文档库 最新最全的文档下载
当前位置:文档库 › 正态分布的概率计算

正态分布的概率计算

正态分布的概率计算
正态分布的概率计算

正态分布的概率计算:测量值X落在(a,b)区间内的概率为:

2

2

()

2

21

( )()

()()

b

a

x

b

a

P a X b p x dx

e dx u u

μ

σφφ

--

≤≤=

==-

?

(3-43)

式中,u= (x-μ)/σ,令δ=x-μ;

du

e

z z

u

?∞--

=2

2

2

1

)

(

π

φ称标准正态分布函数

表2-1-6 标准正态分布函数表(摘录)

置信因子k=z

1、k=3时,X落在(μ-3σ,μ+3σ)区间内的概率为:

P(?x-μ?≤ 3σ) = 2φ(3)-1= 2×0.99865-1= 0.9973

2、k=2时,X落在(μ-2σ,μ+2σ)区间内的概率为:

P(?x-μ?≤ 2σ) = 2φ(2)-1= 2×0.97725-1=0.9545

3、k=1时,X落在(μ-σ,μ+σ)区间内的概率为:

P(?x-μ?≤σ) = 2φ(1)-1= 2×0.84131-1=0.6827

用同样的方法可以计算得到正态分布时测量值落在μ±kσ置信区间内的置信概率,如下表所列。置信概率与k值有关,

在概率论中k被称为置信因子。

表2-1-7 正态分布时置信概率与置信因子k的关

THANKS !!!

致力为企业和个人提供合同协议,策划案计划书,学习课件等等

打造全网一站式需求

欢迎您的下载,资料仅供参考

正态概率图normalprobability plot

正态概率图(normal probability plot) 方法演变:概率图,分位数-分位数图( Q- Q) 概述 正态概率图用于检查一组数据是否服从正态分布。是实数与正态分布数据之间函数关系的散点图。如果这组实数服从正态分布,正态概率图将是一条直线。通常,概率图也可以用于确定一组数据是否服从任一已知分布,如二项分布或泊松分布。 适用场合 ·当你采用的工具或方法需要使用服从正态分布的数据时; ·当有50个或更多的数据点,为了获得更好的结果时。 例如: ·确定一个样本图是否适用于该数据; ·当选择作X和R图的样本容量,以确定样本容量是否足够大到样本均值服从正态分布时; ·在计算过程能力指数Cp或者Cpk之前; ·在选择一种只对正态分布有效的假设检验之前。

实施步骤 通常,我们只需简单地把数据输入绘图的软件,就会产生需要的图。下面将详述计算过程,这样就可以知道计算机程序是怎么来编译的了,并且我们也可以自己画简单的图。 1将数据从小到大排列,并从1~n标号。 2计算每个值的分位数。i是序号: 分位数=(i-0.5)/n 3找与每个分位数匹配的正态分布值。把分位数记到正态分布概率表下面的表A.1里面。然后在表的左边和顶部找到对应的z值。 4根据散点图中的每对数据值作图:每列数据值对应个z值。数据值对应于y轴,正态分位数z值对应于x轴。将在平面图上得到n个点。

5画一条拟合大多数点的直线。如果数据严格意义上服从正态分布,点将形或一条直线。将点形成的图形与画的直线相比较,判断数据拟合正态分布的好坏。请参阅注意事项中的典型图形。可以计算相关系数来判断这条直线和点拟合的好坏。 示例 为了便于下面的计算,我们仅采用20个数据。表5. 12中有按次序排好的20个 值,列上标明“过程数据”。 下一步将计算分位数。如第一个值9,计算如下: 分位数=(i-0.5)/n=(1-0.5)/20=0.5/20=0.025同理,第2个值,计算如下: 分位数=(i-0.5)/n=(2-0.5)/20=1.5/20=0.075可以按下面的模式去计算:第3个分位数=2.5÷20,第4个分位数=3 5÷20 以此类推直到最后1个分位数=19. 5÷20。 现在可以在正态分布概率表中查找z值。z的前两 个阿拉伯数字在表的最左边一列,最后1个阿拉伯数 字在表的最顶端一行。如第1个分位数=0. 025,它 位于-1.9在行与0.06所在列的交叉处,故z=- 1.96。用相同的方式找到每个分位数。 如果分位数在表的两个值之间,将需要用插值法进行求解。例如:第4个分位数为0.

