文档库 最新最全的文档下载
当前位置:文档库 › 钢水精炼处理过程中化学成分的精确控制

钢水精炼处理过程中化学成分的精确控制

钢水精炼处理过程中化学成分的精确控制
钢水精炼处理过程中化学成分的精确控制

要:为了保证连浇钢水的成分连续性和稳定性,最终实现板材性能的稳定,通过研究LF/VD处理过程中化学成分的变

化规律,将化学成分控制在目标值较小的范围内,精确控制了钢水的化学成分。关键词:精炼;成分控制;回硅;回锰;增碳中图分类号:TF703.5

文献标识码:A

文章编号:1004-4620(2005)05-0033-02

收稿日期:2004-11-19

作者简介:张本源(1968-),男,山东荣成人,1991年毕业于华东冶金学院钢铁冶金专业。现为济钢三炼钢炼钢车间工程师,从事炼钢工艺技术研究工作。

?试验研究?

钢水精炼处理过程中化学成分的精确控制

张本源

(济南钢铁股份有限公司第三炼钢厂,山东济南250101)

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

ExperimentalStudyonPelletswithAdditionofAlklineComplexBinderinJigang

HEJian-feng,HUANGXue-ying

(JinanIronandSteelGroupCorporation,Jinan250101,China)

Abstract:AnewalkalinecomplexbinderwithlowSiO2contentandgoodballingbindingbehaviour,substitutedforbentonitebindingwhichthemaincontentisSiO2,isgotbyaddingalkalinematerialtopelletbentonite.Theindustrialexperimentresultshowthegradeofrawmaterialandmetallurgicalpropertyofpelletareallimprovedandtheeconomiceffectisdistinctbyaddingthealkalinecomplexbinder.Keywords:pellet;pelletshaftfurnace;alkalinecomplexbinder

1前言

济南钢铁集团总公司第三炼钢厂(简称济钢三炼钢)生产线配备了KR铁水预处理、顶底复吹转炉、CAS、LF/VD和板坯连铸机等工艺和设备,该管线钢工程是济钢调整产品结构、生产高附加值、高品质产品的重要环节。在精炼处理过程中精确控制成分,确保连铸钢水成分在一个小的范围内波动,保证连铸坯成分的连续性和稳定性,最终实现板材性能的稳定,是满足客户需求、生产双高产品的基础。

控制内容

2.1

钢中P的控制

由于济钢三炼钢KR铁水预处理为还原性氛

围,因此钢中P的控制只能从提高转炉脱磷总效率和控制精炼过程回磷方面着手。生产低P钢种时各阶段渣中P2O5含量和钢中P含量的变化见图1。

图1

各阶段(P2O5)和[P]的变化趋势

从图1看出:在LF造白渣处理过程中,由于强烈的还原性气氛,钢包渣中的P2O5基本全部被还原

进入钢水中。而在出钢过程由于加入顶渣,渣量增加,降低了渣中的P2O5含量,同时由于钢包渣中的氧化性氛围降低,发生回磷。因此有效地控制出钢下渣量、降低转炉渣中的P2O5含量、降低转炉终点钢水中的P含量是控制钢中P含量的重点。

2.2钢中S的控制

对于经过LF/VD处理的钢种,在控制好LF造

渣和底吹搅拌的情况下,能将钢中的S控制在0.005%以下。

但是如果转炉终点的S含量过高,势必造成LF处理的渣料加入量大,VD处理时钢包渣泡沫化,易造成溢渣。同时由于渣量大,LF处理时间延长,消耗增加。因此在冶炼低S钢时,应采用铁水预脱硫处理,控制入炉铁水S含量和转炉终点S含量,以减轻LF脱硫负担。图2是冶炼低S钢种时各阶段

S含量的变化。由图2看出,为减轻LF脱硫负担,宜

采用自产优质废钢。

图2

各阶段S含量的变化

2.3钢中Mn的控制

在LF处理过程中,特别是在白渣精炼工艺条件

下将会被还原进入钢水中,出现精炼过程中的“回锰”现象。回锰量主要取决于钢包渣中的MnO含量和精炼渣的还原性,并且发生在LF处理前期、造白渣结束这一时期。因此在LF进行合金微调时,必须根据LF处理工艺、转炉终点氧化性等预判回锰量。

0.0200.0150.0100.050

入炉铁水转炉终点LF终点VD终点熔炼成分

S含量/%◆

第27卷第5期

2005年10月

山东冶金

ShandongMetallurgy

Vol.27,No.5October2005

0.60.50.40.30.20.10

转炉终点LF到站LF出站VD出站

0.015

0.0100.005

(P2O5)/%

[P]/%▲

渣中P2O5钢中P

33

CSiMnAl微合金元素

±0.02±0.03±0.03目标值+0.005~0.015±0.005

图3是济钢三炼钢LF白渣精炼过程中精炼渣中MnO和钢水中Mn含量的变化趋势。

图3

各阶段(MnO)和回锰量的变化趋势

2.4钢中C的控制

在精炼过程中,LF电极、钢包内衬特别是渣线

部位的侵蚀等都是增碳过程,而在VD真空处理过程中,C-O反应是C的烧损过程。LF电极增碳主要

是由于大电流的冲击造成电极端部剥落、加热过程中飞溅的钢珠粘附于电极、电极质量或操作原因造成电极掉块等原因造成的,因此选用合理的造渣、加热和搅拌制度,保证电极质量和避免操作失误,减少电极增碳对成分控制精度的影响。钢包增碳与内衬材质、处理时间、搅拌强度、钢水温度等因素有关,因此在生产低碳钢种时最好采用无碳钢包。VD真空脱碳与钢水的氧化性密切相关,因此采用白渣精炼,降低LF出站温度,降低钢水中氧含量是减少真空脱碳量的重要环节。

由于经VD处理钢种LF出站温度高,在LF处理结束后钢水中的自由氧浓度增加,因此在使用增碳剂增碳时,应保证在LF的搅拌时间,避免在VD处理时由于精炼渣中含有C使精炼渣剧烈泡沫化造成钢渣溢出。

2.5Al、Ti、Si的控制

在高温、强还原性、渣中高(SiO2)含量、强搅拌和

钢中高Al的情况下会发生以下反应:

[Al]+

(SiO2)→(Al2O3)+[Si][Ti]+

(SiO2)→(TiO2)+[Si]因此生产高铝、含钛钢种时,在LF/VD处理过程中会发生回硅和Al、Ti的烧损现象。要解决回硅和

Al、Ti的烧损问题必须从以上五个方面着手。而高

温、强还原性和强搅拌是LF/VD处理过程脱硫、脱氧、保证过程温度必不可少的条件,因而应控制渣中的

(SiO2)含量和钢中[Al]t含量。在冶炼低碳钢时,应在转炉出钢时采用纯铝强化脱氧、LF处理过程中控制钢中适当的Al含量,VD处理真空处理结束后调

整钢中的Al、Ti含量,同时喂线后弱搅拌时间应适当延长,以保证夹杂物的充分上浮。采用以上工艺(工艺路线1)与出钢时采用BaAlSi脱氧和LF出站

时控制高的钢中Al含量(工艺路线2)精炼过程成分变化对比见图4、图5。

图4

精炼过程中Si的变化

图5

精炼过程中Al的变化

2.6钢中气体的控制

由于在LF处理过程中,电弧冲击区处于高温状

态下,O、N在钢水中的平衡溶解度增加,并且在电弧的作用下气体分子发生电离,造成LF处理过程中钢水增氮和钢水中的自由氧浓度增加。因此在LF处理过程中要控制好精炼渣的特性,形成发泡能力良好的精炼渣,保证埋弧加热,同时在LF处理过程中可以加入适量的埋弧渣,以提高精炼渣的发泡能力。

