文档库 最新最全的文档下载
当前位置:文档库 › 立体几何填空

立体几何填空

立体几何填空
立体几何填空

11.已知一个三棱锥的所有棱长均相等,且表面积为34,则其体积为 ▲ .

11.如图所示,在直三棱柱111C B A ABC -中,

2,4,1===⊥CC BC AC BC AC ,若用平行于三棱柱111C B A ABC -的某一侧面的平面去截此三棱柱,使得到的两个几何

体能够拼接成长方体,则长方体表面积的最小值为 .

11.已知点,,,P A B C 是球O 表面上的四个点,且,,PA PB PC 两两成60 角,1PA PB PC ===cm ,则球的表面积为 2cm .

1. 如图所示,在直三棱柱中,A C ⊥BC ,AC =4,BC =CC 1=2,若用平行于

三棱柱A 1B 1C 1-ABC 的某一侧面的平面去截此三棱柱,使得到的两

个几何体能够拼接成长方体,则长方体表面积的最小 值为 。

5.如图,在棱长为2的正方体ABCD —A 1B 1C 1D 1中,E ,F 分别是棱

AB ,BC 中点,则三棱锥B —B 1EF 的体积为 。

6.若圆锥的母线长为2cm ,底面圆的周长为2πcm ,则圆锥的体积为

▲ 3cm .

11.三棱锥P —ABC 的侧棱PA 、PB 、PC 两两互相垂直,侧面面积分别是6,4,3,则三棱锥的体积是 .

4.用半径为R 的半圆形铁皮卷成一个圆锥桶,那么这个圆锥的高是 ▲

9.有三个球和一个正方体,第一个球与正方体的各个面相切,第二个球与正方体的各

条棱相切,第三个球过正方体的各个顶点,则这三个球的表面积之比为 .

2如图,直三棱柱ABC-A 1B 1C 1中,AB=1,BC=2,AC=5,AA 1=3,M 为线段BB 1上的一动点,则当AM+MC 1最小时,△AMC 1的面积为______

。 B

1

9.已知正四棱柱的底面边长为2,高为3,则该正四棱柱的外接球的表面积为 .

10.已知P 是棱长为1的正方体ABCD -A 1B 1C 1D 1表面上的动点,且AP P 的轨迹的长度是 ▲ .

4、已知圆锥的母线长为cm 5,侧面积为215cm π, 则此圆锥的体积为 2cm .

6、长度分别为2x x x x x 、、、、、的六条线段能成为同一个四面体的六条棱的充要条件是

11.正方体ABCD -A 1B 1C 1D 1的棱长为,则四面体11A B CD -的外接球的体积为

▲ .

7. 正方体ABCD -A 1B 1C 1D 1的棱长为,则四面体11A B CD -的外接球的体积为

▲ .

3.已知单位正方体ABCD -A 1B 1C 1D 1对棱BB 1,DD 1上有两个动点E 、F ,BE =D 1F ,设EF 与面AB 1所成角为α,与面BC 1所成角为β,则α+β的最大值为 .

4、已知正三棱锥P —ABC 中,侧棱030,=∠=APB a PA ,D 、E 分别是侧棱PB 、PC 上的点,则ADE ?的周长的最小值是 ;

11、已知正四棱锥P —ABCD的主视图和左视图均为边长是2的正三角形,俯视图是边长为2的正方形,则此正四棱锥的体积是 ;

9、一个长方体的各顶点均在同一个球的球面上,且过同一个顶点的三条棱的长分别为1,2,3,则此球的表面积是 ;

6.若正四棱柱1111ABCD A BC D -的底面边长为1,1AB 与底面ABCD 成60°角,则11

AC

到底面ABCD 11.直三棱柱1

1A B C A B C -的各顶点都在同一球面上,若12A B A C A A

===,120BAC ∠=?,则此球的表面积等于 2420R ππ= 。 11、三个不同的平面可将空间分成个 ▲ 部分.

13、从空间一点O 作三条射线与半径为1的球分别切于点C B A ,,,且三条射线两两夹角为o

60

则=OA ▲ .

9. 在平面上,若两个正方形的边长的比为1:2,则它们的面积比为1:4;类似地,在空间,若两个正方体的棱长的比为1:2,则它们的体积比为 ▲ .

9,则该长方体的体积是 ▲ .

9.若ABC 的三边长分别为a, b, c ,其内切圆半径为r ,则S △ABC =12

(a+b+c )·r , 类比这一结论到空间,写出三棱锥中的一个正确结论为

1. 用半径为210cm ,面积为π2100cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔

接部分忽略不计), 则该容器盛满水时的体积是 ▲ .

2. 11、有两个相同的直三棱柱,高为a

2,底面三角形的三边长分别为)0(5,4,3>a a a a .用它们拼成一个三棱柱或四棱柱,在所有可能的情

形中,全面积最小的是一个四棱柱,则a 的取值范围是 ▲ .

8.在ABC ?中,若,,AB AC AC b BC a ⊥==,则ABC ?的外接圆半径r 论拓展到空间,可得出的正确结论是:在四面体S ABC -中,若SA SB SC 、、两两垂直,,,SA a SB b SC c ===,则四面体S ABC -的外接球半径R = ▲ .