正态分布推导72927

正态分布的推导 斯特林(Stirling)公式的推导 斯特林(Stirling)公式: 这个公式的推导过程大体来说是先设一个套,再兜个圈把结果套进来,同时把公式算出来。Stirling太强了。 1,Wallis公式 证明过程很简单,分部积分就可以了。 由x的取值可得如下结论: 即 化简得 当k无限大时,取极限可知中间式子为1。所以

第一部分到此结束,k!被引入一个等式之中。 2,Stirling公式的求解 继续兜圈。 关于lnX的图像的面积,可以有三种求法,分别是积分,内接梯形分隔,外切梯形分隔。分别是: 显然, 代入第一部分最后公式得

(注:上式中第一个beta为平方) 所以得公式: 正态分布推导 在一本俄国的概率教材上看到以下一段精彩的推导,才知道原来所谓正态分布并不是哪位数学家一拍脑门想起来的。记得大学时的教材上只告诉了我们在抽样实验中当样本总量很大时,随机变量就服从正态分布,至于正态分布是怎么来的一点都不提。大学之前,我始终坚信数学是世界上最精致的艺术。但是上了大学之后,发现很多数学上很多问题教材中都是语焉不详,而且很多定义没有任何说明的就出来了,就像一致连续,一致收敛之类的,显得是那么的突兀。这时候数学就像数学老师一样蛮横,让我对数学极其反感,足足有四年之久。只到前些日子,在CSDN上读到孟岩的一篇并于矩阵的文章,才重新对数学发生兴趣。最近又读到了齐民友所写的《重温微积分》以及施利亚耶夫所写的《概率》,才知道原来每一个定义,和每一个定理都有它的价值和意义。 前几天在网上遇到老文,小小的探讨了一下这个问题,顺便问起他斯特林公式的证明过程。他说碰巧最近很是在研究这个公式,就写出来放在百度上以供来者瞻仰吧。于是就有了这篇文章: 斯特林(Stirling)公式的推导 如果哪位在读本篇之前想要知道斯特林公式是怎么来的,请阅读之。 本来是想和老文一块发的,怎奈一个小小的公式编辑器让我费了两个晚上才搞定。于是直至今日,方才有这篇小文字。 本篇是斯特林公式的一个应用。本篇的推导全部抄自施利亚耶夫著《概率》,本文的证明完成了棣莫弗——拉普拉斯定理推导的前半部分,后半部分以及其与伯努利大数定律的关系在以后再往上贴吧。其实也不是很难,自己动动手也是能推出来的。 这次推导可以说是“连续性随机变量”第一次出现在该书中,作为理解连续性随机变量的基础,正态分布是十分重要的。 斯特林公式: 根据斯特林公式,

正态分布概率公式(部分)

Generated by Foxit PDF Creator ? Foxit Software https://www.wendangku.net/doc/0b4166701.html, For evaluation only.
图 62正态分布概率密度函数的曲线 正态曲线可用方程式表示。 n 当 →∞时,可由二项分布概率函数方程推导出正态 分布曲线的方程:
fx= (61 ) () .6
式中: x—所研究的变数; fx —某一定值 x出现的函数值,一般称为概率 () 密度函数 (由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某 一区间的概率, 不能计算变量取某一值, 即某一点时的概率, 所以用 “概率密度” 一词以与概率相区分),相当于曲线 x值的纵轴高度; p—常数,等于 31 .4 19……; e— 常数,等于 2788……; μ 为总体参数,是所研究总体 5 .12 的平均数, 不同的正态总体具有不同的 μ , 但对某一定总体的 μ 是一个常数; δ 也为总体参数, 表示所研究总体的标准差, 不同的正态总体具有不同的 δ , 但对某一定总体的 δ 是一个常数。 上述公式表示随机变数 x的分布叫作正态分布, 记作 N μ ,δ2 ), “具 ( 读作 2 平均数为 μ,方差为 δ 的正态分布”。正态分布概率密度函数的曲线叫正态 曲线,形状见图 62。 (二)正态分布的特性
1、正态分布曲线是以 x μ 为对称轴,向左右两侧作对称分布。因 =