VD处理结束后的搅拌强度不能单纯以固定的

流量控制,处理过程中应观察钢包液面的波动情况,搅拌强度的控制以钢包液面微微波动,不裸露钢水为宜,避免后搅时间过长或搅拌强度过大造成钢水的二次氧化和吸气。

3应用效果

目前济钢三炼钢精炼处理钢种成分控制精度见

表1,其中C、Si、Mn、P、S五大元素综合达标率达到

90%以上,P、S的成分控制均不大于目标值。

表1

成分控制精度(与目标值的对比)%

济钢三炼钢经精炼处理钢种的成分控制精度达到较高水平,保证了铸坯成分的连续性和稳定性,完全能满足客户的要求。

AccurateControlofCompositioninRefiningProcessingProcedure

ZHANGBen-yuan

(No.3SteelmakingPlantofJinanIronandSteelCo.,Ltd.,Jinan250101,China)

Abstract:Toensuretheconsistencyandsteadyofthecontinuecastingsteel,bringaboutslabpropertyofthesteelboardintheend,bywayofresearchingthechangelawofchemicalcompositioninLF/VD'sprocessingprocedure,controllingthecompositioninanarrowrange,thenthepreciselycontrolofthecompositionisrealized.

Keywords:refiningprocessing;compositioncontrolling;siliconreversion;manganesereversion;carburization

山东冶金2005年10月第27卷

到站造白渣结束出站

5432100.025

0.0200.0150.0100.0050

(MnO)/%

回锰量/%

渣中MnO

回锰量

LF到站

LF出站真空处理结束VD出站0.40.30.20.10

(Si)/%

工艺路线1

工艺路线2

LF到站

LF出站真空处理结束VD出站0.080.060.040.020

(Al)/%

■▲■

工艺路线1

工艺路线2

34

钢水精炼处理过程中化学成分的精确控制

摘 要:为了保证连浇钢水的成分连续性和稳定性,最终实现板材性能的稳定,通过研究LF/VD处理过程中化学成分的变 化规律,将化学成分控制在目标值较小的范围内,精确控制了钢水的化学成分。关键词:精炼;成分控制;回硅;回锰;增碳中图分类号:TF703.5 文献标识码:A 文章编号:1004-4620(2005)05-0033-02 收稿日期:2004-11-19 作者简介:张本源(1968-),男,山东荣成人,1991年毕业于华东冶金学院钢铁冶金专业。现为济钢三炼钢炼钢车间工程师,从事炼钢工艺技术研究工作。 ?试验研究? 钢水精炼处理过程中化学成分的精确控制 张本源 (济南钢铁股份有限公司第三炼钢厂,山东济南250101) !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ExperimentalStudyonPelletswithAdditionofAlklineComplexBinderinJigang HEJian-feng,HUANGXue-ying (JinanIronandSteelGroupCorporation,Jinan250101,China) Abstract:AnewalkalinecomplexbinderwithlowSiO2contentandgoodballingbindingbehaviour,substitutedforbentonitebindingwhichthemaincontentisSiO2,isgotbyaddingalkalinematerialtopelletbentonite.Theindustrialexperimentresultshowthegradeofrawmaterialandmetallurgicalpropertyofpelletareallimprovedandtheeconomiceffectisdistinctbyaddingthealkalinecomplexbinder.Keywords:pellet;pelletshaftfurnace;alkalinecomplexbinder 1前言 济南钢铁集团总公司第三炼钢厂(简称济钢三炼钢)生产线配备了KR铁水预处理、顶底复吹转炉、CAS、LF/VD和板坯连铸机等工艺和设备,该管线钢工程是济钢调整产品结构、生产高附加值、高品质产品的重要环节。在精炼处理过程中精确控制成分,确保连铸钢水成分在一个小的范围内波动,保证连铸坯成分的连续性和稳定性,最终实现板材性能的稳定,是满足客户需求、生产双高产品的基础。 2 控制内容 2.1 钢中P的控制 由于济钢三炼钢KR铁水预处理为还原性氛 围,因此钢中P的控制只能从提高转炉脱磷总效率和控制精炼过程回磷方面着手。生产低P钢种时各阶段渣中P2O5含量和钢中P含量的变化见图1。 图1 各阶段(P2O5)和[P]的变化趋势 从图1看出:在LF造白渣处理过程中,由于强烈的还原性气氛,钢包渣中的P2O5基本全部被还原 进入钢水中。而在出钢过程由于加入顶渣,渣量增加,降低了渣中的P2O5含量,同时由于钢包渣中的氧化性氛围降低,发生回磷。因此有效地控制出钢下渣量、降低转炉渣中的P2O5含量、降低转炉终点钢水中的P含量是控制钢中P含量的重点。 2.2钢中S的控制 对于经过LF/VD处理的钢种,在控制好LF造 渣和底吹搅拌的情况下,能将钢中的S控制在0.005%以下。 但是如果转炉终点的S含量过高,势必造成LF处理的渣料加入量大,VD处理时钢包渣泡沫化,易造成溢渣。同时由于渣量大,LF处理时间延长,消耗增加。因此在冶炼低S钢时,应采用铁水预脱硫处理,控制入炉铁水S含量和转炉终点S含量,以减轻LF脱硫负担。图2是冶炼低S钢种时各阶段 S含量的变化。由图2看出,为减轻LF脱硫负担,宜 采用自产优质废钢。 图2 各阶段S含量的变化 2.3钢中Mn的控制 在LF处理过程中,特别是在白渣精炼工艺条件 下将会被还原进入钢水中,出现精炼过程中的“回锰”现象。回锰量主要取决于钢包渣中的MnO含量和精炼渣的还原性,并且发生在LF处理前期、造白渣结束这一时期。因此在LF进行合金微调时,必须根据LF处理工艺、转炉终点氧化性等预判回锰量。 0.0200.0150.0100.050 0 入炉铁水转炉终点LF终点VD终点熔炼成分 S含量/%◆ ◆ ◆ ◆ ◆ 第27卷第5期 2005年10月 山东冶金 ShandongMetallurgy Vol.27,No.5October2005 0.60.50.40.30.20.10 转炉终点LF到站LF出站VD出站 0.015 0.0100.005 0 (P2O5)/% ▲ ▲ ▲ ▲ ■ ■ ■ ■ [P]/%▲ ■ 渣中P2O5钢中P 33

