文档库 最新最全的文档下载
当前位置:文档库 › PCB多层板设计建议及实例

PCB多层板设计建议及实例

PCB多层板设计建议及实例
PCB多层板设计建议及实例

PCB多层板设计建议及实例(4,6,8,10,12层板)说明

2009-08-25 11:47:51

设计要求:

A.元件面、焊接面为完整的地平面(屏蔽);

B.无相邻平行布线层;

C.所有信号层尽可能与地平面相邻;

D.关键信号与地层相邻,不跨分割区。

4层板

方案1:在元件面下有一地平面,关键信号优先布在TOP层;至于层厚设置,有以下建议:

1:满足阻抗控制

2:芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去耦效果。

方案2:缺陷

1:电源、地相距过远,电源平面阻抗过大

2:电源、地平面由于元件焊盘等影响,极不完整

3:由于参考面不完整,信号阻抗不连续

方案3:

同方案1类似,适用于主要器件在BOTTOM布局或关键信号在底层布线的情况。

6层板

方案3:减少了一个信号层,多了一个内电层,虽然可供布线的层面减少了,但是该方案解决了方案1和方案2共有的缺陷。

优点:

1:电源层和地线层紧密耦合。

2:每个信号层都与内电层直接相邻,与其他信号层均有有效的隔离,不易发生串扰。

3:Siganl_2(Inner_2)和两个内电层GND(Inner_1)和POWER(Inner_3)相邻,可以用来传输高速信号。两个内电层可以有效地屏蔽外界对Siganl_2

(Inner_2)层的干扰和Siganl_2(Inner_2)对外界的干扰。

方案1:采用了4层信号层和2层内部电源/接地层,具有较多的信号层,有利于元器件之间的布线工作。

缺陷:

1:电源层和地线层分隔较远,没有充分耦合。

2:信号层Siganl_2(Inner_2)和Siganl_3(Inner_3)直接相邻,信号隔离

性不好,容易发生串扰。

8层板

10层板

12层板

个人总结:

1、关键信号层要和地相邻,GND要和power相邻以减少电源平面阻抗。

2、信号层之间不要相邻,增加信号之间的隔离,以免发生串扰

3、信号层尽可能与地平面相邻,相邻层之间不要平行布线

4、对于传输线,顶底层采用微带线模型分析,内部信号层用带状线模型。6层/10层/14层/18层基板两侧的信号层最好用软件仿真。

5、如果还有其他电源,优先在信号层走粗线,尽量不要分割电地层。高速线最好走内层,顶底层容易受到外界温度、湿度、空气的影响,不易稳定

PCB原理图设计方法

原理图设计规范 本文档的目的在于说明使用PROTEL和ORCAD进行原理图设计时的一些注意事项,为设计人员提供设计规范,方便设计人员之间进行交流和相互检查。 第一部分:PROTEL设计规范 一、原理图元件封装使用标准库命名,按照《元件库引用说明》执行;电路设计 中有用到新的封装的请填写《新建封装申请》后建立新封装,并根据标准库的命名标准将其封装名填入相应的原理图元件封装里面。 二、PROTEL原理图的电气法则的测试ERC:要求没有错误能正确导出网表,1.执行菜单命令【Tool】/【ERC…】; 2.执行上面的命令后在出现以下的电气法则测试对话框,并设置: ⑴.在【ERC Options】下选取以下几项: ●【Multiple net name on net】检测同一网络命名多个网络名称; ●【Unconnectde net labes】检测未实际连接的网络标号 ●【Unconnected power objects】检测为实际连接的电源图件; ●【Duplicate sheet numbers】检测电路图编号的重号; ●【Duplicate component designator】检测元件的重号; ●【Bus label format errors】检测总先标号格式错误; ●【Bus label format errors】检测输入引脚的浮接; ⑵.在【Options】下选取以下几项: ●【Create report file】在测试后,会自动在将测试结果存在报告文件中(*.erc), 文件名和与原理图名一致; ●【Add error markers】在测试后,会自动在错误位置上放置错误符号; ⑶.【Sheet to Netlist】测试原理图的范围设置为【Active project】; ⑷.【Net Identifier Scope】选择网络识别器的范围设置为【Sheet Symbol/Port Connection】;