数值无论正负, 只要其绝对值相等, 代入公式 61 ) ( .6 所得的 fx 是相等的, () 即在平均数 μ 的左方或右方,只要距离相等,其 fx 就相等,因此其分布是 () 对称的。在正态分布下,算术平均数、中位数、众数三者合一位于 μ 点上。

正态分布概率公式(部分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于 3.14 159 ……; e —常数,等于 2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ,但对某一定总体的μ是一个常数;δ也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ,但对某一定总体的δ是一个常数。 上述公式表示随机变数 x 的分布叫作正态分布,记作 N( μ , δ2 ) ,读作“具平均数为μ,方差为δ 2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以 x= μ为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。

2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞ ),在( - ∞ ,μ)正态曲线随 x 的增大而上升,;当 x= μ时, f(x) 最大;在(μ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ和δ两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ确定它的变异程度 [ 图 6-4] 。μ和δ不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条曲线,而是一系列曲线。任何一条特定的正态曲线只有在其μ和δ确定以后才能确定。 5 、正态分布曲线是二项分布的极限曲线,二项分布的总概率等于 1 ,正态分布与 x 轴之间的总概率(所研究总体的全部变量出现的概率总和)或总面积也应该是等于 1 。而变量 x 出现在任两个定值 x1到x2(x1≠x2)之间的概率,等于这两个定值之间的面积占总面积的成数或百分比。正态曲线的任何两个定值间的概率或面积,完全由曲线的μ和δ确定。常用的理论面积或概率如下: 区间μ ± 1 δ面积或概率 =0.6826 μ ± 2 δ =0.9545 μ ± 3 δ=0.9973 μ± 1.960δ=0.9500 μ ±2.576 δ =0.9900

概率论正态分布计算实验报告

概率论实验报告 电子3班 一、实验目的 1.掌握正态分布的有关计算 2.掌握正态分布在实际问题中的应用 3掌握数据分析的一些方法和MATLAB软件在概率计算中的应用 4.掌握正态总体均值(参数)的置信区间的计算方法 二、实验内容 问题一:某公司准备通过考试招收320人,其中正式工280人,临时 工40人,报考人数1821人,考试满分为400分。考后知平均分μ=166分,360分以上有31人。甲的分为256分,问他可否被录取?可否 聘为正式工? 问题二:从一批火箭推力装置中抽取10个进行试验,测得燃烧时间为: 50.7 54.9 54.3 44.8 42.2 69.8 53.4 66.1 48.1 34.1 设燃烧时间~N(μ,2σ),取1-α=0.9,求μ和2σ的置信区间。 三、实验任务及结果 问题一: 分析: (1). 已知条件考试平均成绩μ=166,P(x>=360)=31/1821;

由于x只服从正态分布而不服从标准正态分布,故先标准化。 即X=(x-μ)/σ~N(0,1)。则有: P{X<=(360-166)/σ}=1-31/1821; 据此由函数σ=(360-166)/norminv(1790/1821,0,1)可求出考试成绩方差σ。 (2).至此,又b=P{X<=(256-166)/σ},可由函数b=1-normcdf(a,0,1)求得 (3).近似排名num=1821*b,根据排名可知甲能否被录取。程序: %假设考试成绩服从正态分布% P1=1-31/1821 %正态分布表% z1=norminv(P1,0,1) %可求得参数? % o=(360-166)/z1 a=(256-166)/o %由正态分布表% p2=normcdf(a,0,1) rank=1821*(1-p2) a=rank if a<280 mystring='zhengshiyuangong'; elseif 280320 mystring='NO!'; end y=mystring 实验结果:P1 =0.9830 z1 = 2.1195 o = 91.5305 a =0.9833

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布)生存分析贝叶斯概率公式全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10 万个家庭,没有孩子的家庭有1000 个,有一个孩子的家庭有9 万个,有两个孩子的家庭有6000 个,有 3 个孩子的家庭有3000 个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X ,它可取值0,1,2,3,其中取0 的概率为0.01,取 1 的概率为0.9,取 2 的概率为0.06,取 3 的概率为0.03,它的数学期望为 0×0.01+1×0.9+2×0.06+3×0.03 等于 1.11,即此城市一个家庭平均有小孩 1.11 个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一 个家庭,最有可能它家的孩子为 1.11 个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为 80 的正态分布,即平均分是80 分,由正态分布的图形知 x=80 时的函数值最大,即随机变量在 80 附近取值最密集,也即考试成绩在 80 分左右的人最多。 下图为概率密度函数图(F(x)应为f(x) ,表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X2分布、t 分布、F 分布 抽样分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution):例子抛硬币 1、重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定 伯努利试验) 2、