统计过程控制的几种常用方法

统计过程控制 1、统计过程控制的基本知识 1.1统计过程控制的基本概念 统计过程控制(Stastistical Process Control简称SPC)是为了贯彻预防原则,应用统计方法对过程中的各个阶段进行评估和监控,建立并保持过程处于可接受的并且稳定的水平,从而保证产品与服务符合规定要求的一种技术。 SPC中的主要工具是控制图。因此,要想推行SPC必须对控制图有一定深入的了解,否则就不可能通过SPC取得真正的实效。 对于来自现场的助理质量工程师而言,主要要求他们当好质量工程师的助手: (1)在现场能够较熟练地建立控制图; (2)在生产过程中对于控制图能够初步加以使用和判断; (3)能够针对出现的问题提出初步的解决措施。 大量实践证明,为了达到上述目的,单纯了解控制图理论公式的推导是行不通的, 主要是需要掌握控制图的基本思路与基本概念,懂得各项操作的作用及其物理意义,并伴随以必要的练习与实践方能奏效。 1.2统计过程控制的作用 (1)要想搞好质量管理首先应该明确下列两点: ①贯彻预防原则是现代质量管理的核心与精髓。 ②质量管理学科有一个十分重要的特点,即对于质量管理所提出的原则、方针、目标都要科学措施与科学方法来保证他们的实现。这体现了质量管理学科的科学性。 为了保证预防原则的实现,20世纪20年代美国贝尔电话实验室成立了两个研究质量的课题组,一为过程控制组,学术领导人为休哈特;另一为产品控制组,学术领导人为道奇。其后,休哈特提出了过程控制理论以及控制过程的具体工具——控制图。道奇与罗米格则提出了抽样检验理论和抽样检验表。这两个研究组的研究成果影响深远,在他们之后,虽然有数以千记的论文出现,但至今仍未能脱其左右。休哈特与道奇是统计质量控制(SQC)奠基人。1931年休哈特出版了他的代表作《加工产品质量的经济控制》这标志着统计过程控制时代的开始。

(新)中国工具钢牌号及化学成分

第一章 中国工具钢和硬质合金牌号及化学成分 第一节 碳素工具钢 (1)中国GB 标准碳素工具钢的钢号与化学成分[GB/T1298-1986](表6-1-1) 表6-1-1 碳素工具钢的钢号与化学成分(质量分数)(%) 钢号 C Si Mn P ≤ S ≤ T7 T8 T8Mn T9 T10 T11 T12 T13 0.65-0.74 0.75-0.84 0.80-0.90 0.85-0.94 0.95-1.04 1.05-1.14 1.15-1.24 1.25-1.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.35 ≤0.40 ≤0.40 0.40-0.60 ≤0.40 ≤0.40 ≤0.40 ≤0.40 ≤0.40 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.035 0.030 0.030 0.030 0.030 0.030 0.030 0.030 0.030 注:1.高级优质钢(带“A ”的钢号)磷、硫含量(质量分数):P ≤0.030%;S ≤0.030%。 2.钢中残余元素含量(质量分数):Cr ≤0.25%,Ni ≤0.20%,Cu ≤0.30%。 3.用作铅浴钢丝的残余元素含量(质量分数):Cr ≤0.10%,Ni ≤0.12%,Cu ≤0.20%,Cr+Ni+Cu ≤0.40%。 4.要求检验钢的淬透性时,允许添加少量合金元素。 (2)中国GB 标准碳素工具钢的交货硬度与淬火硬度(表6-1-2和表6-1-3) 表6-1-2 碳素工具钢的交货硬度与淬火硬度 钢号 交货状态 试样淬火 硬度HBS 压痕直径/mm 淬火温度/℃ 冷却介质 硬度>HRC T7 ≤187 ≥4.4 800-820 水 62 T8 ≤187 ≥4.4 780-800 水 62 T8Mn ≤187 ≥4.4 780-800 水 62 T9 ≤192 ≥4.35 760-780 水 62 T10 ≤192 ≥4.3 760-780 水 62 T11 ≤207 ≥4.2 760-780 水 62 T12 ≤207 ≥4.2 760-780 水 62 T13 ≤217 ≥4.1 760-780 水 62 注:表中硬度值及淬火工艺摘自GB/T1298-86。 表6-1-3 碳素工具钢热轧钢板的交货状态与硬度

1.钢水炉外精炼概述

第一章钢水炉外精炼概述 一炉外精炼的产生原因 1 普通炼钢炉(转炉、电炉)冶炼出来的钢液难以满足对钢的质量(如钢的纯净度)越来越高的要求。 2 为了提高生产率,缩短冶炼时间,把炼钢的一部分任务移到炉外完成。 3 连铸技术的发展,对钢液的成分、温度和气体的含量等也提出了严格的要求。 二炉外精炼的概念 所谓炉外精炼,就是将在转炉或电炉内初炼的钢液倒入钢包或专用容器内进行脱氧、脱硫、脱碳、去气、去除非金属夹杂物和调整钢液成分及温度以达到进一步冶炼目的的炼钢工艺,即将常规炼钢炉中完成的精炼任务,如去除夹杂(包括不需要的元素、气体和夹杂)、调整成分和温度的任务,部分或全部地移到钢包或其他容器中进行,变一步炼钢法为二步炼钢,即把传统的炼钢过程分为初炼和精炼两步进行。(国外也称之为二次精炼、二次炼钢、二次冶金和钢包冶金。) 三国外、国内炉外精炼的发展过程 1 国外的发展 ⑴1933年法国派林应用专门配制的高碱度合成渣,在出钢过程中对钢液进行渣洗脱硫,这是炉外精炼技术的萌芽。 ⑵1950年联邦德国用真空处理脱除钢中的氢以防止产生“白点”。 ⑶1956~1959年,研究成功钢液真空提升脱气(DH)法和钢液真空循环(RH)法。 ⑷1965年以来,真空电弧加热脱气(V AD)炉、真空吹氧脱碳(VOD)炉和氩氧精炼(AOD)炉以及喂线(WF)法和LF钢包炉、钢包喷粉法等先后出现。 ⑸20世纪90年代,已发展成几十种炉外精炼方法,世界各国的炉外精炼设备已超过500台。上世纪七十年代以前,炉外精炼主要用于电炉车间的特殊钢生产,目前在转炉炼钢中也得到了极大在推广和应用。 2 国内的发展 ⑴我国炉外精炼技术的开发应用始于上世纪50年代中后期,当时利用高碱度合成渣在出钢过程中对钢液脱硫冶炼轴承钢,之后用VD法和DH法冶炼电工硅钢,特殊钢厂引进了一批真空精炼设备,钢液吹氩精炼也在首钢等企业首先投入了生产应用。 ⑵20世纪80年代是我国炉外精炼技术发展奠定基础的时期,对我国钢铁工业生产优化起了重要作用。在此期间,LF钢包精炼炉、合金包芯线喂丝设备与技术、钢液的喷射冶金精炼技术得到了初步的发展;宝钢引进了现代化的大型RH装置,在开发高质量的钢材品种和优化钢铁生产中发挥了重要作用。 ⑶20世纪90年代以来,我国炉外精炼技术也随着连铸生产的增长和对钢铁产品质量日益严格的要求,得到了迅速的发展,炉外精炼技术的开发及在生产中的应用呈现出系统化、规范化、优质化的良好的发展势头。 3 炉外精炼在炼钢生产中的重要地位和作用 ⑴炉外精炼在炼钢生产中的地位 ①炉外精炼是现代炼钢生产的四大关键技术之一(另三项为:氧气顶吹转炉炼钢、连铸和超高功率电弧炉)。 ②炉外精炼从最初用于生产特殊钢和优质钢,到后来推广扩大到普通钢的生产,是提高钢液质量的重要环节。 ③炉外精炼已成为炼钢工艺中必不可少的环节,它是连接连铸的桥梁,在协调炼钢和连铸的生产中起到缓冲作用。 ⑵炉外精炼在炼钢生产中的作用 将经过转炉初炼的钢液在真空、惰性气体或还原性气氛的容器内进行脱气、脱氧、脱硫、去除夹杂物和成分微调等。炉外精炼可提高钢的质量,缩短冶炼时间,优化工艺过程并降低生产成本。