多层板PCB设计教程完整版

多层线路板设计-适合于初学者 多层PCB层叠结构 在设计多层PCB电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4层,6层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB层叠结构的选择问题。层叠结构是影响PCB板EMC性能的一个重要因素,也是抑制电磁干扰的一个重要手段。本节将介绍多层PCB板层叠结构的相关内容。 11.1.1 层数的选择和叠加原则 确定多层PCB板的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。对于生产厂家来说,层叠结构对称与否是PCB板制造时需要关注的焦点,所以层数的选择需要考虑各方面的需求,以达到最佳的平衡。 对于有经验的设计人员来说,在完成元器件的预布局后,会对PCB的布线瓶颈处进行重点分析。结合其他EDA工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。这样,整个电路板的板层数目就基本确定了。 确定了电路板的层数后,接下来的工作便是合理地排列各层电路的放置顺序。在这一步骤中,需要考虑的因素主要有以下两点。 (1)特殊信号层的分布。http://www.pcb.shhttp://www.pcb.sh (2)电源层和地层的分布。 如果电路板的层数越多,特殊信号层、地层和电源层的排列组合的种类也就越多,如何来确定哪种组合方式最优也越困难,但总的原则有以下几条。 (1)信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。http://www.pcb.sh (2)内部电源层和地层之间应该紧密耦合,也就是说,内部电源层和地层之间的介质厚度应该取较小的值,以提高电源层和地层之间的电容,增大谐振频率。内部电源层和地层之间的介质厚度可以在Protel的Layer Stack Manager(层堆栈管理器)中进行设置。选择【Design】/【Layer Stack Manager…】命令,系统弹出层堆栈管理器对话框,用鼠标双击Prepreg文本,弹出如图11-1所示对话框,可在该对话框的Thickness选项中改变绝缘层的厚度。

PCB板设计步骤

1.5 PCB 板的设计步骤 (1 )方案分析 决定电路原理图如何设计,同时也影响到 PCB 板如何规划。根据设计要求进行方案比较、选择,元 器件的选择等,开发项目中最重要的环节。 (2 )电路仿真 在设计电路原理图之前,有时会会对某一部分电路设计并不十分确定,因此需要通过电路方针来验 证。还可以用于确定电路中某些重要器件参数。 (3 )设计原理图元件 PROTEL DXP 提供了丰富的原理图元件库,但不可能包括所有元件,必要时需动手设计原理图元件,建立 自己的元件库。 (4)绘制原理图 找到所有需要的原理元件后,开始原理图绘制。根据电路复杂程度决定是否需要使用层次原理图。完成原 理图后,用ERC (电气法则检查)工具查错。找到岀错原因并修改原理图电路,重新查错到没有原则性错误为 止。 5 )设计元件圭寸装 和原理图元件一样, PROTEL DXF 也不可能提供所有元件的封装。需要时自行设计并建立新的元件封装库。 6)设计PCB 板 确认原理图没有错误之后,开始 PCB 板的绘制。首先绘岀 PCB 板的轮廓,确定工艺要求(如使用几层板 等)。然后将原理图传输到 PCB 板中,在网络表、设计规则和原理图的引导下布局和布线。利用设计规则查 错。是电路设计的另一个关键环节,它将决定该产品的实用性能,需要考虑的因素很多,不同的电路有不同 要求 (7 )文档整理 对原理图、PCB 图及器件清单等文件予以保存,以便以后维护和修改 DXP 的元器件库有原理图元件库、 PCB 元件库和集成元件库,扩展名分别为 DXP 仍然可以打开并使用 Protel 以往版本的元件库文件。 在创建一个新的原理图文件后 ,DXP 默认为该文件装载两个集成元器件库: Miscellaneous Connectors.IntLib 。因为这两个集成元器件库中包含有最常用的元器件。 注意: Protel DXP 中,默认的工作组的文件名后缀为 .PrjGrp ,默认的项目文件名后缀为 .PrjPCB 。如 果新建的是 FPGA 设计项目建立的项目文件称后缀为 .PrjFpg 。 也可以将某个文件夹下的所有元件库一次性都添加进来, 方法是:采用类似于 Windows 的操作,先选中该文 件夹下的第一个元件库文件后,按住 Shift 键再选中元件库里的最后一个文件,这样就能选中该文件夹下的所 有文件,最后点打开按钮,即可完成添加元件库操作。 3.1原理图的设计方法和步骤 下面就以下图 所示的简单 555定时器电路图为例,介绍电路原理图的设计方法和步骤。 3.1.1创建一个新项目 电路设计主要包括原理图设计和 PCB 设计。首先创建一个新项目,然后在项目中添加原理图文件和 PCB 文件,创建一个新项目方法: ?单击设计管理窗口底部的 File 按钮,弹岀一个面板。 ? New 子面板中单击 Blank Project ( PCB )选项,将弹岀 Projects 工作面板。 ?建立了一个新的项目后,执行菜单命令 File/Save Project As ,将新项目重命名为 "myProject1 . PrjPCB ”保存该项目到合适位置 3.1.2创建一张新的原理图图纸 ?执行菜单命令 New / Schematic 创建一张新的原理图文件。 ?可以看到 Sheetl.SchDoc 的原理图文件,同时原理图文件夹自动添加到项目中。 ?执行菜单命令 File/Save As ,将新原理 SchLib 、PcbLib 、IntLib 。但 Miscellaneous Devices 」ntLib 禾