正态分布及其经典习题和答案

专题:正态分布 例:(1)已知随机变量X 服从二项分布,且E (X )=2.4,V (X )=1.44,则二项分布的参数n ,p 的值为 A .n=4,p=0.6 B .n=6,p=0.4 C .n=8,p=0.3 D .n=24,p=0.1 答案:B 。解析:()4.2==np X E ,()44.1)1(=-=p np X V 。 (2)正态曲线下、横轴上,从均数到∞+的面积为( )。 A .95% B .50% C .97.5% D .不能确定(与标准差的大小有关) 答案:B 。解析:由正态曲线的特点知。 (3)某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是 ( ) A 32 B 16 C 8 D 20 答案:B 。解析:数学成绩是X —N(80,102), 8080 9080(8090)(01)0.3413,480.34131610 10P X P Z P Z --??≤≤=≤≤=≤≤≈?≈ ???。 (4)从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为___________ 。 ∴E(X)=8.5. (5)如图,两个正态分布曲线图: 1为)(1 ,1x σμ?,2为)(22x σμ?, 则1μ 2μ,1σ 2σ答案:<,>。解析:由正态密度曲线图象的特征知。【课内练习】 1.标准正态分布的均数与标准差分别为( )。 A .0与1 B .1与0 C .0与0 D .1与1 答案:A 。解析:由标准正态分布的定义知。 2.正态分布有两个参数μ与σ,( )相应的正态曲线的形状越扁平。 A .μ越大 B .μ越小 C .σ越大 D .σ越小 答案: C 。解析:由正态密度曲线图象的特征知。 3.已在n 个数据n x x x ,,,21Λ,那么() ∑=-n i i x x n 1 21是指 A .σ B .μ C .2σ D .2 μ( ) 答案:C 。解析:由方差的统计定义知。 4.设),(~p n B ξ,()12=ξE ,()4D ξ=,则n 的值是 。 答案:4。解析:()12==np E ξ,()(1)4D np p ξ=-= 5.对某个数学题,甲解出的概率为2 3 ,乙解出的概率为34,两人独立解题。记X 为解出该题的人数,则E (X )= 。 答案:1712。解析:11121145(0),(1),3412343412P X P X ==?===?+?=231 (2)342 P X ==?=。

正态分布、概率

信息系统项目管理师重点知识点:完工概率计算总结 例图: 活动BCD的乐观(o)工期都是9天,最可能(m)工期为12天,最悲观(p)工期都是15天,那么在14天内完成单项活动的概率和完成全部这三项活动的概率是多少 首先计算平均工期(PERT):公式--(乐观时间+4*最可能时间+悲观时间)/ 6 (9+4*12+15)/6=12天; 其次计算标准差:公式--(悲观时间-乐观时间)/ 6 ; (15-9)/6=1天 再计算偏离平均工期:方法--[给出的天数计算(14)-计算出来的平均工期(12)]/标准差(1) (14-12)/1=2 备注:此时得出来的为几,之后就是使用几西格玛 (Sigma)(1σ=68,37%)(2σ=95.46%)(3σ=99.73%)(6σ=99.99966%百万分之三点四) 计算每一项活动在14天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+95.46%/2=97.73% 备注:50%参考正态分布图,95.46参考2西格玛值; 计算全部活动在14天内完工概率是:方法--每一项活动的概率相乘 97.73%*97.73%*97.73%=93.34% 下图为简要正态分布图:

备注:正态分布有50%成功,有50%不成功 如计算将上面的14天,修改为13天; 偏离平均工期就是1天,计算方法:(13-12)/1=1天,则应该使用1西格玛; 计算每一项活动在13天内完工的概率是:方法--正态分布概率+西格玛/偏离平均工期数 50%+68.37%/2=84.19% 备注:50%参考正态分布图,68.37参考1西格玛值; 计算全部活动在13天内完工概率是:方法--每一项活动的概率相乘 84.19%*84.19%*84.19%=59.67% 如果计算为11-15天的概率:最小值的概率+最大值的概率 68.37/2+99.75/2=84.06%

附表标准正态分布累积概率函数表

附表:标准正态分布累积概率函数表 当)(0x N x 时≤表 这个表表示了当)(0x N x 时≤的值。使用这张表时可与内插法结合起来使用。例如: )]13.0()12.0([34.0)12.0()1234.0(-----=-N N N N 4509 .0)4483.04522.0(34.04522.0=-?-= x .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 -0.0 -0.1 -0.2 -0.3 -0.4 0.5000 0.4602 0.4207 0.3821 0.3446 0.4960 0.4562 0.4168 0.3783 0.3409 0.4920 0.4522 0.4129 0.3745 0.3372 0.4880 0.4483 0.4090 0.3707 0.3336 0.4840 0.4443 0.4052 0.3669 0.3300 0.4801 0.4404 0.4013 0.3632 0.3264 0.4761 0.4364 0.3974 0.3594 0.3228 0.4621 0.4325 0.3936 0.3557 0.3192 0.4681 0.4286 0.3897 0.3520 0.3156 0.4641 0.4247 0.3859 0.3483 0.3121 -0.5 -0.6 -0.7 -0.8 -0.9 0.3085 0.2743 0.2420 0.2119 0.1841 0.3050 0.2709 0.2389 0.2090 0.1814 0.3015 0.2676 0.2358 0.2061 0.1788 0.2981 0.2643 0.2327 0.2033 0.1762 0.2946 0.2611 0.2296 0.2005 0.1736 0.2912 0.2578 0.2266 0.1977 0.1711 0.2877 0.2546 0.2236 0.1949 0.1685 0.2843 0.2514 0.2206 0.1922 0.1660 0.2810 0.2483 0.2177 0.1894 0.1635 0.2776 0.2451 0.2148 0.1867 0.1611 -1.0 -1.1 -1.2 -1.3 -1.4 0.1587 0.1357 0.1151 0.0968 0.0808 0.1562 0.1335 0.1131 0.0951 0.0793 0.1539 0.1314 0.1112 0.0934 0.0778 0.1515 0.1292 0.1093 0.0918 0.0764 0.1492 0.1271 0.1075 0.0901 0.0749 0.1469 0.1251 0.1056 0.0885 0.0735 0.1446 0.1230 0.1038 0.0869 0.0721 0.1423 0.1210 0.1020 0.0853 0.0708 0.1401 0.1190 0.1003 0.0838 0.0694 0.1379 0.1170 0.0985 0.0823 0.0681 -1.5 -1.6 -1.7 -1.8 -1.9 0.0668 0.0548 0.0446 0.0359 0.0287 0.0655 0.0537 0.0436 0.0351 0.0281 0.0643 0.0526 0.0427 0.0344 0.0274 0.0630 0.0516 0.0418 0.0336 0.0268 0.0618 0.0505 0.0409 0.0329 0.0262 0.0606 0.0495 0.0401 0.0322 0.0256 0.0594 0.0485 0.0392 0.0314 0.0250 0.0582 0.0475 0.0384 0.0307 0.0244 0.0571 0.0465 0.0375 0.0301 0.0239 0.0559 0.0455 0.0367 0.0294 0.0233 -2.0 -2.1 -2.2 -2.3 -2.4 0.0228 0.0179 0.0139 0.0107 0.0082 0.0222 0.0174 0.0136 0.0104 0.0080 0.0217 0.0170 0.0132 0.0102 0.0078 0.0212 0.0166 0.0129 0.0099 0.0075 0.0207 0.0162 0.0125 0.0096 0.0073 0.0202 0.0158 0.0122 0.0094 0.0071 0.0197 0.0154 0.0119 0.0091 0.0069 0.0192 0.0150 0.0116 0.0089 0.0068 0.0188 0.0146 0.0113 0.0087 0.0066 0.0183 0.0143 0.0110 0.0084 0.0064 -2.5 -2.6 -2.7 -2.8 -2.9 0.0062 0.0047 0.0035 0.0026 0.0019 0.0060 0.0045 0.0034 0.0025 0.0018 0.0059 0.0044 0.0033 0.0024 0.0018 0.0057 0.0043 0.0032 0.0023 0.0017 0.0055 0.0041 0.0031 0.0023 0.0016 0.0054 0.0040 0.0030 0.0022 0.0016 0.0052 0.0039 0.0029 0.0021 0.0015 0.0051 0.0038 0.0028 0.0021 0.0015 0.0049 0.0037 0.0027 0.0020 0.0014 0.0048 0.0036 0.0026 0.0019 0.0014 -3.0 -3.1 -3.2 -3.3 -3.4 0.0014 0.0010 0.0007 0.0005 0.0003 0.0013 0.0009 0.0007 0.0005 0.0003 0.0013 0.0009 0.0006 0.0005 0.0003 0.0012 0.0009 0.0006 0.0004 0.0003 0.0012 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0006 0.0004 0.0003 0.0011 0.0008 0.0005 0.0004 0.0003 0.0010 0.0007 0.0005 0.0004 0.0003 0.0010 0.0007 0.0005 0.0003 0.0002 -3.5 -3.6 -3.7 -3.8 -3.9 -4.0 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002 0.0002 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 0.0002 0.0001 0.0001 0.0001 0.0000 0.0000 附表:当0≥x 时)(x N 表 这个表表示了当0≥x 时)(x N 的值。使用这张表时可与内插法结合起来使用。例如: )]62.0()63.0([78.0)62.0()6278.0(N N N N -+= 7350 .0)7324.07357.0(78.07324.0=-?+=