质量管理学-过程控制方法

第十四章过程控制方法 实行工序质量控制,是生产过程中质量管理的重要任务之一,工序控制可以确保生产过程处于稳定状态,预防次品的发生。工序质量控制的统计方法主要有直方图法和控制图法。直方图法已在第13章介绍过了。 ※本章要求 (1)掌握工序质量的概念和分布特征; (2)掌握工序能力和工序能力指数的概念及区别; (3)掌握工序能力指数的计算方法 (4)熟悉控制图法的概念; (5)掌握计量、计件与计点控制图的类型和具体设计过程; (6)了解控制图的观察分析方法。 ※本章重点 (1)工序质量的分布特征 (2)工序能力指数的概念及计算 (3)控制图的基本概念 (4)计量、计件与计点控制图的具体设计过程 ※本章难点 (1)工序能力指数的计算 (2)计量、计件与计点控制图的设计 §1工序质量控制的基本概念 一、工序质量的概念 工序质量因行业而异。一般来说,对产品可分割的工序,工序质量即为产品质量特性,如尺寸、精度、纯度、强度、额定电流、电压等。对产品不可分割或最终才能形成者,则通常指工艺质量特性,如化工产品、生产装置的温度、压力、浓度和时间等。有时,工序质量也可表现为物耗和效率。 工序质量属制造质量的范畴。质量优劣主要表现为产品或工艺质量特性符合设计规范、工艺标准的程度,既符合性质量。 二、质量的波动与分布 工序质量在各种影响因素的制约下,呈现波动性。工序质量波动包括产品之间的波动,单个产品与目标值之间的波动。质量特性的波动分为正常波动和异

常波动。 正常波动在每个工序中都是经常发生的。引起正常波动的影响因素很多,诸如机器的微小振动,原材料的微小差异等等。正常波动对工序质量的影响较小,在技术上难以测量和消除。工序中的异常波动是由某种特定原因引起的,例如机器磨损、误操作等都可导致异常波动。异常波动对工序质量的影响较大。 生产过程控制系统的目标是当工序出现异常波动时迅速发出信号,使我们能很快查明异常原因并采取行动消除波动。 产品质量虽然是波动的,但正常波动是有一定规律的,即存在一种分布趋势,形成一个分布带,这个分布带的范围反映了产品精度。实践证明,在正常波动下,大量生产过程中产品质量特性波动的趋势大多服从正态分布。因此,正态分布是一个最普遍、最基本的分布规律,它具有集中性、对称性等特点。如下图14-1所示: 图14-1 正态分布的特点正态分布由两个参数决定:均值μ和标准差σ,均值μ是衡量分布的集中趋势,标准差σ是反映数据的离散程度。当均值和标准差确定时,一个正态分布曲线就确定了。正态分布曲线与坐标横轴所围成的面积等于1。可以算出:在μ±σ范围内的面积为68.26%;在μ±2σ范围内的面积为95.45%;在μ±3σ范围内的面积为99.73%。 §2工序能力和工序能力指数 一、工序能力的概念 工序能力是指工序在一定时间,处于控制状态(稳定状态)下的实际加工能力。它是工序固有的能力,或者说它是工序保证质量的能力。 工序能力可用工序质量特性值的波动范围来衡量。若工序质量特性值的标准差为σ,则工序能力B=6σ。由正态分布理论知,P(x∈μ±3σ)=99.73%, 故6σ

钢水流动性差分析研究与改进

钢水流动性差的原因分析及改进 原因: LF炉精炼钢水粘的主要原因是由于精炼过程中或钢水浇注过程中钢水中铝氧化,由于钢水中存在大量尖锐、带刺状且熔点较高的A12O3夹杂,容易在浇注过程中粘附到水口内壁上,从而逐渐堵塞水口,造成钢水流动性变差,即钢水粘现象。生产实际中大多采用钙处理控制铝脱氧产物在炼钢连铸温度下呈液态,促进铝夹杂物上浮。铝夹杂物组成随着钙含量增加按以下顺序变化: A12O3一CaO?6A12O3一CaO?A12O3一CaO?A12O3—12CaO?7A12O3—3CaO?A12O3—CaO 当夹杂物成分位于CaO?A12O3,12CaO?7A12O3和3CaO?A12O3的低熔点区域时,在浇铸温度下,钙铝酸盐类夹杂物在钢水中以液相存在。 另一方面,钙的加入量过多,形成高熔点的CaS(熔点为2450℃),此时同样会恶化钢水的浇铸性能。生产含铝钢时随着钢中铝含量的增加,氧的活度降低,有利于硫化物的形成;随着钢中硫含量的增加,有利于形成高熔点的CaS;钢水温度降低时,氧的活度降低,也有利于CaS的形成,影响钢水流动性。 具体地说,LF 精炼钢水流动性差的主要原因是在精炼或浇注过程中钢水中的[Al]氧化,生成大量尖锐、带刺状且熔点较高的Al2O3夹杂,在浇注过程中粘附到水口内壁上,堵塞水口,造成钢水流动性变差。在生产实际中,常规做法是采用钙处理的方式,使铝脱 氧产物呈液态,促进铝夹杂物上浮。铝夹杂物组成随着钙含量增加呈以下变化形态: Al2O3—CaO·6Al2O3—CaO·2Al2O3—CaO·Al2O3—12CaO·7Al2O3—3CaO·Al2O3—CaO。 当夹杂物成分位于CaO·Al2O3、12CaO·7Al2O3和3CaO·Al2O3的低熔点区域时,在适当的浇铸温度下,钙铝酸盐类夹杂物在钢水中以液相存在。若钙的加入量过多,易形成高熔点CaS(熔点为2 450 ℃),会恶化钢水的流动性。生产含铝精炼钢种时,随着[Al]含量的增加,氧的活度呈降低趋势,有利于硫化物的形成;随着硫含量的增加,易形成高熔点的CaS。钢水温度降低时,氧的活度降低也有利于CaS的形成,从而影响钢水的流动性。 采取措施: 总:严格控制好钢水成分。如Al、Ti、Si等易氧化元素,在保证产品性能的前提下,应尽可能减少其含量;尽量提高Mn/Si、Mn/S比;炼钢脱氧尽量采用复合脱氧剂。(2)严格做好保护浇注,防止钢水二次氧化。(3)控制合适的钢