PCB电路板多层印制电路板技术报告

PCB电路板多层印制电路板技术报告

多层印制板设计综合实训 技术报告 组号: 成员姓名: 班级: 指导教师: 课程名称:多层印制电路板设计综合实训 提交日期: 目录 一、2.4GHz通用头端印制电路板设计 1.1 2.4GHz通用头端的原理介绍 1.1.1基本原理 1.1.2基本要求 1.2电路中主要芯片 1.2.1BGA6589芯片 1.2.2BGU2003芯片 1.3电路设计过程 1.4电路图

1.4.1电路原理图 1.4.2电路PCB图 二、基于ISP1521的USB高速转接器印制电路板设计 2.1基于ISP1521的USB高速转接器的原理 2.1.1基本原理 2.1.2基本要求 2.2电路中主要芯片 2.2.1ISP1521芯片 2.2.2NDS9435A芯片 2.2.3PCF8582芯片 2.3电路设计过程 2.4电路图 2.4.1电路原理图 2.4.2电路PCB图 三、实训总结 一、2.4GHz通用头端印制电路板设计 1.1 2.4GHz通用头端的原理介绍 1.1.1基本原理 在用户新片的控制下(SPDT-PIN),在TX时隙,基于结型二极管BAP51-02的头端SPDT

开关(Single-PoleDouble-Throw单刀双掷开关)关闭位于天线和功率放大器之间的通道。PA能够被关闭或打开。输出的信号能够通过天线发射入以太空间。以太是无线RF信号从一个接入点到另一个接入点传输的自然环境媒体。由于TX信号通过BGA6589功率放大器放大,因此可以发射更强的功率并能到达更远的地方。RX时隙段是接收信号。在这种工作模式下,天线在SPDT-PIN的控制下切离PA(功率放大器)并被连接到LNA输入端。LNA能够被打开或关闭。对接收机的性能进行系统分析显示,通过减小RX系统噪声的影响,BGU2003低噪声放大器的确能改善接收机的灵敏度。在噪声输入接收IC前设置非常低噪声、合适的增益时是有可能做到的。这将导致接收机能够在接入点完全接收更远距离的信号。其效果可以通过数学的关系描述如下: 普通的噪声图(NF)定义: 当系统工作于华氏0度以上的时候,噪声比率F大于1(F>1或NF>0dB)。叠加LNA 和RX芯片的作用,整个系统噪声比率将为: 说明系统噪声比率(包括LNA和RX芯片)至少为。等式中还包含RX通道芯片引起的二级噪声。但这个噪声将被LNA增益所衰减。采用合适的LNA的确能减小输入芯片的噪声比率。在这种关系中LNA的噪声比率是主要的。 1.1.2基本要求 ⑴学习PCB的电子兼容设计的相关知识; ⑵通过技术文档了解电路的功能; ⑶查阅资料完成设计资料预审。包括电路原理图功能设计要求、结构图分析,学习相关电子技术资料;

