文档库 最新最全的文档下载
当前位置:文档库 › 高温高压井套管柱设计和强度校核

高温高压井套管柱设计和强度校核

高温高压井套管柱设计和强度校核
高温高压井套管柱设计和强度校核

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录

前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

塔设备机械计算

第四章塔设备机械设计 塔设备设计包括工艺设计和机械设计两方面。机械设计是把工艺参数、尺寸作为已知条件,在满足工艺条件的前提下,对塔设备进行强度、刚度和稳定性计算,并从制造、安装、检修、使用等方面出发进行机构设计。 4.1设计条件 由塔设备工艺设计设计结果,并查相关资料[1],[9]知设计条件如下表。 表4-1 设计条件表

4.2设计计算 4.2.1全塔计算的分段

图4-1 全塔分段示意图 塔的计算截面应包括所有危险截面,将全塔分成5段,其计算截面分别为:0-0、1-1、2-2、3-3、4-4。分段示意图如图4-1。

4.2.2 塔体和封头厚度 塔内液柱高度:34.23.15.004.05.0=+++=h (m ) 液柱静压力:018.034.281.992.783101066=???==--gh p H ρ(MPa ) 计算压力:1=+=H c p p p MPa (液柱压力可忽略) 圆筒计算厚度:[]94.60 .185.017022000 0.12=-???=-= c i c p D p φσδ(mm ) 圆筒设计厚度:94.8294.6=+=+=C c δδ(mm ) 圆筒名义厚度:108.094.81=?++=?++=C c n δδ(mm ) 圆筒有效厚度:8210=-==-=C n e δδ(mm ) 封头计算厚度:[]93.60 .15.085.017022000 0.15.02=?-???=-= c i c h p D p φσδ(mm ) 封头设计厚度:93.8293.6=+=+=C h hc δδ(mm ) 封头名义厚度:108.093.81=?++=?++=C hc hn δδ(mm ) 封头有效厚度:8210=-==-=C hn he δδ(mm ) 4.2.3 塔设备质量载荷 1. 塔体质量 查资料[1],[8]得内径为2000mm ,厚度为10mm 时,单位筒体质量为495kg/m ,单个封头质量为364kg 。 通体质量:5.121275.244951=?=m (kg ) 封头质量:72823642=?=m (kg ) 裙座质量:14850.34953=?=m (kg ) 塔体质量:5.1434014857285.1212732101=++=++=m m m m (kg ) 0-1段:49514951-0,01=?=m (kg )

API套管强度设计

3API 套管强度 3.1 API 套管抗挤强度 3.1.1屈服挤毁强度值 当外挤压应力作用在套管管壁上使套管材料达到屈服强度时,管体将会发生塑性变形,此时即被认为不安全。当管体发生塑性变形时,通过承受均匀载荷的厚壁筒的拉梅公式,可推导出如下 API 屈服强度挤毁公式: 当套管的径厚比满足(/)(/)c c yp D D δδ≥时: co 2(/)1 2[ ] (/)c P c D p Y D δδ-= 式中:p co —屈服抗挤强度,MPa ; Y p —套管材料的最小屈服强度,MPa (其值钢号字母后面的数据乘以 6.894757) D c —套管的名义外径,mm ; δ—套管的名义壁厚,mm ; 其中: (/)c yp p D δ= 472103 2.8762 1.5488510 4.480610 1.62110p p p A Y Y Y ---=+?+?-? 50.0262337.3410p B Y -=+? 4273 465.93 4.4741 2.20510 1.128510p p p C Y Y Y --=-+-?+? 3.1.2塑性挤毁强度值 当套管的径厚比满足(/)(/)(/)c yp c c pt D D D δδδ≤≤时,套管在外挤压力作用下的挤毁属于塑性强度挤毁,其API 抗挤强度由下式计算。 co 2[ ]0.0068947(/)P c A p Y B C D δ=-- 式中:p co —塑性挤毁强度,MPa ,系数 A 、B 、C 计算同前。式中(D c /δpt 为