钢水精炼资料

LF精炼知识 1.炉外精炼发展历程 ?20世纪30-40年代,合成渣洗、真空模铸。1933年,法国佩兰(R.Perrin)应用高碱度合成渣,对钢液进行“渣洗脱硫”—现代炉外精练技术的萌芽; ?50年代,大功率蒸汽喷射泵技术的突破,发明了钢包提升脱气法(DH)及循环脱气法(RH) ?1935年H.Schenck 确定大型钢锻件中的白点缺陷是由氢引起的-氢脆。 ?1950年,德国Bochumer Verein (伯施莫尔-威林)真空铸锭。 ?1953年以来,美国的10万千瓦以上的发电厂中,都发现了电机轴或叶片折损的事故。1954年,钢包真空脱气。 ?1956年,真空循环脱气(DH、RH)。 ?60-70年代,高质量钢种的要求,产生了各种精炼方法 ?60、70年代是炉外精炼多种方法分明的繁荣时期 ?与60年代起纯净钢生产概念的提出、连铸生产工艺稳定和连铸品种扩大的强烈要求密切相关 ?此时,炉外精炼正式形成了真空和非真空两大系列不同功能的系统技术,同时铁水预处理技术也得到迅速发展,它和钢水精炼技术前后呼应,经济分工,形成系统的炉外处理技术体系,使钢铁生产流程的优化重组基本完成。 ?这个时期,还基本奠定了吹氩技术作为各种炉外精炼技术基础的地位和作用。 ?这一时期发展的技术:VOD-VAD、ASEA-SKF、RH-OB、LF、喷射冶金技术(SL、TN、KTS、KIP)、合金包芯线技术、加盖和加浸渍罩的吹氩技术(SAB、CAB、CAS) ?80-90年代,连铸的发展,连铸坯对质量的要求及炼钢炉与连铸的衔接,RH-

KTB、RH-MFP、RH-OB;RH-IJ(真空深脱磷),RH-PB、WPB(真空深脱硫)、V-KIP、SRP脱磷 ?21世纪,更高节奏及超级钢的生产。 2.炉外精炼作用和地位 ?提高冶金产品质量,扩大钢铁生产品种不可缺少的手段; ?是优化冶金生产工艺流程,进一步提高生产效率、节能强耗、降低生产成本的有力手段。 ?保证炼钢-连铸-连铸坯热送热装和直接轧制高温连接优化的必要工艺手段?优化重组的钢铁生产工艺流程中独立的,不可替代的生产工序 3.LF精炼工艺优点 ●精炼功能强,适宜生产超低硫、超低氧钢; ●具备电弧加热功能,热效率高,升温幅度大,温度控制精度高; ●具备搅拌和合金化功能,易于实现窄成分控制,提高产品的稳定性; ●采用渣钢精炼工艺,精炼成本较低; ●设备简单,投资较少。 4.计算合金加入量调整钢液成分 4.1 技能实施与操作步骤 ●根据钢种的特点和工艺要求,首先了解初钢液中合金元素配加情况并预测在加热 前期、中途、后期、结束分别配加合金的种类并作好准备。 ●精炼钢包进入LF工位后,按要求取样进行化学元素全分析。 ●根据全分析结果,计算出精炼期应配加的各种合金的补加量,并进行称量。 ●精炼钢水加热到预定温度后,把上述称量好的合金通过料仓或人工分批加入。 ●凡钢水经过造白渣处理后,一般应再取样进行全分析。

钢材化学成分元素知识大全

1、钢中酸溶铝指溶解在钢中单质铝,全铝应指酸溶铝和夹杂铝(氧化铝)。 2、水口堵塞的原因是什么,如何防止? 在浇注过程中,中间包水口和浸入式水口有时发生堵塞现象。堵塞的原因有两种,一是钢水温度低,水口未达到烘烤温度,钢水冷凝所致。二是因钢中高熔点(2052℃)的Al203沉积在水口内壁上,使钢流逐渐变小而造成水口堵塞。钢中的Al203主要来自脱氧产物,当钢中[Al]含量偏高时,[Al]与耐火材料中的Si02及空气中的氧或钢中[O]发生反应生成Al203。 为了防止水口堵塞,对含[Al]量不作要求的钢,应控制钢中全铝含量不大于0.006%。对铝含量有要求的钢,需对钢水进行钙处理,控制w[Ca]/w[A1]比值为0.1~0.15,使串簇状固体Al203转变成低熔点的12Ca0·7 Al203,这种铝酸钙熔点为1455℃,在浇注温度下为液态,可避免水口堵塞。如果钙的加入量过少,不足以将Al203转化为12CaO·7 Al203,钙的加入量过多,又会生成CaS(熔点2450℃),不能消除水口堵塞。铝含量高(如w[Al]=0.045%),硫含量也高(如w[S]>0.025%)的钢水难以避免水口堵塞。 提高钢水洁净度、减少钢水二次氧化,选择合适的水口材质,并向水口内壁和中间包塞棒吹氩等,都有利于避免水口的堵塞。 3、炼钢生产工艺中为了降低钢中的含氧量,常用铝、钡、钙、硅、锰等脱氧材料(或其复合合金)与氧发生反应成氧化物炉渣上浮到钢水上层而降低钢中的氧含量,其中铝是优良的脱氧剂,铝易与氧反应生成Al2O3(极少量氮化铝),同时有部分单质铝溶入钢中,这部分单质铝可被酸溶解称为酸溶铝;而极少量的Al2O3也会滞留在钢中形成夹杂物,降低钢的性能,这部分Al2O3一般不易被酸溶解。单质铝和Al2O3的总含量成为全铝(含量)。 现在较新型的直读光谱仪入ARL4460、斯派克M8、M9型采用新型的激发电源和单脉冲火花测量技术,通过对单质铝和Al2O3激发时放电脉冲高度即发光强度的不同分别采集信号计算含量,可以测定单质铝和Al2O3。卖仪器的吹嘘能测酸溶铝和全铝,甚至在技术协议上保证测量精度是多少,实际安装调试仪器时他们的工程师也测不准。光谱仪测钢中全铝(大于0.0005%)基本上还可以,但测微量铝误差也比较大,对制样有较高的要求。 测定铝含量时,用化学分析是用酸溶解,单质铝可被酸溶解称为酸溶铝;铝氧化物不被溶解,称为酸不溶铝.我们平时测量的铝一般都是酸溶铝. 我们一般不要求进行这方面的测量,只有一些特钢才有这方面的要求.目前大部分光谱仪都是按一定的比例推算出来的.只有时间分解脉冲分布分析法技术才能测量出来. PDA技术是将激发时的每一个脉冲记录下来,并按时间顺序排列,将脉冲按高低频数制作分布图,依据数学统计的原则,选择正常激发信号来进行积分,能将样品中固溶元素和非固溶元素区分开。目前掌握这种测量方法的光谱仪厂家好象只有两家. 钢铁知识大全 钢铁知识大全(1) 钢材机械性能介绍 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。 4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。