11.在一个密封的容积为1的透明正方体容器内装有部分液体,如果任意转动该正方体,液

面的形状都不可能是三角形,那么液体体积的取值范围是 .

立体几何复习知识点汇总(全)

立体几何知识点汇总(全) 1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内,推出点在面内),这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a、b异面,a平行于平面α,b与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一.点.向这个平面所引的垂线段和斜线段) ⑦b a,是夹在两平行平面间的线段,若 a,的位置关系为相交或平行或异面. a=,则b b ⑧异面直线判定定理:过平面外一点与平 面内一点的直线和平面内不经过该点的直线是

异面直线.(不在任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。 (直线与直线所成角]90,0[??∈θ)(向量与向量所成角])180,0[οο∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能 叫1L 与2L 平行的平面) 3. 直线与平面平行、直线与平面垂直. (1). 空间直线与平面位置分三种:相交、平行、在平面内. (2). 直线与平面平行判定定理:如果平面外一条直线和这个平面内一条直线平行,那么这条直线和这个平面平行.(“线线平行?线面平行”) [注]:①直线a 与平面α内一条直线平行,则a ∥α. (×)(平面外一条直线) ②直线a 与平面α内一条直线相交,则a 与平面α相交. (×)(平面外一条直线) ③若直线a 与平面α平行,则α内必存在无数条直线与a 平行. (√)(不是任意一条直线,可利用平行的传递性证之) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×)(可能在此平面内) ⑤平行于同一个平面的两直线平行.(×)(两直线可能相交或者异面) ⑥直线l 与平面α、β所成角相等,则α∥β.(×)(α、β可能相交) (3). 直线和平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.(“线面平行?线线

2019年立体几何选择、填空难题训练(含解析)

立体几何小题难题训练 一.选择题 1.已知正方体ABCD﹣A1B1C1D1,则过点A与AB、BC、CC1所成角均相等的直线有() A.1条 B.2条 C.4条 D.无数条 2.如图,平面PAB⊥平面α,AB?α,且△PAB为正三角形,点D是平面α内的动点,ABCD是菱形,点O为AB中点,AC与OD交于点Q,I?α,且l⊥AB,则PQ与I所成角的正切值的最小值为() A.B.C.D.3 3.如图,点E为正方形ABCD边CD上异于点C,D的动点,将△ADE沿AE翻折成△SAE,使得平面SAE⊥平面ABCE,则下列说法中正确的有() ①存在点E使得直线SA⊥平面SBC; ②平面SBC内存在直线与SA平行 ③平面ABCE内存在直线与平面SAE平行; ④存在点E使得SE⊥BA. A.1个 B.2个 C.3个 D.4个 4.设三棱柱ABC﹣A1B1C1的侧棱与底面垂直,∠BCA=90°,BC=CA=2,若该棱柱的所有顶点都在体积为的球面上,则直线B1C与直线AC1所成角的余弦值为() A. B.C.D.

5.已知异面直线a与b所成的角为50°,P为空间一点,则过点P与a、b所成的角都是30°的直线有且仅有() A.1条 B.2条 C.3条 D.4条 6.已知矩形ABCD,AB=1,BC=.将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直 B.存在某个位置,使得直线AB与直线CD垂直 C.存在某个位置,使得直线AD与直线BC垂直 D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直 7.在正方体ABCD﹣A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线() A.不存在B.有且只有两条C.有且只有三条D.有无数条 8.正方体ABCD﹣A1B1C1D1中,M,N,Q分别是棱D1C1,A1D1,BC的中点,点P在对角线BD1上,给出以下命题: ①当P在BD1上运动时,恒有MN∥面APC; ②若A,P,M三点共线,则=; ③若=,则C1Q∥面APC; ④若过点P且与正方体的十二条棱所成的角都相等的直线有m条;过点P且与直线AB1和A1C1所成的角都为60°的直线有n条,则m+n=7. 其中正确命题的个数为() A.1 B.2 C.3 D.4

知识点-立体几何知识点常见结论汇总

知识点-立体几何知识点常见结论汇总

————————————————————————————————作者:————————————————————————————————日期: 2

O A B C D E F 垂 立体几何高考知识点和解题思想汇总 补充:三角形内心、外心、重心、垂心知识 四心的概念介绍: (1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。 若P 为ABC ?所在平面外一点, O 是点P 在 ABC ?内的射影,则: ①若PA PB PC ==或PA 、PB 、PC 与 所成角均相等, 则O 为ABC ?的外心; ②若P 到ABC ?的三边的距离相等, 则O 为△ABC 的内心; ③若PA 、PB 、PC 两两互相垂直, 或,PA BC PB AC ⊥⊥则O 为ABC ?的垂心. 常见空间几何体定义: 1 .棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱,这两个面为底面,其他面为侧面。 棱柱具有下列性质: 1)棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等; 2)棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。 3)直棱柱的侧棱长与高相等;直棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。 棱柱的分类: 斜棱柱:侧棱不垂直于底面的棱柱叫做斜棱柱。 直棱柱:侧棱垂直于底面的棱柱叫做直棱柱。直棱柱的各个侧面都是矩形; 正棱柱:底面是正多边形的直棱柱叫做正棱柱。正棱柱的各个侧面都是全等的矩形。 平行六面体:底面是平行四边形的棱柱。 直平行六面体:侧棱垂直于底面的平行六面体叫直平行六面体。 长方体:底面是矩形的直棱柱叫做长方体 2 .棱锥:有一个面是多边形 ,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥.(1) 如果一个棱锥的底面是正多边形,且顶点与底面中心的连线垂直于底面,这样的棱锥称为正棱锥.正棱锥具有性质:①正棱锥的顶点和底面中心的连线即为高线;②正棱锥的侧面是全等的等腰三角形,这些等腰三角形底边上的高都相等,叫做这个正棱锥的斜高. (2) 底边长和侧棱长都相等的三棱锥叫做正四面体. A B C O 外 I K H E F D A B C M 内 A B C D E F G 重