塑性强度挤毁与过度强度挤毁临界点的径厚比,当塑性强度挤毁压力等于过度强度挤毁压力时得出塑性挤毁强度与过度挤毁强度临界值的径厚比,用下面公式计算: ()(/)0.0068947() p c pt p Y A F D C Y B G δ-= +- 其中公式的系数 F ,G 由图解法求的,计算如公式 53 2 3/3.23710( ) 2/3/3/[(/)](1)2/2/p B A B A F B A B A Y B A B A B A ?+= --++ (/)G F B A = 3.1.3过渡挤毁强度值 当套管的径厚比满足(/)(/)(/)c pt c c te D D D δδδ≤≤时,套管在外挤压力作用下的挤毁属于过度挤毁(塑弹性挤毁强度),其抗挤强度由下式计算: co [ ] (/)P c F p Y G D δ=- 式中:p co —过度挤毁强度,MPa 当过度强度挤毁压力等于弹性强度挤毁压力时,得出过度挤毁强度与弹性挤毁强度临界值的径厚比,计算公式如下式: 2/(/)3/c te B A D B A δ+= 3.1.4弹性挤毁强度值 当套管的径厚比满足(/)(/)c c te D D δδ≥时,套管在外挤压力作用下的挤毁属于弹性挤毁,其抗挤强度由如下式计算: 5 co 3.23710(/)(/1)c c p D D δδ-?= - 式中:p co —弹性挤毁强度,MPa 式中(D c /δte )为过度挤毁强度与弹性挤毁强度临界点的径厚比。

套管头安装试压标准

套管头安装试压标准 1 20"*133/8"*95/8"*7"-10000psi三层四卡瓦式套管头组合的卡瓦式套管头的安装试压 1.1 20"表层卡瓦式套管头的安装试压 1.1.1检查送井装备及配件的完好和配套齐全。 1.1.2检查天车、转盘、表层套管三者中心线校正在一条垂线上,偏差≤10mm ,防止井口偏磨。 1.1.3导管割口高度计算 1.1.3.1导管割口高度应满足的要求 1.1.3.1.1满足钻井设计中开发要求的油管头(采油树大四通)下法兰面即最上面一层套管头四通上法兰面高于井架基础面300±50mm。 1.1.3.1.2满足各次井口安装时,内防喷管线都能平直的从井架底座防喷管线出口接出。

1.1.3.1.3以井架基础面为基准线,作为计算、丈量尺寸的基准,且最后一级套管头法兰面要求高于它300±50mm。 1.1.3.2导管割口高度确定 按照示意图可以确定导管割口高度:A=h1+h2+h3-D A为导管理论割高,该高度要如不能满足上述条件则要调整300±50 h1为20"表层套管头高度; h2为13 3/8"套管头高度; h3为9 5/8"套管头高度; B为表层套管头BT顶部至下托盘底面的长度; C为防喷管线中心距井架底座的高度,一般为200mm; D为完井后最后一层套管头上法兰面高出基础地面的高度,一般为300±50mm; E1为20"套管头安装后下托盘底面与钻井四通中心之间的高度; E2为13 3/8"套管头安装后下托盘底面与钻井四通中心之间的高度; E3为9 5/8"套管头安装后下托盘底面与钻井四通中心之间的高度; F为钻机底座高度; 1.1.3. 2.1导管割口高度校核,导管割口高度确定后,必须校核E1、E2、E3之间的误差,以保证尺寸C、D 在规定的误差范围内,即保证以后每层套管头安装好后防喷管线能够平直接出钻机底座。如果不能满足上述条件,则要调整尺寸D。 1.1.4切割导管

套管头技术要求(标准)

标准套管头技术要求 一、执行标准:SY/T5127-2002 二、材料:35CrMo锻件 三、材料物理机械性能: (1)C%:~ (2)Si%:~ (3)Mn%:~ (4)P%:≤ (5)S%:≤(6)Cr%:~ (7)Mo%:~ (8)断面收缩率%:≥50 (9)延伸率%(δ5):≥14 (10)抗拉强度N/m m2:≥860 四、检测项目及要求: 1、单级套管头: (1)13 3/8″(10 3/4″、9 5/8″)×5 1/2″(7″)-35Mpa (2)13 3/8″(10 3/4″、95/8″)×5 1/2″(7″)-70Mpa

2、双级套管头: (1)13 3/8″×9 5/8″×5 1/2″(7″)-70MPa (2)13 3/8″×9 5/8″×5 1/2″(7″)-35MPa

五、套管头结构 1、单级套管头结构如图1 2、双级套管头结构如图2

六、售后服务 1、套管头安装时厂家服务人员应及时到井; 2、套管头安装应在各层固井施工完之前到井,指导井队进行套管头安装作业; 3、完井套管的切割、注塑按使用井队或固井方要求时间及时到井; 4、套管头在使用中出现问题导致事故,由厂家负应有责任,并赔偿损失; 5、套管头使用保质期为5年,保质期出现问题由厂家进行整改或更换。 七、其它要求 1、标志 产品包装上应有明显的标准,表明产品名称、商标、型号,公司名称、地址、电话,生产日期,保质期,产品执行标准编号,“怕晒”、“怕雨”等图示标志 2、标签 产品合格证上应有:检验员代号,检验合格印章,检验日期。 3、使用说明书