正态分布概率公式(部分)知识讲解

正态分布概率公式(部 分)

图 6-2 正态分布概率密度函数的曲线 正态曲线可用方程式表示。当n→∞时,可由二项分布概率函数方程推导出正态分布曲线的方程: f(x)= (6.16 ) 式中: x —所研究的变数; f(x) —某一定值 x 出现的函数值,一般称为概率密度函数(由于间断性分布已转变成连续性分布,因而我们只能计算变量落在某一区间的概率,不能计算变量取某一值,即某一点时的概率,所以用“概率密度”一词以与概率相区分),相当于曲线 x 值的纵轴高度; p —常数,等于3.14159 ……; e —常数,等于2.71828 ……;μ为总体参数,是所研究总体的平均数,不同的正态总体具有不同的μ ,但对某一定总体的μ是一个常数;δ 也为总体参数,表示所研究总体的标准差,不同的正态总体具有不同的δ ,但对某一定总体的δ 是一个常数。

上述公式表示随机变数 x 的分布叫作正态分布,记作N( μ , δ2 ) ,读作“具平均数为μ,方差为δ2 的正态分布”。正态分布概率密度函数的曲线叫正态曲线,形状见图 6-2 。 (二)正态分布的特性 1 、正态分布曲线是以x= μ 为对称轴,向左右两侧作对称分布。因的数值无论正负,只要其绝对值相等,代入公式( 6.16 )所得的 f(x) 是相等的,即在平均数μ 的左方或右方,只要距离相等,其 f(x) 就相等,因此其分布是对称的。在正态分布下,算术平均数、中位数、众数三者合一位于μ点上。 2 、正态分布曲线有一个高峰。随机变数 x 的取值范围为( - ∞,+ ∞),在( - ∞ ,μ )正态曲线随 x 的增大而上升,;当 x= μ 时, f (x) 最大;在(μ ,+ ∞ )曲线随 x 的增大而下降。 3 、正态曲线在︱x-μ︱=1 δ 处有拐点。曲线向左右两侧伸展,当x →± ∞ 时,f(x) →0 ,但 f(x) 值恒不等于零,曲线是以 x 轴为渐进线,所以曲线全距从 -∞到+ ∞。 4 、正态曲线是由μ 和δ 两个参数来确定的,其中μ确定曲线在 x 轴上的位置 [ 图 6-3] ,δ 确定它的变异程度 [ 图 6-4] 。μ 和δ 不同时,就会有不同的曲线位置和变异程度。所以,正态分布曲线不只是一条

相关文档
相关文档 最新文档