立体几何练习题

数学立体几何练习题 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.如图,在正方体ABCD -A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上 的点,A 1M =AN = 2a 3 ,则MN 与平面BB 1C 1C 的位置关系是( ) A .相交 B .平行 C .垂直 D .不能确定 2.将正方形ABCD 沿对角线BD 折起,使平面ABD ⊥平面CBD ,E 是CD 中点,则AED ∠的大小为( ) A.45 B.30 C.60 D.90 3.PA ,PB ,PC 是从P 引出的三条射线,每两条的夹角都是60o,则直线PC 与平面PAB 所成的角的余弦值为( ) A . 12 B C D 4.正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是AA 1与CC 1的中点,则直线ED 与D 1F 所成角的余弦值是 A . 15 B 。13 C 。 12 D 5. 在棱长为2的正方体1111D C B A ABCD -中,O 是底面ABCD 的中心,E 、F 分别是1CC 、 AD 的中点,那么异面直线OE 和1FD 所成的角的余弦值等于( ) A .510 B .3 2 C .55 D .515 6.在正三棱柱ABC-A 1B 1C 1中,若AB=2,A A 1=1,则点A 到平面A 1BC 的距离为( ) A . 4 3 B . 2 3 C . 4 3 3 D .3 7.在正三棱柱ABC-A 1B 1C 1中,若AB=2BB 1,则AB 1与C 1B 所成的角的大小为 ( ) A.60o B. 90o C.105o D. 75o 8.设E ,F 是正方体AC 1的棱AB 和D 1C 1的中点,在正方体的12条面对角线中,与截面 A 1ECF 成60°角的对角线的数目是( ) A .0 B .2 C .4 D .6 二、填空题:本大题共6小题,每小题5分,共30分. 9.在正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为棱AA 1和BB 1的中点,则 sin 〈CM ,1D N 〉的值为_________. 10.如图,正方体的棱长为1,C 、D 分别是两条棱的中点, A 、B 、M 是顶点, 那么点M 到截面ABCD 的距离是 . A B M D C

必修2立体几何复习(知识点+经典习题)

必修二立体几何知识点与复习题 一、判定两线平行的方法 1、平行于同一直线的两条直线互相平行 2、垂直于同一平面的两条直线互相平行 3、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平 行 4、如果两个平行平面同时和第三个平面相交,那么它们的交线平行 5、在同一平面内的两条直线,可依据平面几何的定理证明 二、判定线面平行的方法 1、据定义:如果一条直线和一个平面没有公共点 2、如果平面外的一条直线和这个平面内的一条直线平行,则这条直线和这个平面平行 3、两面平行,则其中一个平面内的直线必平行于另一个平面 4、平面外的两条平行直线中的一条平行于平面,则另一条也平行于该平面 5、平面外的一条直线和两个平行平面中的一个平面平行,则也平行于另一个平面 三、判定面面平行的方法 1、定义:没有公共点 2、如果一个平面内有两条相交直线都平行于另一个平面,则两面平行 3 垂直于同一直线的两个平面平行 4、平行于同一平面的两个平面平行 四、面面平行的性质 1、两平行平面没有公共点 2、两平面平行,则一个平面上的任一直线平行于另一平面 3、两平行平面被第三个平面所截,则两交线平行 4、垂直于两平行平面中一个平面的直线,必垂直于另一个平面 五、判定线面垂直的方法 1、如果一条直线和一个平面内的两条相交线垂直,则线面垂直 2、如果两条平行直线中的一条垂直于一个平面,则另一条也垂直于该平面 3、一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面 4、如果两个平面垂直,那么在一个平面内垂直它们交线的直线垂直于另一个平面 5、如果两个相交平面都垂直于另一个平面,那么它们的交线垂直于另一个平面 六、判定两线垂直的方法 1、定义:成? 90角 2、直线和平面垂直,则该线与平面内任一直线垂直 3、在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直 4、在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直 5、一条直线如果和两条平行直线中的一条垂直,它也和另一条垂直 七、判定面面垂直的方法 1、定义:两面成直二面角,则两面垂直 2、一个平面经过另一个平面的一条垂线,则这个平面垂直于另一平面 八、面面垂直的性质 1、二面角的平面角为? 90 2、在一个平面内垂直于交线的直线必垂直于另一个平面 3、相交平面同垂直于第三个平面,则交线垂直于第三个平面 九、各种角的范围 1、异面直线所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 2、直线与平面所成的角的取值范围是:? ≤ ≤ ?90 0θ[]? ?90 , 3、斜线与平面所成的角的取值范围是:? ≤ < ?90 0θ(]? ?90 , 4、二面角的大小用它的平面角来度量;取值范围是:? ≤ < ?180 0θ(]? ?180 , 十、三角形的心 1、内心:内切圆的圆心,角平分线的交点 2、外心:外接圆的圆心,垂直平分线的交点 3、重心:中线的交点 4、垂心:高的交点 考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1)有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2)有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是() A.空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l与α内的一条直线平行,则l和α平行; (3)设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;