使用说明书应有包括:产品用途,性能简介,使用方法,涉及安全环保的注意事项。 4、包装 产品采用木质箱子包装 5、运输 运输过程中应做好防碰,防止产品有损伤、变形等情况。 6、贮存 贮存过程中应处于干燥条件下。

一口井套管柱设计

完井工程大作业二一口井套管柱设计 班级:油工101 学号:004 姓名:王涛 课程:完井工程 任课教师:孙展利

1基本数据 1)井号:广斜-1井;2)井别:开发井;3)井型:定向井 3井身结构如图所示 4套管柱设计有关数据和要求 表层套管:下深150m,外径Φ339.7mm,一开钻井液密度1.1g/cm3,防喷器额定压力21Mpa,安全系数:抗挤S c=1.0,抗拉S t=1.6,抗内压S i=1.0。要求表层套管的抗内压强度接近防喷器的额定压力,套管钢级用J-55,套管性能见下表。 油层套管:下深3574m,外径Φ139.7mm,二开最大钻井液密度1.32g/cm3,安全系数:抗挤S c=1.125,抗拉S t=1.80(考虑浮力),抗内压S i=1.10。由于地层主要为盐岩、泥岩,易塑性流动和膨胀,外挤载荷要求按上覆岩层压力的当量密度 2.3g/cm3来计算,按直井(井斜角小)和单向应力来设计,套管钢级选N-80、P-110。 要求要有明确的步骤和四步计算过程(已知条件、计算公式、数据带入、计算结

油层套管设计: 已知条件: 油层套管下深H=3574m,外径Φ139.7mm,二开最大钻井液密度ρ m = 1.32g/cm3,安全 系数:抗挤S c =1.125,抗拉S t =1.80(考虑浮力),抗内压S i =1.10。 上覆岩层压力的当量密度ρ o =2.3g/cm3,按直井(井斜角小)和单向应力来设计,解: 根据题目要求,本定向井按照直井(井斜角小)和单向应力来设计,根据题目要求外挤 载荷要求按上覆岩层压力的当量密度ρ o =2.3g/cm3来计算 第一段套管设计: 1.计算第一段套管应具有的抗挤强度(即第一段套管底端的抗挤强度) 1)按抗挤强度设计第一段套管,因为套管底端的外挤压力最大,所以以套管底端的外挤压力作为第一段套管应具有的抗挤强度,按全掏空计算井底外挤压力, P b =0.00981*ρ o *H=0.00981*2.3*3574=80.64Mpa 2)第一段套管应具有的抗挤强度应为 P c1= P b *S c =80.64*1.125=90.72Mpa 2.根据第一段套管应具有的抗挤强度,查套管性能表选用P-110,壁厚10.54mm套管, 其抗挤强度为P c’=100.25 Mpa,抗拉强度为T t1 =2860.2KN,重量W 1 =0.3357KN/m 第二段套管设计: 1. 第一段套管的顶截面位置取决于第二段套管的可下深度,第二段套管选用抗挤强度比第一段套管低一级的套管,查套管性能表可选P-110,壁厚9.17mm套管,其抗 挤强度为P c’’=76.532 MPa,抗拉强度T t2 =2437.6KN,重量为W2=0.2919KN/m 2. 按抗挤强度计算第二段套管的可下深度: H 2= P c’’ /(0.00981*ρ o * S c )=76.532/(0.00981*2.3*1.125)=3023m 3.实际套管因为是10m一根,因此要对可下深度取整,再加上数据误差的安全考虑, 实际第二段套管的深度为H 2=3000m,则第一段套管的段长为L 1 =3574-3000=574m 4.校核第一段套管的安全系数:

最新钻井工程课程设计

1 表A-1 钻井工程课程设计任务书 2 一、地质概况29: 3 井别:探井井号:设计井深:3265m 目的层:

4 当量密度为:g/cm3 表 A-2设计系数 5

6 7 石工专业石工(卓越班)1201班学生姓名:木合来提.木哈西8 9 10 图 A-1 地层压力和破裂压力

11 12 13 14 一.井身结构设计

1.由于该井位为探井,故中间套管下深按可能发生溢流条件确定必封点深度。 15 16 由图A-1得,钻遇最大地层压力当量密度ρpmax=1.23g/cm3,则设计地层破裂压力当17 量密度为:ρfD=1.23+0.024+3245/H1×0.023+0.026. 18 试取H1=1500m,则ρfD=1.23+0.024+2.16×0.023+0.026=1.33 g/cm3, 19 ρf1400=1.36 g/cm3 > ρfD 且相近,所以确定中间套管下入深度初选点为H1=1500m。 20 验证中间套管下入深度初选点1500m是否有卡钻危险。 21 从图A-1知在井深1400m处地层压力梯度为1.12 g/cm3以及320m属正常地层压力,22 该井段内最小地层压力梯度当量密度为1.0 g/cm3。 23 ΔPN=0.00981×(1.10+0.024-1.0)×320=0.389<11MPa 24 所以中间套管下入井深1500m无卡套管危险。 25 水泥返至井深500m。 26 2.油层套管下入J层13-30m,即H2=3265m。 27 校核油层套管下至井深3265m是否卡套管。 28 从图A-1知井深3265m处地层压力梯度为1.23 g/cm3,该井段内的最小地层压力梯度29 为1.12g/cm3,故该井段的最小地层压力的最大深度为2170m。 30 Δpa=0.00981×(1.23+0.024-1.12)×2170=2.85Mpa<20 Mpa 31 所以油层套管下至井深3265m无卡套管危险。 32 水泥返至井深2265m。

一口井设计

一 井身结构设计 设计井深为2235米,地层压力梯度和地层破裂压力梯度随井深变化可通过邻井资料获得。 已知条件有如下: 抽吸压力允许值的当量密度 S b 0.036g/cm 3 地层压裂安全增值 S f 0.03g/cm 3 压井时井内压力增高值 S k 0.06g/cm 3 由已知资料可获得最大地层压力梯度1.05g/cm 3位于2235米处。 1.1 确定中间套管的下入深度Hn 已知在井底时H pmax =2235m, ρpmax =1.05g/cm 3,由下式 ρfn =ρ pmax+ S b+ S f+ max Pp Hni × S k , 当H ni =500m 时,ρfn =1.38<1.6; 当H ni =250m 时,ρfn =1.65>1.6; 当H ni =280m 时,ρfn =1.58,此时与此层的地层破裂压力梯度值1.6g/cm 3微小符合工程需要,故可以确定280m 处为中间套管下入深度。 1.2校核初选点深度是否会发生压差卡钻 利用下式: △ p=9.81H mm ×(ρpmax + S b -ρ pmin )×10-3,式中 ρpmax ---钻至深度H n 时采用的钻井液密度,g/cm 3 ρ pmin ---H n 以上裸眼井段最小地层压力梯度当量密度,g/cm 3 H mm ---最深正常地层压力或最小地层压力深度,m 代入资料中的数据,即:

△p=0.00981×183×(0.93+0.036-0.9)=0.118<<12(MPa) 所以在280m处不可能发生压差卡钻的现象,可以正常钻进。 1.3油层套管直径为139.7mm,查《石油工程设计》图1-1得到如下数据:油管表层套管井眼尺寸的配合(单位:mm): 139.7→200→244.5→311.1 1.4井身设计结果 表1 井身设计结果

套管强度设计例题

设计举例: 例题:某井177.8 mm(7 英寸)油层套管下至3500 m ,下套管时的钻井液密度为1.303 /cm g ,水泥返至2800 m ,预计井内最大内压力 35 MPa ,试设计该套管柱 (规定最小段长500 m )。规定的安全系数:Sc=1.0,Si = 1.1,St =1.8 解:(1)计算最大内压力,筛选符合抗内压要求的套管 抗内压强度设计条件为: 筛选套管: C-75,L-80,N-80,C-90,C-95,P-110 按成本排序: N-80 < C-75 < L-80 < C-90< C-95< P-110 (2)按抗挤设计下部套管段,水泥面以上双向应力校核 1)计算最大外挤力, 选择第一段套管 Pa D p m oc 5.4463535003.181.981.9max =??==ρ 1oc c c p S p ?≤ 5.446350.15.4463548401=?≥ 安全 2)选择第二段套管 选低一级套管,第一段抗拉强度校核 22oc c c p S p ?≤ 229.81m c c D S p ρ?≤ 2237301 29259.819.81 1.3 1.0 c m c p D m S ρ≤ ==?? 第二段套管可下深度D 2,第一段套管长度L 1 取D 2=2900m (留有余量) m D D L 60029003500211=-=-= 双向应力强度校核,最终确定D 2和L 1 D 2 =2900 m >2800 m ,超过水泥面,考虑双向应力