PCB原理图绘制步骤

原理图的绘制 A、新建工作空间和原理图 项目是每项电子产品设计的基础,在一个项目文件中包括设计中生成的一切文件,比如原理图文件、PCB图文件、以及原理库文件和PCB库文件。在项目文件中可以执行对文件的各种操作,如新建、打开、关闭、复制与删除等。但是需要注意的是,项目文件只是起到管理的作用,在保存文件时项目中的各个文件是以单个文件的形式存在的。所以每完成一个库就保存一次。 新建工作区间 1、在菜单栏中选择File-New-Project-PCB Project. 2、形成一个PCB-Project1.PriPCB面板然后重命名最后分别添加scematic sheet形成Sheet.SchDoc文件保存后面一次添加形成PCB.PcbDoc、Pcblib.Pcblib、schlib.schlib文件分别进行保存。 3、在schlib.schlib文件里面添加你需要的库文件进行保存这时候要区分引脚与网口标号,特别是引脚一定要放置正确按照所发的书上进行标号,创建一个库就保存一次直到你需要的几个模块的器件你都画好了。 4、然后找到库文件将你画好的东西放置到Sheet.SchDoc原理图上面这时候再来放置网口标号用线将该连接的地方连接起来画好了看看自己的和书上的区别检查是否有错误的地方,最后将文件进行保存。点击Libraries面板,点左上角Libraries按钮,

如果你想在所有工程里都用就在Imstalled里点Install添加,如果只想在当前工程里使用就在Projiect里面点Add Library。 5、画封装图。 根据我们焊电路板的板子来测量距离将需要的器件进行封装,封装的过程中那一页会出现一个十字号将焊盘放置在十字号上确保第一个焊盘的x、y值都为零然后按照自己测量的数据一次拍好焊盘在一个在Top Layer这一层上放置,防止完成后切换到Top Overlay上面进行划线封装。对于LED灯要表明它的正极同样的道理没画好一个库进行一次保存直到最终完成了。最终形成了一个PCB Project文件库。 6、所有元器件编号的方法 你可以双击元件来改变,Visual属性为True。还可以让所有元件自动编号。 7、形成PCB图 在原理图里面双击你要添加的那一个模块添加PCB封装图浏览一下然后查看引脚映射是否一一对应如果对应就是没有出现错误最后点设计然后点击形成PCB图就可以了这个过程中也有一个地方查错的只要对了就会有一个对勾。这也是我自己一个一个添加的原因防止哪里出现了错误难以发现、最终画好了是出现的虚实线连接。 8、布线绘制图 这里面可以选择自动布线也可以进行手动添加布线,布线的时候

PCB电路板原理图的设计步骤

PCB电路板原理图的设计步骤 PCB从单层发展到双面、多层和挠性,并且仍旧保持着各自的发展趋势。由于不断地向高精度、高密度和高可靠性方向发展,不断缩小体积、减少成本、提高性能,使得印刷板在未来设备的发展工程中,仍然保持着强大的生命力。那 么PCB是如何设计的呢?看完以下七大步骤就懂啦! 1、前期准备 包括准备元件库和原理图。在进行PCB设计之前,首先要准备好原理图SCH 元件库和PCB元件封装库。PCB元件封装库最好是工程师根据所选器件的标准尺寸资料建立。原则上先建立PC的元件封装库,再建立原理图SCH元件库PCB元件封装库要求较高,它直接影响PCB的安装;原理图SCH元件库要求相对宽松,但要注意定义好管脚属性和与PCB元件封装库的对应关系。 2、PCB结构设计 根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB

板框,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。 3、PCB布局设计 布局设计即是在PCB板框内按照设计要求摆放器件。在原理图工具中生成网络表(Design→Create Netlist),之后在PCB软件中导入网络表(Design →Import Netlist)。网络表导入成功后会存在于软件后台,通过Placement操作可以将所有器件调出、各管脚之间有飞线提示连接,这时就可以对器件进行布局设计了。 PCB布局设计是PCB整个设计流程中的重要工序,越复杂的PCB板,布局的好坏越能直接影响到后期布线的实现难易程度。布局设计依靠电路板设计师的电路基础功底与设计经验丰富程度,对电路板设计师属于较高的要求。初级电路板设计师经验尚浅、适合小模块布局设计或整板难度较低的PCB布局设计任务。 4、PCB布线设计

多层电路板添加平衡铜块的方法和技巧

多层电路板添加平衡铜块的方法和技巧 考虑到多层电路板的批量可制造性能和电气性能(SI、EMI、ESD和其它)要求之间的均衡,多层PCB设计应根据铜层分布情况,在多层PCB内外层添加相应的铜平衡块,消除各多层电路板制造厂家自行添加引起的PCB外观不一致和对电气性能要求潜在的可能影响。本文适用于EDA设计部设计多层PCB中添加铜平衡块参考使用。 这里先让我们认识一下什么叫平衡铜块(Copper Balancing):为改善多层电路板内层铜层密度分布不均匀而引起的压合中胶体流动和外层铜层密度分布不均匀造成的电镀厚度不一等相关制造工艺问题,而在PCB各层面上添加相应的孤立铜块。该改善铜层密度均一分布的DFM措施一般由多层PCB制造厂家在制造面板层面上进行或原始OEM厂家在原始PCB中添加。 阻流块(Venting):添加在多层PCB内层避免因空白区域胶体流动的非导电性材料和导电材料。 均流块(Copper Thieving):也称电镀块,指添加在多层PCB外层图形区、PCB装配辅条和制造面板辅条区域的铜平衡块。 基材区(Base Material Area):指PCB中完全为树脂和纤维构成的非导电性基体材料平面区域。基材区为铜平衡块添加目标区。由于没有明确的尺寸定义规定,本规定中基材区指面积尺寸在符合下列要求的情况下,都应视作基体区处理: 1.单个PCB平面层中尺寸超出3000mil X3000mil或1000mil X5000mil的 区域。 2.对于Gnd层半数或以上层数图形内含有1″*2″或0.5″*5″的基材区; 3.对于Gnd层半数或以上层数图形内含有靠近铣槽位(或与铣槽相连),且面积超过1″*1″,凡满足①ML排板结构中含单张P片;②内层含铜≥2OZ;任意一个条件的基材区 平衡铜块添加方法 1.PCB面板上PCB区域(不包PCB装配用工艺边)外铜平衡块由各制造厂家根据自身工艺添加,一般不作规定。 2.对于无特殊要求的PCB装配工艺边Shape的添加可由PCB制造厂家进行添加,但对于由特殊测试或装配要求的工艺边,EDA设计部应当根据规则直接添加在PCB中。 3.考虑到设计的多样性,EDA设计部可采用下列规则范围的形状和尺寸: 1)设计者对外层可以添加铜电镀平衡块,要求采用40mil的方形或圆形,间距60mil,中心距离100mil。保持同普通数字信号200mil以上距离,距离高压电源(12V+)或大电流区域(1A以上)600mil以上.具体边缘500mil以上。 2)内层添加阻流块。采用40mil的方形或圆形,心距离100mil,上下可采用半距离间隔保持同普通数字信号100mil 以上距离,距离电源(12V+)或大电流区域(1A以上)400mil以,距离边缘400mil以上. 4)对于严格不许可厂家添加平衡块的区域应在制造图上单独标注出。 5)对于H方向不对称的PCB,为改善均衡性,对于大面积基材区域可以采用更大尺寸的Shape。 平衡铜块添加的步骤