高考立体几何知识点总结(详细)

收集整理:宋氏资料 2016-1-1 2016 高考立体几何知识点总结 一、空间几何体 (一)空间几何体的类型 1 多面体:由若干个平面多边形围成的几何体。围成多面体的各个多边形叫做多面体的面,相邻两个 面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。 2 旋转体:把一个平面图形绕它所在的平面内的一条定直线旋转形成了封闭几何体。其中,这条直线 称为旋转体的轴。 (二)几种空间几何体的结构特征 1 、棱柱的结构特征 1.1 棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。 1.2棱柱的分类 图1-1 棱柱 底面是四边形 棱柱四棱柱底面是平行四边形侧棱垂直于底面底面是矩形底面是正方形平行六面体直平行六面体长方体 棱长都相等 正四棱柱正方体 性质: Ⅰ、侧面都是平行四边形,且各侧棱互相平行且相等; Ⅱ、两底面是全等多边形且互相平行; Ⅲ、平行于底面的截面和底面全等; 1.3棱柱的面积和体积公式 S直棱柱侧(c 是底周长,h 是 ch 高) S 直棱柱表面= c·h+ 2S 底 V 棱柱= S 底·h 2 、棱锥的结构特征 2.1 棱锥的定义 (1)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成 的几何体叫做棱锥。 (2)正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的投影是底面的中心, 这样的棱锥叫做正棱锥。 2.2 正棱锥的结构特征 Ⅰ、平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到

底面的距离之比;它们面积的比等于截得的棱锥的高与原棱锥的高的平方比;截得的棱锥的体积与原棱锥的体积的比等于截得的棱锥的高与原棱锥的高的立方比; Ⅱ、正棱锥的各侧棱相等,各侧面是全等的等腰三角形; 正棱锥侧面积: 1 S正棱椎ch (c为底周长,h'为斜高) ' 2 P 体积: 1 V棱椎Sh(S为底面积,h 为高) 3 D C O H 正四面体: A B 2 对于棱长为a正四面体的问题可将它补成一个边长为 a 的正方体问题。 2 2 对棱间的距离为 a 2 (正方体的边长) 6 正四面体的高 a 3 ( 2 3 l 正方体体对角线 ) 正四面体的体积为 2 12 a 3 ( 1 V正方体4V V ) 小三棱锥正方体 3 正四面体的中心到底面与顶点的距离之比为1:3( 1 6 l 1 正方体体对角线:l 2 正方体体对角线 ) 3 、棱台的结构特征 1.4棱台的定义:用一个平行于底面的平面去截棱锥,我们把截面和底面之间的部分称为棱台。 1.5正棱台的结构特征 (1)各侧棱相等,各侧面都是全等的等腰梯形; (2)正棱台的两个底面和平行于底面的截面都是正多边形; (3)正棱台的对角面也是等腰梯形; (4)各侧棱的延长线交于一点。 4 、圆柱的结构特征 2.3圆柱的定义:以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱。 2.4圆柱的性质 (1)上、下底及平行于底面的截面都是等圆; (2)过轴的截面(轴截面)是全等的矩形。 2.5圆柱的侧面展开图:圆柱的侧面展开图是以底面周长和母线长为邻边的矩形。 2.6圆柱的面积和体积公式 S 圆柱侧面= 2π·r·h (r 为底面半径,h 为圆柱的高) S 2

2017-2019高考文数真题分类解析---立体几何(选择题、填空题)

2017-2019高考文数真题分类解析 ----立体几何(选择题、填空题) 1.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线 D .α,β垂直于同一平面 【答案】B 【解析】由面面平行的判定定理知:α内两条相交直线都与β平行是αβ∥的充分条件,由面面平行性质定理知,若αβ∥,则α内任意一条直线都与β平行,所以α内两条相交直线都与β平行是αβ∥的必要条件,故选B . 【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易犯的错误为定理记不住,凭主观臆断,如:“若,,a b a b αβ??∥,则αβ∥”此类的错误. 2.【2019年高考全国Ⅲ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则 A .BM =EN ,且直线BM ,EN 是相交直线 B .BM ≠EN ,且直线BM ,EN 是相交直线 C .BM =EN ,且直线BM ,EN 是异面直线 D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B 【解析】如图所示,作EO CD ⊥于O ,连接ON ,BD ,易得直线BM ,EN 是三角形EBD 的中线,是

相交直线. 过M 作MF OD ⊥于F ,连接BF , Q 平面CDE ⊥平面ABCD ,,EO CD EO ⊥?平面CDE ,EO ∴⊥平面ABCD ,MF ⊥平面ABCD , MFB ∴△与EON △均为直角三角形.设正方形边长为2,易知12EO ON EN ===,, 5 ,22 MF BF BM = =∴=BM EN ∴≠,故选B . 【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利用垂直关系,再结合勾股定理进而解决问题. 3.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是 A .158 B .162 C .182 D .324 【答案】B 【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,