危险截面:水泥面2800m 处 浮力系数:834.085 .73.111=-=-=s m f K ρρ 轴向拉力: ()()水泥面11222800 0.8340.42346000.379529002800243.2m B F K q L q D kN ??=+-?? ??=??+?-=?? 存在轴向拉力时的最大限度允许抗外挤强度: 水泥面 22 2243.21.030.7437301 1.030.74354922686.7m ca c s F p p kPa F ?? ??=-=?-= ? ? ??? ?? 2280035492 0.9919.81 1.32800 ca C oc p S p '= == 1.0 安全 水泥胶结面处 套管2: 危险截面 2700 m 处,Sc = 1.02 > 1.0 安全 两段套管交接处 试取D 2 = 2700 m ,L 1 = 800m 计算套管抗拉安全系数:112655.6 7.84 1.80.4234800 sll t a F S F '= ==>? 安全 最终结果:D 2 = 2700 m ,L 1 = 800m 3)选择第三段套管; 轴向拉力:() 211223 m B F K q L q D D ??=+-?? 存在轴向拉力时的最大限度允许抗外挤强度: 2333 23 3 1.030.74 1.09.81m c s ca c ccD m F p F p S p D ρ? ? - ?? ? '= =≥ 试算法,取 D3 =1700 m , 计算得 Sc= 1.03 计算第二段顶部的抗拉安全系数 () ()211223 0.42348000.379427001700718a F q L q D D kN =+-=?+?-=

一口井套管柱设计大作业

完井工程大作业二 一口井套管柱设计 姓名: 学号: 班级:

完井工程大作业二:一口井套管柱设计 1基本数据 1)井号:广斜-1井;2)井别:开发井;3)井型:定向井 3井身结构如图所示 4套管柱设计有关数据和要求 表层套管:下深150m,外径Φ339.7mm,一开钻井液密度1.1g/cm3,防喷器额定压力21Mpa,安全系数:抗挤S c=1.0,抗拉S t=1.6,抗内压S i=1.0。要求表层套管的抗内压强度接近防喷器的额定压力,套管钢级用J-55,套管性能见下表。 油层套管:下深3574m,外径Φ139.7mm,二开最大钻井液密度1.32g/cm3,安全系数:抗挤S c=1.125,抗拉S t=1.80(考虑浮力),抗内压S i=1.10。由于地层主要为盐岩、泥岩,易塑性流动和膨胀,外挤载荷要求按上覆岩层压力的当量密度 2.3g/cm3来计算,按直井(井斜角小)和单向应力来设计,套管钢级选N-80、P-110。 要求要有明确的步骤和四步计算过程(已知条件、计算公式、数据带入、计算结