过程控制的计算方法

统计过程控制的计算page 1/9 一.预防与检测 检验—容忍浪费;预防—避免浪费 检验--通过质量控制检查最终产品并剔除不符事规范的产品。在管理部门则经常靠检查或重新检查工作来找出错误,在这种情况下都是使用检测的方法,这种方法是一种浪费,因为它允许将时间和材料投入到生产不一定有用的产品和服务中。 预防—第一步就可以避免生产无用的输出,从而避免浪费。 “第一次就把事情做好”。仅有这样口号是不够的,所以要理解统计过程各个要项。要研究产生变量本身的特性---过程。 二.基本概念 过程:是指共同作用以产生输出的供方、生产者、人、设备、输入材料、方法和环境以及使用输出的顾客之集合。 过程控制系统:过程的性能取决于供方与顾客这间的沟通,过程设计和实施的方法,以及运作和管理方式。. a.有关过程性能的信息—与性能最有用的信息是以研究过程本身以及其内在的变化中得到的信息→过程特性,这是我们关注的重点。 b.对过程采取措施 c.对输出采取措施 变差:过程的单个输出之间不可避免的差别。 产生变差的普通原因:随时间的推移具有稳定的且可重复的分步过程中的许多变差的原因、我们称之为“处于统计控制状态”。 产生变差的特殊原因:不是始终作用于过程的变差的原因,出现时造成过程分步的改变。除非所有的特殊原因都被查找出来,并且采取了措施,否则他们将以不可预测的方式来影响过程的输出,随时间的发展,过程的输出将不稳定。 正态分步:正态分步又称概率分步。如果影响某一变量的因素会很多,而每一个因素都不起决定性作用,且这此影响是可以叠加的,那么此随机变量被认为是从正态分步的。 局部措施: 通常用于消除变差的特殊原因 通常有与过程直接相关的人员实施 通常可纠正大约15%的过程问题 系统采取措施: 通常用来消除变差的普通原因 几乎总是要求管理措施,以便纠正 大约可纠正85%的过程问题. 三.控制图—过程控制的工具 过程特性,是我们关注的重点,我们通过研究过程本身的特性,来识别生产变差的原因,是特

质量数据分析和质量信息管理办法

内部资料 注意保存宝山钢铁股份有限公司特殊钢分公司 管理文件 文件编号:SWZ07016 第 1 版签发:王治政质量数据分析和质量信息管理办法 1 总则 1.1为了收集、分析各类质量数据和信息并及时传递和处理,更好地为质量管理体系的持续改进和预防措施提供机会,特制订本办法。 1.2本办法适用于宝山钢铁股份有限公司特殊钢分公司(以下简称:分公司)质量数据和质量信息的收集、分析等管理。 2管理职责分工 2.1 质量保证部负责质量数据和质量信息的归口管理,并负责质量指标、质量体系运行等方面数据和信息的收集、分析和传递。 2.2 制造管理部、特殊钢技术中心负责关键质量特性等方面的数据和信息收集、分析和传递。 2.3特殊钢销售部负责顾客满意度及忠诚度方面的数据和信息收集、分析和传递。 2.4 采购供应部负责原料、资材备件、设备工程供方数据和信息收集、分析和传递。 2.5 各有关生产厂、部负责本部门或本专业数据和信息收集、分析和传递。 3质量数据、信息收集的范围 3.1 需收集的质量数据、信息应能反映分公司产品实物质量和质量管理体系的运行状况,能反映分公司技术质量水平,并能为持续改进和预防措施提供机会。 3.2 数据、信息收集范围包括: 3.2.1质量合格率、不合格品分类、废品分类、质量损失等; 3.2.2关键质量特性、工艺参数等; 3.2.3体系审核中不合格项的性质和分布等; 3.2.4顾客反馈、顾客需求、顾客满意程度、顾客忠诚程度等;2006年1月12日发布 2006年1月12日实施

3.2.5供方产品、过程及体系的状况等。 4 数据分析的方法 4.1数据分析中应采用适用的数理统计方法。常用统计方法有:分层法、排列图法、因果图法、对策表、检查表、直方图法、过程能力分析、控制图法、相关及回归分析、实验设计、显著性检验、方差分析等。 4.2 产品开发设计阶段可使用实验设计和析因分析、方差分析、回归分析等,以优化参数。 4.3 在质量先期策划中确定过程控制适用的统计技术,并在控制计划中明确。 4.4 生产过程可使用控制图对过程变量进行控制以保持过程稳定;并可利用分层法、直方图法、过程能力分析、相关及回归分析等对过程进行分析,明确过程变差及影响过程因素的相关性,以改进过程;使用排列图法、因果图法等确定生产中的主要问题及其产生原因;使用对策表来确定纠正和预防措施。 4.5 产品验证中可使用检查表,并在检测中使用显著性检验,方差分析、测量系统分析等来进行检测精度管理,防止不合格品流入下道工序。 4.6 在质量分析、质量改进和自主管理活动中可使用分层法、排列图法、因果图法、对策表、直方图法、控制图法、相关和回归分析等。 5质量数据、信息的利用 5.1按规定定期向有关部门传递数据分析的结果,包括销售部每月应将用户异议情况反馈到质量保证部等部门,财务部每月将质量损失情况反馈质量保证部等部门,质量保证部通过编制质量信息日报,每天将实物质量情况向制造管理部、特殊钢技术中心或分公司主管领导传递。 5.2 应通过报告、汇报等形式及时向分公司领导报告数据、信息分析的有关文件,为分公司领导决策提供依据。 5.3 各部门应充分利用数据分析的结果,以寻求持续改进和预防措施的机会。 5.5经过汇总、整理和分析的数据和信息可通过管理评审、技术质量等有关专业工作会议和分公司局域网与相关部门进行沟通。 6质量信息(异常信息)管理

数据分析管理办法

数据分析管理办法 1 目的 为规范有关数据、信息的确定、收集和分析工作,用以识别改进的方向并实施持续的改进,特制定本办法。 2 适用范围 本办法适用于公司职能部门、项目和专业公司的数据、信息收集、分析和处理活动。 3 规范性引用文件 Q/GDCF A101.001-2003 质量手册 4 职责 4.1 公司管理者代表负责组织、协调和领导公司数据收集和分析工作。 4.2 公司综合管理部是公司数据收集和分析的归口管理部门,负责收集、汇总和分析各类数据。 4.3 各职能部门、负责各自工作相关的数据的收集、分析,并将分析情况和利用结果向有关领导和部门报告。 4.4 相关供方应配合各职能部门进行相关数据的收集、分析。 5 管理内容与要求 5.1 数据的收集来自监视和测量的结果以及其他有关来源。可通过监视和测量的结果、审核结果、质量、职业健康安全和环境监查报告、记录、相关方来函的有关内容并通过报告、会议、座谈、走访、调查等其他形式及时或定期收集与管理体系运行有效性和产品、过程有关的数据。 5.2 与顾客满意度有关的数据(综合管理部收集) 从顾客的相关会议、相关报告或以其他形式对顾客满意度相关数据进行收集。 5.3 与内审有关的数据(综合管理部收集) 在每次内审结束后由综合管理部汇总与内审有关的以下数据: ——内审所发现的不符合项的数量以及重要不符合项与一般不符合