空间向量与立体几何知识点

立体几何空间向量知识点总结 知识网络: 知识点拨: 1、空间向量的概念及其运算与平面向量类似,向量加、减法的平行四边形法则,三角形法则以及相关的运算律仍然成立.空间向量的数量积运算、共线向量定理、共面向量定理都是平面向量在空间中的推广,空间向量基本定理则是向量由二维到三维的推广. 2、当a 、b 为非零向量时.0a b a b ?=?⊥是数形结合的纽带之一,这是运用空间向量研究线线、线面、面面垂直的关键,通常可以与向量的运算法则、有关运算律联系来解决垂直的论证问题. 3、公式cos ,a b a b a b ?<>= ?是应用空间向量求空间中各种角的基础,用这个公式可以求两异面直线所成的角(但要注意两异面直线所成角与两向量的夹角在取值围上的区别),再结合平面的法向量,可以求直线与平面所成的角和二面角等. 4、直线的方向向量与平面的法向量是用来描述空间中直线和平面的相对位置的重要概念,通过研究方向向量与法向量之间的关系,可以确定直线与直线、直线与平面、平面与平面等的位置关系以及有关的计算问题. 5、用空间向量判断空间中的位置关系的常用方法 (1)线线平行 证明两条直线平行,只需证明两条直线的方向向量是共线向量. (2)线线垂直 证明两条直线垂直,只需证明两条直线的方向向量垂直,即0a b a b ?=?⊥.

(3)线面平行 用向量证明线面平行的方法主要有: ①证明直线的方向向量与平面的法向量垂直; ②证明可在平面找到一个向量与直线方向向量是共线向量; ③利用共面向量定理,即证明可在平面找到两不共线向量来线性表示直线的方向向量.(4)线面垂直 用向量证明线面垂直的方法主要有: ①证明直线方向向量与平面法向量平行; ②利用线面垂直的判定定理转化为线线垂直问题. (5)面面平行 ①证明两个平面的法向量平行(即是共线向量); ②转化为线面平行、线线平行问题. (6)面面垂直 ①证明两个平面的法向量互相垂直; ②转化为线面垂直、线线垂直问题. 6、运用空间向量求空间角 (1)求两异面直线所成角 利用公式cos, a b a b a b ? <>= ? , 但务必注意两异面直线所成角θ的围是 0, 2 π ?? ???, 故实质上应有:cos cos,a b θ=<> . (2)求线面角 求直线与平面所成角时,一种方法是先求出直线及射影直线的方向向量,通过数量积求出直线与平面所成角;另一种方法是借助平面的法向量,先求出直线方向向量与平面法向量的夹角φ,即可求出直线与平面所成的角θ,其关系是sinθ=| cosφ|. (3)求二面角 用向量法求二面角也有两种方法:一种方法是利用平面角的定义,在两个面先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;另一种方法是转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.7、运用空间向量求空间距离 空间中的各种距离一般都可以转化为求点与点、点与线、点与面的距离. (1)点与点的距离 点与点之间的距离就是这两点间线段的长度,因此也就是这两点对应向量的模. (2)点与面的距离 点面距离的求解步骤是: ①求出该平面的一个法向量; ②求出从该点出发的平面的任一条斜线段对应的向量; ③求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离. 备考建议:

6、立体几何选择填空题

六、立体几何选择填空题 1.如图,已知正方体1111ABCD A B C D -的棱长为4,点E ,F 分别是线段AB ,11C D 上的动点,点P 是上底面1111A B C D 内一动点,且满足点P 到点F 的距离等于点P 到平面11ABB A 的距离,则当点P 运动时,PE 的最小值是( ) A .5 B .4 C . D . 2.如图在一个二面角的棱上有两个点 A , B ,线段,A C B D 分别在这个二面角的两个面内,并且都垂直于棱AB ,=46,AB cm AC cm =, 8,BD cm CD ==,则这个二面角的度数为( ) A .30? B .60? C .90? D .120? 3.如图,P 是正方体1111ABCD A B C D -对角线1AC 上一动点, 设 AP 的长度为x ,若PBD ?的面积为(x)f ,则(x)f 的图象大致是( ) 4.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1 A 在底面ABC 上的射影为BC 的中点,则异面直线A B 与1C C 所成的角的余弦值为( ) (A (B (C (D )34 5.正方形ABCD 的边长为2,点E 、F 分别在边AB 、BC 上,且1AE =,1 2 BF = ,将此正 方形沿DE 、DF 折起,使点A 、C 重合于点P ,则三棱锥P DEF -的体积是( ) A . 13 B C D 6.如图所示,四边形ABCD 为正方形,QA ⊥平面ABCD ,PD ∥QA ,QA =AB =PD.则棱锥Q -ABCD 的体积与棱锥P -DCQ 的体积的比值是( ) A. 2:1 B. 1:1 C. 1:2 D. 1:3 7.将正方形ABCD 沿对角线BD 折成直二面角A BD C --,有如下四个结论: ①AC ⊥BD ;②△ACD 是等边三角形;③AB 与平面BCD 所成的角为60°; ④AB 与CD 所成的角为60°.其中错误.. 的结论是 A .① B .② C .③ D .④ 8.如图是正方体或四面体,P,Q,R,S 分别是所在棱的中点,这四个点不共面的一个图是( ) 9.如图,在平行六面体ABCD-A 1B 1C 1D 1中,底面是边长为1的正方形, 若∠A 1AB=∠ A 1AD=60o,且A 1A=3,则A 1C 的长为( ) A B . C D 10.如图,在正四棱柱ABCD-A 1B 1C 1D 1中,AA 1=2,AB =BC =1, 动点P ,Q 分别在线段C 1D ,AC 上,则线段PQ 长度的最小值是( ). B. C. 23 11.如图,在三棱柱ABC-A 1B 1C 1中,侧棱垂直于底面,底面是边长为2 的等边三角形,侧棱长为3,则BB 1与平面AB 1C 1所成的角为( ). A. 6π B. 4π C.3π D. 2 π 12.如图所示,在棱长为1的正方体1111ABCD A B C D -的面对角线1A B 上存在 一点P 使得1AP D P +取得最小值,则此最小值为 ( ) A .2 B .2 C .2 D