一、表层套管设计 已知条件:下深D=150m ,外径Φ339.7mm ,一开钻井液密度ρm 表=1.1g/cm 3,防喷器额定压力21Mpa,安全系数:抗挤S c =1.0,抗拉S t =1.6,抗内压S i =1.0。要求表层套管的抗内压强度接近防喷器的额定压力,套管钢级用J-55。 1、抗内压设计 1)确定井口内压力 设计要求表层套管的抗内压强度接近防喷器的额定压力,则表层套管在井口的内压力为P i =21MPa ,设计内压载荷为P i S i =21×1.0=21MPa 2)依据井口内压力选套管钢级及壁厚 表层套管的抗内压强度应接近设计内压载荷21MPa ,套管钢级用J-55。 根据抗内压强套管度,由套管性能表,可选J-55,壁厚10.92mm 的套管,其名义重力q=890.2N/m ,抗内压强度[P i ]=21.305MPa ,抗外挤强度[P c ]=10.618MPa ,抗拉强度[T b ]=2646.7KN 。 3)校核井口危险截面的实际抗内压安全系数 S i =[P i ]/P i =21.305/21=1.015>1.0(安全) 2、抗挤校核 1)计算表层套管底部的外挤压力 P c =0.00981ρm 表D=0.00981×1.1×150=1.619MPa 2)校核表层套管底部的实际抗挤安全系数 S c =[P c ]/P c =10.618/1.619=6.558>1.0(安全) 3、抗拉校核 1)计算一开的浮力系数 已知套管钢材密度ρS =7.8g/cm3 则浮力系数K B =1-ρm 表/ρS =1-1.1/7.8=0.859 2)计算表层套管口的段重 T b =qDK B =0.8902×150×0.86=114.702KN 3)校核表层套管口的实际抗拉安全系数 S t =[T b ]/T b =2646.7/114.702=23.075>1.6(安全) 二、油层套管设计 已知条件:下深D 1=3574m ,外径Φ139.7mm ,二开最大钻井液密度ρm 油=1.32g/cm 3,安全系数:抗挤S c =1.125,抗拉S t =1.80(考虑浮力),抗内压S i =1.10。由于地层主要为盐岩、泥岩,易塑性流动和膨胀,外挤载荷要求按上覆岩层压力的当量密度 ρO =2.3g/cm 3来计算,按直井(井斜角小)和单向应力来设计,套管钢级选N-80、P-110。 1、计算二开的浮力系数 K B =1-ρm 油/ρS =1-1.32/7.8=0.831 2、按抗挤强度选第一段套管 1)计算套管底部的最大外挤载荷 P c1=0.00981ρO D 1=0.00981×2.3×3574=80.640MPa 2)选第一段套管钢级及壁厚 依据套管底部的最大外挤载荷,由套管性能表,可选P-110,壁厚10.54mm 的套管,其名义重力q 1=335.7N/m ,抗内压强度[P i1]=90.735MPa ,抗外挤强度[P c1]=100.250MPa ,抗拉强度[T b1]=2860.2KN 3)校核套管底部的实际抗挤安全系数 S c1=[P c1]/P c1=100.250/80.640=1.243>1.125(安全)

完整word版,Wellcat钻井完井管柱设计介绍

高温高压井管柱设计和分析软件– WellCat WellCat可为管柱设计提供一体化设计和分析解决方案。WellCat解决了管柱设计学科中的最复杂问题,即精确预测井下温度、压力剖面、管柱载荷和由之引起的位移等难题。在Windows操作环境下的Wellcat软件由5个可独立运行的模块(Drill钻井、Pro开发、Casing套管、Tube油管、Multistring多管串)组成。 对高温高压油井不采用WellCat进行设计的潜在危险是,由于环空流体膨胀可能造成管柱失效,造成井漏和井喷,考虑到油藏的油气损失、勘探和开发费用以及对健康安全和环境(HSE)的影响。 该软件主要解决常温套管设计软件所不能解决的如下管柱设计中的最复杂的难题: ①水下油井的环空热膨胀是否会引起套管损坏――内层管柱挤毁,外层管柱崩裂? ②由温度、压力产生的对整个套管和油管系统的载荷会不会引起井口移位运动及载荷的重新分布? ③如何消除套管和油管的弯曲,或将其限制在一定的范围内? ④在深井钻井过程中,套管在未凝固的水泥是否弯曲,在采油过程中,如何避免这类问题? ⑤小排量的反循环顶替封隔液对油管是起加热还是冷却作用? ⑥在确保安全和可靠的前提下,有没有大幅度降低管材成本的途径? 解决以上问题,需要解决三大重点问题,这也是WELLCAT所具有的三大主要功能: 功能之一:精确模拟井的生命周期中任何时刻时的井下温度场与压力场 功能之二:分析各种工况下管柱的受力情况,完成三轴应力校核 功能之三:模拟流体膨胀与管柱变形情况,计算由此而来的附加载荷 WELLCAT具有五个独立的模块,分别是:Drill钻井、Pro开发、Casing套管、Tube 油管、Multistring多管串。 ?瞬态及稳态分析 ?在分析热交换过程中,考虑井眼周围一定范围内的地层温度的变化,提高了温度模拟精度