项的数量比例; ——不符合项所覆盖的部门的数量及比例。 5.4 与过程的监视和测量有关的数据 5.4.1 与管理职责有关的数据(综合管理部收集) 每次管理评审输入、输出信息,纠正和预防措施及其实施有效性的数据。 5.4.2 与资源管理有关的数据(综合管理部及相关职能部门收集) ——公司及相关供方有关管理、技术、作业、服务、检验试验等人员的信息和数据,以及各类专业职称、特殊岗位、持证人员的数据和信息; ——公司及相关供方员工总数与管理、技术、作业、服务、检验试验等人员之间的比例关系变化的数据; ——公司及相关供方的机械设备数据、设备完好率、利用率等数据及其变化和趋势; ——公司年度培训计划及实施情况的统计数据及培训有效性测定的数据。 5.4.3 与产品实现有关的数据(工程部及相关职能部门收集) ——工程项目的质量、职业健康安全和环境目标、指标的设置以及完成情况的数据或信息; ——与产品有关的要求的确定和评审的数据和信息(次数、内容); ——与采购过程有关的数据和信息: · 合格供方(物资和工程)名录动态信息和数据; · 供方对产品实现过程及工程最终各项参数的影响情况有关的数据,包括缺陷数、不合格品数、安全隐患数、隐患整改数等包括质量、职业健康安全和环境的各项参数、数据。 5.4.4 相关供方投入的资源,如劳动力、机械设备、监视和测量装置等配置及其变化的数据和信息; 5.4.5 工程项目的工期数、里程碑进度、调试进度、并网日期和移交生产日期等技术经济指标数据; 5.5 与产品的监视和测量有关的数据(工程部、生产准备部和相关职能部门收集) 5.5.1 与工程质量、职业健康安全和环境等验评结果有关的数据 ——单位工程和分部分项工程验评结果数据,计算合格率、优良率; ——汇总受监焊口数、抽监比例、焊口抽检一次合格率、优良率。 5.5.2 与不合格品控制有关的数据

钢水二次精炼技术

钢水二次精炼技术 1. 前言 对世界粗钢产量统计表明,在过去30年里,世界粗钢产量在起伏中持续增长。由于连铸比增加使成材率提高。目前,LD钢厂生产的粗钢占世界总钢产量的60%.电炉钢厂产钢接近40%。 在过去15年里,欧盟15个成员国真空处理能力不断增加。目前,可对产钢量的 80%以上进行真空处理。用于二次精炼的钢包炉首先被引入电炉钢厂。近年来,BOF钢厂钢包炉的使用也在稳定增长。现在,欧盟15个成员国钢产量的30%以上经钢包炉二次精炼。 实际上,连铸技术是70年代初日本和欧洲开发的.后来被引进炼钢厂,目前,这两个地区的连铸比达到95%左右。而美国的发展趋势也是一样,仅用了3—4年,使目前连铸比也达到95%左右。未来几年,这些国家的连铸比肯定会不断增加。据统计,目前世界连铸产量约占钢产量的85%左右。在以后的几年里,这一数据或许会上升到约90%。 2.二次精炼技术的发展 为了均匀成分和温度,出现了钢包内气体搅拌工艺。最引人注目的是二次精炼的采用,大大提高了钢的产量和质量。然而二次精炼的主要任务和目的是什么呢? 在出钢和连铸时分离钢水和渣相、钢水脱氧、根据终点目标进行合金化、调整注温、改进钢水的洁净度、夹杂物变性、去除钢水中溶解的[H]和[N]、脱碳、脱硫、均匀钢水成分和温度。 真空脱碳的引入使大量降低碳含量成为可能。目前可得到碳含量20ppm的钢水,预计特殊用途的钢可达到含碳 10ppm。预计未来特殊用途的钢要求P下降到30ppm。现在,通过铁水和钢液脱S,S含量能稳定达到10ppm。目前,还不需要脱s到更低水平。未来专用钢要求氮含量 20ppm,现在可得到总含氧量15ppm的钢,将来要求氧含量最低可达10ppm左右,通过真空处理,可将氢含量降低到1ppm左右。 目前的炼钢工艺方法相当灵活,取决于炼钢厂的产品范围。一般从铁水预脱硫开始,接着转炉炼钢.然后真空处理(RH处理或钢包炉脱气处理),如有必要,接下来钢水还可以加热。既可在钢包炉内加热,也可用铝热法加热。在二次精炼结束时,加入含钙材料进行夹杂物变性处理.最后,采用连铸工艺浇铸钢水。 2.1 钢水脱磷 目前,单用转炉工艺可达到磷含量40-100ppm,其高低取决于铁水中硅和磷含量。根据 渣量来确定铁水硅含量,在脱磷期间形成的一定是P 2O 5 。现在铁水脱磷后再进行转炉少渣吹 炼比较普及,尤其在日本比较普遍。据论述表明.采用转炉双联法脱磷,钢水含磷可达40ppm。然而,在这种情况下.必须注意的是,铁水脱磷必须先脱硅,结果,转炉在超低硅含量的情况下冶炼操作,因此转炉具有少渣操作的优越性。另一方面,这一工艺不允许废钢装入比高。二阶段转炉工艺(双联法),第一个转炉的炉渣扒掉,第二个转炉出钢后炉渣返回到转炉用于下一次吹炼,使转炉吹炼终点磷含量达30ppm,这里全部磷含量指的是转炉吹炼终点的含量。 如果出钢时带少量渣,渣中P 2O 5 还原可使钢水回磷。此外,添加含少量磷的合金元素和锰铁, 也能引起磷含量少量上升,最终产品的磷含量比转炉吹炼终点的磷含量高出 l0ppm左右。 实际上,增加钢包炉和钢水采用不同方法二次精炼,可将磷含量降至较低。这一工序使转炉出钢温度降低50℃左右。降低的钢水温度必须在接下来的二次精炼工序对钢水加热来平衡。曾经对双联法转炉的第二座转炉的磷平衡值进行过比较.转炉渣中铁含量在18%左 右,P 2O 5 含量在 0.4%左右,出钢温度在1700℃时.我们可得到含磷20ppm的钢。 2.2.脱硫 在BOF炉炼钢生产期间,脱硫分为铁水脱硫、转炉内脱硫和钢水炉外脱硫3个阶段。通

产品质量过程控制及检验方法

产品质量过程控制及检验方法 设备的质量直接影响到设备的性能,因而在设备的整个制造过程中,我方将按照以下检验方案对整个制造过程进行过程控制,具体方案如下:(1)过程控制和检验 ①采购部根据技术部提出的设备材料采购清单采购,主要零部件及材料均向合格供应商采购。外购部件均选用著名品牌产品。 ②所有原材料进货时均要求提供材质报告。 ③所有外购件进货时均要求提供质量合格证和检验报告。所有材料进厂后,由仓库负责人召集质检部、技术部及车间质检员对材料进行验收,验收合格后方可办理入库手续;验收不合格办理退货手续。 ④设备制造严格按图纸和相关的工艺进行,由车间质检部质检员及技术部现场指导员进行监造。 ⑤设备制造过程中各零部件均进行首检,自检,检验合格的投入生产,制造后的单件均由过程检验进行逐个检验,制造质量凡达不到规定要求的一律进行返修或由技术部负责人批准后作报废处理。 ⑥设备制造工艺流程中规定的质量控制点,由车间负责人填写控制点报审表,由质检部召集技术部及相关人员进行点检,并形成控制点质量检验意见,报项目经理审批处理。 ⑦设备整机制造完成后,由质检部召集技术部、车间相关人员进行出厂前的预组装及空载试运转及渗漏试验,检验合格后办理入库手续。 ⑧设备的生产过程各工序严格按规定的表格填写详细的检验数据。 ⑨出厂前对设备进行预组装。设备的空载运行,主要进行设备在没施加负载状态下进行的整体试压及运行。以上检验由质检部门及技术人员一起组合并验收,并记录检验报告。上述设备组装和空载运行调试合格后方可出厂。 (2)中间检验 甲方在制造过程中随时派人去制造厂进行中间阶段的考查、抽检、监查进度,我方将在货物具备出厂条件后,提前10天书面通知招标方派人员去制造厂进行预验收,预验收项目包括: ①产品外观检查;