高中数学立体几何知识点整理

三、立体几何初步 1、柱、锥、台、球的结构特征 (1)棱柱: 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。 (2)棱锥 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到 截面距离与高的比的平方。 (3)棱台: 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图 是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 2、空间几何体的三视图 定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) 注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。 3、空间几何体的直观图——斜二测画法 斜二测画法特点:①原来与x 轴平行的线段仍然与x 平行且长度不变; ②原来与y 轴平行的线段仍然与y 平行,长度为原来的一半。 4、柱体、锥体、台体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。 (2)特殊几何体表面积公式(c 为底面周长,h 为高,' h 为斜高,l 为母线) ch S =直棱柱侧面积rh S π2=圆柱侧'2 1ch S =正棱锥侧面积rl S π=圆锥侧面积 ')(2 121h c c S +=正棱台侧面积l R r S π)(+=圆台侧面积 ()l r r S +=π2圆柱表()l r r S +=π圆锥表()22R Rl rl r S +++=π圆台表 (3)柱体、锥体、台体的体积公式 V Sh =柱2V Sh r h π==圆柱13V Sh =锥h r V 231π=圆锥 '1()3 V S S h =台'2211()()33V S S h r rR R h π==++圆台 (4)球体的表面积和体积公式:V 球=343 R π ; S 球面=24R π 4、空间点、直线、平面的位置关系 公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。 应用: 判断直线是否在平面内 用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈?? 公理2:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线

文科立体几何知识点方法总结高三复习

立体几何知识点整理(文科) 一.直线和平面的三种位置关系: 1. 线面平行 l 符号表示: 2. 线面相交 符号表示: 3. 线在面内 符号表示: 二.平行关系: 1.线线平行: 方法一:用线面平行实现。 方法二:用面面平行实现。 方法 用线 直实 现。 若α α⊥ ⊥m l,,则m l//。 方法四:用向量方法: 若向量和向量共线且l、m不重合,则m l//。 2.线面平行: 方法一:用线线平行实现。 方法二:用面面平行实现。 方法三:用平面法向量实现。 若n为平面α的一个法向量,l n⊥且α ? l,则 α // l。 3.面面平行: 方法一:用线线平行实现。 β α α β // ' ,' , ' // ' // ? ? ? ? ? ? ? ? ? ? 且相交 且相交 m l m l m m l l 方法二:用线面平行实现。 三.垂直关系: 1. 线面垂直: 方法一:用线线垂直实现。 方法二:用面面垂直实现。 2. 面面垂直: 方法一:用线面垂直实现。 方法二:计算所成二面角为直角。 3.线线垂直: 方法一:用线面垂直 实现。 方法二:三垂线定理及其逆定理。 方法三:用向量方法: 若向量和向量的数量积为0,则m l⊥。 三.夹角问题。 (一)异面直线所成的角: (1) 范围:] 90 , 0(? ? (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: (计算结果可能是其补角 ) θ c b a l

方法二:向量法。转化为向量的夹角 (计算结果可能是其补角): (二) 线面角 (1)定义:直线l 上任取一点P (交点除外),作PO ⊥α于O,连结AO ,则AO 为斜线PA 在面α内的射影,PAO ∠(图中θ)为直线l 与面α所成的角。 (2)范围:]90,0[?? 当?=0θ时,α?l 或α//l 当?=90θ时,α⊥l (3)求法: 方法一:定义法。 步骤1:作出线面角,并证明。 步骤2:解三角形,求出线面角。 (三) 二面角及其平面角 (1)定义:在棱l 上取一点P ,两个半平面内分别作l 的垂线(射线)m 、n ,则射线m 和n 的夹角θ为二面角α—l —β的平面角。 (2)范围:]180,0[?? (3)求法: 方法一:定义法。 步骤1:作出二面角的平面角(三垂线定理),并证明。 步骤2:解三角形,求出二面角的平面角。 方法二:截面法。 步骤1:如图,若平面POA 同时垂直于平面βα和,则交线(射线)AP 和AO 的夹角就是二面角。 步骤2:解三角形,求出二面角。 方法三:坐标法(计算结果可能与二面角互补)。 步骤一:计算121212 cos n n n n n n ?= ? 步骤二:判断θ与12n n 的关系,可能相等或者互补。 四.距离问题。 1.点面距。 方法一:几何法。 步骤1:过点P 作PO ⊥α于O ,线段PO 即为所求。 步骤2:计算线段PO 的长度。(直接解三角形;等体积法和等面积法;换点法) 2.线面距、面面距均可转化为点面距。 3.异面直线之间的距离 方法一:转化为线面距离。 如图,m 和n 为两条异面直线,α?n 且α//m , 则异面直线m 和n 之间的距离可转化为直线m 与平面α之间的距离。 方法二:直接计算公垂线段的长度。 方法三:公式法。 如图,AD 是异面直线m 和n 的公垂线段, '//m m ,则异面直线m 和n 之间的距离为: 高考题典例 考点1 点到平面的距离例1如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点.(Ⅰ)求证:1AB ⊥平面1A BD ;(Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离.考点2 异面直线的距离 A B C D O F