塔设备强度计算裙座基础环和螺栓计算

㈡基础环板设计 1. 基础环板内、外径的确定 裙座通过基础环将塔体承受的外力传递到混凝土基础上,基础环的主要尺寸为内、外直径(见下图),其大小一般可参考下式选用 (4-68) 式中: D -基础环的外径,mm; ob D -基础环的内径,mm; ib D -裙座底截面的外径,mm。 is 2. 基础环板厚度计算 在操作或试压时,基础环板由于设备自重及各种弯矩的作用,在背风侧外缘的压应力最大,其组合轴向压应力为: (4-69) 式中: A -基础环面积,mm2; b W -基础环的截面系数,mm3; b (1)基础环板上无筋板 基础环板上无筋板时,可将基础环板简化为一悬臂梁,在均布载荷s bmax的作用下,基础环厚度: (4-70) 式中: d -基础环厚度,mm; b [s]b-基础环材料的许用应力,MPa。对低碳钢取[s]b=140MPa。 (2)基础环板上有筋板 基础环板上有筋板时,筋板可增加裙座底部刚性,从而减薄基础环厚度。此时,可将基础环板简化为一受均布载荷s bmax作用的矩形板(b×l)。基础环厚度:

(4-71) 式中: d b -基础环厚度,mm; M s -计算力矩,取矩形板X、Y轴的弯矩M x、M y中绝对值较大者,M x、M y按计算,N·mm/mm。无论无筋板或有筋板的基础环厚度均不得小于16mm。 ㈢地脚螺栓 地脚螺栓的作用是使设备能够牢固地固定在基础底座上,以免其受外力作用时发生倾倒。在风载荷、自重、地震载荷等作用下,塔设备的迎风侧可能出现零值甚至拉力作用,因而必须安装足够数量和一定直径的地脚螺栓。塔设备在基础面上由螺栓承受的最大拉应力为: (4-72)式中: s B-地脚螺栓承受的最大拉应力,MPa。 当s B≤0时,塔设备可自身稳定,但为固定塔设备位置,应设置一定数量的地脚螺栓。 当s B>0时,塔设备必须设置地脚螺栓。地脚螺栓的螺纹小径可按式(4-73)计算: (4-73) 式中: d1-地脚螺栓螺纹小径,mm; C2-地脚螺栓腐蚀裕量,取3mm; n-地脚螺栓个数,一般取4的倍数;对小直径塔设备可取n=6; [s]bt-地脚螺栓材料的许用应力,选取Q-235-A时,取[s]bt=147MPa;选取16Mn时,取[s]bt=170MPa。圆整后地脚螺栓的公称直径不得小于M24。 ㈣裙座体与塔体底封头的焊接结构 裙座体与塔体的焊接形式有下表所示的两种: 名称结构要求特点适用对象 对接焊 缝裙座与塔体直径相等,二者对 齐焊在一起 焊缝承受压应力作用,可承受较高 的轴向载荷 大型塔设备 搭接焊 缝 裙座内径稍大于塔体外径焊缝承受剪应力作用,受力条件差小型塔设备1.裙座体与塔体对接焊缝(如)J-J截面的拉应力校核 (4-74)

一口油井设计毕业

克拉玛依职业技术学院毕业设计论文(一口井的设计) 系部:石油工程系 专业:钻井工程 姓名:王星 学号: 08050059 设计题目:一口井的设计 起讫日期: 2013年3月1日—2013年5月31日设计地点:克拉玛依职业技术学院 指导老师:刘鹏

摘要 一口井的设计包括井身结构的设计,套管柱的设计,钻杆柱的设计。井身结构的设计又是整个钻井设计的基础,也是保证一口井能顺利钻进的前提。合理的井身结构可以保证一口井能顺利钻达预定的井深,能够保证钻进过程的安全,能够防止钻进中的产层污染,并能花费最少的费用。 套管柱设计既要考虑到套管柱的受力分析又要考虑到套管的强度,套管柱的受力分析是套管柱强度设计的基础,在设计套管柱是应当根据套管的最危险情况来考虑套管的基本载荷。套管柱的强度设计又是根据套管所受的外载,根据套管的强度建立一个安全的平衡关系: 套管强度≥外载×安全系数 合理的钻杆柱设计是确保优质、快速、安全钻井的重要条件。尤其是对深井钻井,钻柱在井下的工作条件十分复杂与恶劣,钻杆柱设计在整个过程中就显得更加重要。 【关键词】:井身结构;钻具;钻机;套管;固井

第一章 第一节井身结构设计 井身结构主要包括套管层次和每层套管的下深,各层套管外水泥返高,以及套管和井眼尺寸的配合。 依据:地层压力和地层破裂压力剖面套管的分类各类型作用 1、表层套管 主要用途: (1)封隔地表浅水层及浅部疏松和复杂地层; (2)安装井口、悬挂和支撑后续各层套管。 下深位置: 根据钻井的目的层深度和地表状况而定,一般为上百米甚至上千米。 2、生产套管(油层套管)

