试验设计

第二章 试验设计、试验前的准备及试验方案 试验大纲: 1、 建筑结构试验的主要环节概述 2、 建筑结构试验的试件设计 3、 建筑结构试验的荷载方案设计 4、 建筑结构试验的观测方案设计 5、 建筑结构试验材料的力学性能 6、 建筑结构试验大纲和试验基本文件 本章提要 建筑结构试验包括结构试验设计、结构试验准备、结构试验实施和结构试验结果分析 等主要环节。本章主要介绍试验的前期准备工作,内容包括试件及模型设计、荷载方案设计、观测方案设计、材料的力学性能试验、建筑结构试验的安全与防护措施设计及结构试验大纲和试验基本文件的编制等内容。学习本章,应着重掌握试件及模型设计、荷载方案设计、观测方案设计等内容,并对材料的力学性能试验、试验的安全与防护措施设计及结构试验大纲和试验基本文件的编制有一定的了解。 2.1、建筑结构试验的主要环节概述 建筑结构试验包括结构试验设计、结构试验准备、结构试验实施和结构试验结果分析等主要环节,他们之间的关系如图2.1所示。 结构试验目的结构试验设计结构试验准备结构试验实施结构试验分析 结构试验结论试验总结报告 试验观测和采集数据处理 结构参数识别 结构破坏机制分析 结构性能与承载力分析试验加载试验反应观测和数据采集试件变形、裂缝和破坏形态 记录 试件制作与安装 试验人员组织分工 仪器设备的检验与率定 材料力学性能试验试件设计试验荷载设计试验观测设计 试验误差控制措施 试验安全措施 调查研究、搜集有关资料 确定试验的性质与规模设计试件的形状和尺寸确定试件的数量 设计构造措施 确定试验荷载图示设计试验加载装置选择试验方法及设备设计试验加载制度确定试验观测项目确定测点布置位置与数目选择测试仪器与设备 图2.1 结构试验的主要环节

相关文档