立体几何选填题资料讲解

立体几何 选填题 一、选择题 1.一个几何体的三视图如图所示,则该几何体的表面积为( ) A .3π B .4π C .24π+ D .34π+ 2.设α,β是两个不同的平面,l ,m 是两条不同的直线,且l α?,m β?( ) A .若l β⊥,则αβ⊥ B .若αβ⊥,则l m ⊥ C .若//l β,则//αβ D .若//αβ,则//l m 3.如下图,网格纸上小正方形的边长为1,粗线画出的是一正方体被截去一部分后所得几何体的三视图,则该几何体的表面积为( ) A.54 B.162 C.54183+162183+ 4.设直线,m n 是两条不同的直线,,αβ是两个不同的平面,则//αβ的一个充分条件是( ) A.//,//,m n m n αβ⊥ B.//,,//m n m n αβ⊥ C.,//,m n m n αβ⊥⊥ D. ,,//m n m n αβ⊥⊥ 5.已知,αβ是两个不同的平面,,m n 为两条不重合的直线,则下列命题中正确的为( ) A .若αβ⊥,n αβ=I ,m n ⊥,则m α⊥ B .若m α?,n β?,//m n ,则//αβ C .若m α⊥,n β⊥,m n ⊥,则αβ⊥ D .若//m α,//n β,//m n ,则//αβ 6.某几何体的三视图如图所示,则该几何体的体积为( )

A .23 B .1 C .43 D .2 8.已知两个不同的平面a ,β和两条不重合的直线m ,n ,则下列四个命题中不正确的是( ) A .若//m n ,m a ⊥,则n a ⊥ B .若m a ⊥,m β⊥,则//a β C .若m a ⊥,//m n ,n β?,则a β⊥ D .若//m a ,a n β=I ,则//m n 9.已知三棱锥的俯视图与侧视图如图所示,俯视图是边长为2的正三角形,侧视图是有一直角边为2的直角三角形,则该三棱锥的正视图可能为( ) 10.已知直线m ?平面β,直线l 平面α,则下列结论中错误的是( ) A .若l β⊥,则//m α B .若//l m ,则αβ⊥ C .若//αβ,则l m ⊥ D .若αβ⊥,则//l m 11.某几何体的三视图如图所示,则该几何体的体积是( ) A .103 B .163 C .5 D .10 12.下列命题正确的是( ) A .两两相交的三条直线可确定一个平面 B .两个平面与第三个平面所成的角都相等,则这两个平面一定平行 C .过平面外一点的直线与这个平面只能相交或平行 D .和两条异面直线都相交的两条直线一定是异面直线 13.某椎体的三视图如图所示,则该棱锥的最长棱的棱长为( )

立体几何知识点总结

立体几何知识点总结

立体几何知识点总结 1、 多面体(棱柱、棱锥)的结构特征 (1)棱柱: ①定义:有两个面互相平行,其余各面都是 四边形,并且每相邻两个四边形的 公共边都互相平行,由这些面所围 成的几何体叫做棱柱。 棱柱斜棱柱直棱柱正棱柱; 四棱柱平行六面体直平行六面体 长方体正底面是正方形 底面是矩形 侧棱垂直于底面 底面是平行四边形 底面是正多边形 侧棱垂直于底面 侧棱不垂直于底面

棱长都相等 四棱柱正方体。 ②性质:Ⅰ、侧面都是平行四边形;Ⅱ、两底面是全等多边形; Ⅲ、平行于底面的截面和底面全等;对角面是平行四边形; Ⅳ、长方体一条对角线长的平方等于一个顶点上三条棱的长的平方和。 (2)棱锥: ①定义:有一个面是多边形,其余各面是有 一个公共顶点的三角形,由这些面 围成的几何体叫做棱锥; 正棱锥:底面是正多边形,并且顶点在底面内的射影是底面中心,这样的棱锥叫做正棱锥; ②性质: Ⅰ、平行于底面的截面和底面相似, 截面的边长和底面的对应边边长的比 等于截得的棱锥的高与原棱锥的高的 比; 它们面积的比等于截得的棱锥的高与 原棱锥的高的平方比;

截得的棱锥的体积与原棱锥的体积的 比等于截得的棱锥的高与原棱锥的高 的立方比; Ⅱ、正棱锥性质:各侧面都是全等的等腰三 角形;通过四个直角三角形POH Rt ?,POB Rt ?, PBH Rt ?,BOH Rt ?实现边,高,斜高间的换算 2、 旋转体(圆柱、圆锥、球)的结构特征 A B C D O H P