主要用途:用以保护生产层,提供油气生产通道。 下深位置:由目的层位置及完井方式而定。 3、中间套管(技术套管) 在表层套管和生产套管之间由于技术要求下入的套管,可以是一层、两层或更多层。 主要用来封隔不同地层压力层系或易漏、易塌、易卡等井下复杂地层。 4、尾管(衬管) 是在已下入一层技术套管后采用,即在裸眼井段下套管、注水泥,而套管柱不延伸到井口。 主要用途:减轻下套管时钻机的负荷和固井后套管头负荷;节省套管和水泥。 一般深井和超深井。 二、井身结构设计的原则 1、有效地保护油气层; 2、有效避免漏、喷、塌、卡等井下复杂事故的发生,保证安全、快速钻进; 3、钻下部地层采用重钻井液时产生的井内压力,不致压裂上层套管鞋处最薄弱的裸露地层; 4、下套管过程中,井内钻井液液柱压力和地层压力间的压差不致于压差卡套管; 5、当实际地层压力超过预测值而发生井涌时,在一定压力范围内,具有压井处理溢流的能力。 三、井身结构设计的基础数据 地层岩性剖面、地层孔隙压力剖面、地层破裂压力剖面、地层坍塌压力剖面。 6个设计系数: 抽吸压力系数Sb; 0.024 ~0.048 g/cm3 激动压力系数Sg; 0.024 ~0.048 g/cm3 压裂安全系数Sf; 0.03 ~0.06 g/cm3 井涌允量Sk;: 0.05 ~0.08 g/cm3 压差允值D p; D P N: 15~18 MPa ,D P A:21~23 MPa

第十七章 塔设备强度设计计算

第十七章塔设备强度设计计算 一、塔体的强度计算 安装在室外的高度与直径比(H/D)较大的塔设备,除承受操作压力外,还要承受质量载荷、风载荷、地震载荷和偏心载荷等,见塔设备各种载荷示意图。因此,在进行塔设备设计时必须根据受载情况进行强度计算与校核。 塔设备各种载荷示意图 ㈠按设计压力计算筒体及封头壁厚 按本篇第十五章"容器设计基础"中内压、外压容器的设计方法,计算塔体和封头的有效厚度。

㈡塔设备所承受的各种载荷计算 以下要讨论的载荷主要有:操作压力;质量载荷;风载荷;地震载荷;偏心载荷。 1.操作压力 当塔为内压时,在塔壁上引起周向及轴向拉应力;当塔为外压时,在塔壁上引起周向及轴向压应力。操作压力对裙座不起作用。 2.质量载荷 塔设备的质量包括塔体、裙座体、内构件、保温材料、扶梯和平台及各种附件等的质量,还包括在操作、停修或水压试验等不同工况时的物料或充水质量。 设备操作时的质量 m0=m1+m2+m3+m4+m5+m a+m e(4-42) 设备的最大质量(水压 试验时) m max (4-43) =m1+m2+m3+m4+m w+m a+m e 设备最小质量m min =m1+0.2m2+m3+m4+m a+m e(4-44) 式中: m1:塔体和裙座质量,K g; m2:内件质量,K g; m3:保温材料质量,K g; m4:平台、扶梯质量,K g; m5:操作时塔内物料质量,K g; m a:人孔、接管、法兰等附件质量,K g; m e:偏心质量,K g; m w:液压试验时,塔内充液质量,K g;

0.2m 2:考虑内件焊在塔体上的部分质量,如塔盘支承圈、降液管等。 当空塔吊装时,如未装保温层、平台、扶梯等,则m min 应扣除m 3和m 4。 在计算m 2、m 4及m 5时,若无实际资料,可参考表4-25进行估算。 表4-25 塔设备部分内件、附件质量参考值 ㈢ 圆筒的应力 1.塔设备由内压或外压引起的轴向应力 (4-55) 式中 σ1-由内压或外压引起的轴向应力,MP a ; p -设计压力,MP a ; D i -筒体内径,mm ; δei -i -i 截面处筒体有效壁厚,mm 。 2.操作或非操作时,重量及垂直地震力引起的轴向应力(压应力) (4-56) 式中: σ2-重量及垂直地震力引起的轴向应力,MP a ;

相关文档