统计过程控制(SPC)程序

统计过程控制(SPC)程序 1 目的 为了解和改善过程,通过对过程能力的分析、评估使其有量化资料,为设计、制造过程的改进,选择材料,操作人员及作业方法,提供依据和参考。 2 范围 本程序适用于*****有限公司做统计过程控制(P P K、C P K、CmK 、PPM)的所 有产品。 3 术语和定义 SPC:指统计过程控制。 CpK:稳定过程的能力指数。它是一项有关过程的指数,计算时需同时考虑过程数的趋势及该趋势接近于规格界限的程度。 PpK:初期过程的能力指数。它是一项类似于C P K的指数,但计算时是以新产品的初期过程性能研究所得的数据为基础。 C a:过程准确度。指从生产过程中所获得的资料,其实际平均值与规格中心值之间偏差的程度。 C p:过程精密度。指从生产过程中全数抽样或随机抽样(一般样本在50个以上)所计算出来的样本标准差(σ × ),以推定实际群体的标准差(σ)用3个标准差(3σ)与规格容许差比较。 PPM:质量水准,即每百万个零件不合格数。指一种根据实际的缺陷材料来反映过程能力的一种方法。PPM数据常用来优先制定纠正措施。 Cmk:设备能力指数:是反映机械设备在受控条件下,当其人/料/法不变时的生产能力大小。 4 职责 质量部负责统计过程控制的监督、管理工作。 5 PPM、Cp、Cpk、Pp、Ppk过程能力计算及评价方法 1.质量水准PPM的过程能力计算及评值方法: 当产品和/或过程特性的数据为计数值时,制造过程能力的计算及等级评价方法如下: (1)计算公式: 不良品数 PPM = × 1000000 检验总数 (2)等级评价及处理方法:

A PPM ≦ 233 制造过程能力足够。 B 233 < PPM ≦ 577 制造过程能力尚可;视过程控制特性的要求,进行必要的改进措施。 C 577 < PPM ≦ 1350 制造过程能力不足;必须进行改进措施。2.稳定过程的能力指数Cp、Cpk计算及评价方法: (1)计算公式: A)Ca = (x-U) / (T / 2)×100% 注: U = 规格中心值 T = 公差 = SU - SL = 规格上限值–规格下限值 σ= 产品和/或过程特性之数据分配的群体标准差的估计值 x = 产品和/或过程特性之数据分配的平均值 B)Cp = T / 6σ(当产品和/或过程特性为双边规格时)或 CPU(上稳定过程的能力指数)= (SU-x)/ 3σ(当产品和/或过程特性为单边规格时) CPL(下稳定过程的能力指数)= (x-SL)/ 3σ(当产品和/或过程特性为单边规格时) Z1 = 3Cp(1+Ca)……根据Z1数值查常(正)态分配表得P1%; Z2 = 3Cp(1-Ca)……根据Z2数值查常(正)态分配表得P2% 不合格率P% = P1% + P2% 注:σ = R / d2( R 为全距之平均值,d2为系数,与抽样的样本大小n有关, 当n = 4时,d 2 = 2.059;当n = 5时,d 2 = 2.3267) C)Cpk = (1-∣Ca∣)× Cp 当Ca = 0时,Cpk = Cp。 D)Cpk = Min(CPU,CPL) = Min{(SU -x)/ 3σ,(x-SL)/ 3σ} 当产品特性为单边规格时,Cpk值即以CPU值或CPL值计算,但需取绝对值;Cpk值取CPU值和CPL值中的最小值。 (2)等级评价及处理方法: 等级Ca值处理方法等级说明 A ∣Ca∣≦ 12.5% 作业员遵守作业规范的规定并达到规格 (公差)要求须继续维持。 Ca值当U与 的差越小时, Ca值也越小, 也就是产品质 量越接近规格 (公差)要求 的水准。 B 12.5% < ∣Ca∣≦ 25% 有必要尽可能将其改进为A级。 C 25% < ∣Ca∣≦ 50% 作业员可能看错规格(公差)不按操作规定或需检查规格及作业规范。

【管理制度】数据分析管理办法

数据分析管理办法 1 目的 为规范有关数据、信息的确定、收集和分析工作,用以识别改进的方向并实施持续的改进,特制定本办法。 2 适用范围 本办法适用于公司职能部门、项目和专业公司的数据、信息收集、分析和处理活动。 3 规范性引用文件 Q/GDCF A101.001-2003 质量手册 4 职责 4.1 公司管理者代表负责组织、协调和领导公司数据收集和分析工作。 4.2 公司综合管理部是公司数据收集和分析的归口管理部门,负责收集、汇总和分析各类数据。 4.3 各职能部门、负责各自工作相关的数据的收集、分析,并将分析情况和利用结果向有关领导和部门报告。 4.4 相关供方应配合各职能部门进行相关数据的收集、分析。 5 管理内容与要求 5.1 数据的收集来自监视和测量的结果以及其他有关来源。可通过监视和测量的结果、审核结果、质量、职业健康安全和环境监查报告、记录、相关方来函的有关内容并通过报告、会议、座谈、走访、调查等其他形式及时或定期收集与管理体系运行有效性和产品、过程有关的数据。 5.2 与顾客满意度有关的数据(综合管理部收集) 从顾客的相关会议、相关报告或以其他形式对顾客满意度相关数据进行收集。 5.3 与内审有关的数据(综合管理部收集) 在每次内审结束后由综合管理部汇总与内审有关的以下数据: ——内审所发现的不符合项的数量以及重要不符合项与一般不符合项的数量比例; ——不符合项所覆盖的部门的数量及比例。 5.4 与过程的监视和测量有关的数据 5.4.1 与管理职责有关的数据(综合管理部收集) 每次管理评审输入、输出信息,纠正和预防措施及其实施有效性的数据。 5.4.2 与资源管理有关的数据(综合管理部及相关职能部门收集) ——公司及相关供方有关管理、技术、作业、服务、检验试验等人员的信息和数据,以及各类专业职称、特殊岗位、持证人员的数据和信息; ——公司及相关供方员工总数与管理、技术、作业、服务、检验试验等人员之间的比例关系变化的数据; ——公司及相关供方的机械设备数据、设备完好率、利用率等数据及其变化和趋势; ——公司年度培训计划及实施情况的统计数据及培训有效性测定的数据。 5.4.3 与产品实现有关的数据(工程部及相关职能部门收集) ——工程项目的质量、职业健康安全和环境目标、指标的设置以及完成情况的数据或信息; ——与产品有关的要求的确定和评审的数据和信息(次数、内容); ——与采购过程有关的数据和信息: 精品资料网(https://www.wendangku.net/doc/0610359761.html,)专业提供企管培训资料

相关文档
相关文档 最新文档