(2)性质: ①任意截面是圆面(经过球心的平面,截得 的圆叫大圆,不经 过球心的平面截得 的圆叫 小圆) ②球心和截面圆心的连线垂直于截面,并且 2d 2 =,其中R为球半径,r为截 r- R 面半径,d为球心的到截面的距离。 3、柱体、锥体、球体的表面积与体积 (1)几何体的表面积为几何体各个面的面积的和。

立体几何多项选择题专项训练及详解

立体几何多项选择题专项训练及详解多项选择题:本题共 4小题,每题 5分,共 20 分,在每小题给出的四个选项中,有多项符合题目要求 .全部选对的得 5 分,部分选对的 得 3 分,有选错的得 0 分 . 1.等腰直角三角形直角边长为 1,现将该三角形绕其某一边旋转一周,则所形成的几何体 的表面积可以为() A .B.C.D. 解析:若绕一条直角边旋转一周时,则圆锥的底面半径为 1,高为 1,所以母线长 l =,这时表面积为 ?2π?1?l +π?12=( 1+ )π; 若绕斜边一周时旋转体为 L 两个倒立圆锥对底组合在一起,且由题意底面半径为,一个圆锥的母线长为 1,所以表面积 S= 2 2 ?1=,综上所述该几何体的 表面积为, 答案: AB 2.已知α,β是两个不重合的平面, m,n 是两条不重合的直线,则下列命题正确的是() A .若 m∥ n, m⊥ α,则 n⊥ αB.若 m∥ α,α∩ β= n,则 m∥n C.若 m⊥ α, m⊥ β,则α∥βD.若 m⊥α,m∥ n, n∥ β,则 α∥β 解析: A.由 m∥ n,m⊥ α,则 n⊥ α,正确; B.由 m∥ α,α∩ β=n,则 m与 n 的位置关系不确定; C.由 m⊥ α,m⊥β,则α∥β正确 D .由 m⊥α,m∥n, n∥β,则α⊥β,因此不正确. 答案: AC

3.已知菱形 ABCD 中,∠ BAD =60°, AC与BD 相交于点 O.将△ ABD 沿 BD 折起,使顶点 A 至点 M ,在折起的过程中,下列结论正确的是() A .BD⊥ CM B .存在一个位置,使△ CDM 为等边三角形 C .DM 与 BC 不可能垂直 D .直线 DM 与平面 BCD 所成的角的最大值为 60°

立体几何好题及答案

A 1 C B A B 1 C 1 D 1 D O 高三数学·单元测试卷(九) 第九单元 [简单几何体],交角与距离 (时量:120分钟 150分) 一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中, 只有一项是符合题目要求的. 1.过三棱柱任意两个顶点的直线共15条,其中异面直线有 A .18对 B .24对 C .30对 D .36对 2..一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 A .π28 B .π8 C .π24 D .π4 3.设三棱柱ABC -A 1B 1C 1的体积为V ,P 、Q 分别是侧棱AA 1、CC 1上的点,且PA =QC 1,则四棱锥B -APQC 的体积为 A .V 6 B .V 4 C .V 3 D .V 2 4.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF ∥AB ,EF =2,则该多面体的体积为 A . 3 2 B . 3 3 C .3 4 D .32 5.设α、β、γ为平面,l n m 、、为直线,则β⊥m 的一个充分条件是 A .l m l ⊥=?⊥,,βαβα B .γβγαγα⊥⊥=?,,m C .αγβγα⊥⊥⊥m ,, D .αβα⊥⊥⊥m n n ,, 6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,O 是底面A 1B 1C 1D 的中心,则O 到平面ABC 1D 1的距离为 A .12 B .24 C .22 D .32 7.不共面的四个定点到平面α的距离都相等,这样的平面α共有 A .3个 B .4个 C .6个 D .7个 8.正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AB 、C 1D 1的中点,则直线A 1B 1与平面A 1ECF

高中数学立体几何知识点归纳总结

高中数学立体几何知识 点归纳总结 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-

高中数学立体几何知识点归纳总结一、立体几何知识点归纳 第一章空间几何体 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.棱柱 棱柱——有两个面互相平行,其余各面都是四边 形,并且每相邻两个四边形的公共边都互相平行, 由这些面所围成的几何体叫做棱柱。 相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正 棱柱)的关系: ① ? ? ??????→ ?? ?????→? ? ?? ? 底面是正多形 棱垂直于底面 斜棱柱 棱柱正棱柱 直棱柱 其他棱柱

底面为平行四边形 侧棱垂直于底面 底面为矩形 底面为正方形 棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 长方体的性质: ①长方体一条对角线长的平方等于一个顶点上三条棱的平方和;【如图】 222211AC AB AD AA =++ ②(了解)长方体的一条对角线1AC 与过顶点A 的三条棱所成的角分别是 αβγ,,,那么222cos cos cos 1αβγ++=,222sin sin sin 2αβγ++=; ③(了解)长方体的一条对角线1AC 与过顶点A 的相邻三个面所成的角分别是αβγ,,,则222cos cos cos 2αβγ++=,222sin sin sin 1αβγ++=. 侧面展开图:正n 棱柱的侧面展开图是由n 个全等矩形组成的以底面周长和侧棱长为邻边的矩形.

相关文档
相关文档 最新文档