pcb电路板原理图的设计步骤

PCB从单层发展到双面、多层和挠性,并且仍旧保持着各自的发展趋势。由于不断地向高精度、高密度和高可靠性方向发展,不断缩小体积、减少成本、提高性能,使得印刷板在未来设备的发展工程中,仍然保持着强大的生命力。那么PCB是如何设计的呢?看完以下七大步骤就懂啦! 1、前期准备 包括准备元件库和原理图。在进行PCB设计之前,首先要准备好原理图SCH 元件库和PCB元件封装库。PCB元件封装库最好是工程师根据所选器件的标准尺寸资料建立。原则上先建立PC的元件封装库,再建立原理图SCH元件库PCB元件封装库要求较高,它直接影响PCB的安装;原理图SCH元件库要求相对宽松,但要注意定义好管脚属性和与PCB元件封装库的对应关系。 2、PCB结构设计 根据已经确定的电路板尺寸和各项机械定位,在PCB设计环境下绘制PCB 板框,并按定位要求放置所需的接插件、按键/开关、螺丝孔、装配孔等等。充分考虑和确定布线区域和非布线区域(如螺丝孔周围多大范围属于非布线区域)。 3、PCB布局设计 布局设计即是在PCB板框内按照设计要求摆放器件。在原理图工具中生成

网络表(Design→Create Netlist),之后在PCB软件中导入网络表(Design →Import Netlist)。网络表导入成功后会存在于软件后台,通过Placement操作可以将所有器件调出、各管脚之间有飞线提示连接,这时就可以对器件进行布局设计了。 PCB布局设计是PCB整个设计流程中的重要工序,越复杂的PCB板,布局的好坏越能直接影响到后期布线的实现难易程度。布局设计依靠电路板设计师的电路基础功底与设计经验丰富程度,对电路板设计师属于较高的要求。初级电路板设计师经验尚浅、适合小模块布局设计或整板难度较低的PCB布局设计任务。 4、PCB布线设计 PCB布线设计是整个PCB设计中工作量大的工序,直接影响着PCB板的性能好坏。在PCB的设计过程中,布线一般有三种境界:首先是布通,这是PCB 设计的基本的入门要求;其次是电气性能的满足,这是衡量一块PCB板是否合格的标准,在线路布通之后,认真调整布线、使其能达到好的电气性能;再次是整齐美观,杂乱无章的布线、即使电气性能过关也会给后期改板优化及测试与维修带来极大不便,布线要求整齐划一,不能纵横交错毫无章法。

原理图及PCB板设计基础

原理图设计: 1、信号线束:把单条走线和总线汇集在一起进行连接,可在一个原理图中使用,也可以通 过输入/输出端口,与另外的原理图之间建立连接。 2、电气节点:在导线的T形交叉点处自动放置电气节点,表示所画线路在电气意义上是连 接的。但在十字交叉点处,系统无法判断导线是否连接,不会自动放置电气 节点。如果导线确实是相互连接的,就需要手动放置电气节点。P+J 3、特色工作面板 (1)SCH Inspector(检查器)面板:用于实时显示在原理图中所选取对象的属性;可同时编辑多个被选对象的属性。亦可用①用SCH Filter选中所需对象;②用SCH List对对象进行参数更改。来实现 (2)SCH Filter(过滤器)面板:查找多个具有相同或相似属性的对象,进而对其进行编辑或修改; (3)SCH List(列表)面板:进行过滤查找后,查找的结果除了在编辑窗口内直接显示出来以外,用户还可以使用SCH List面板对查找结果进行系统的浏览,并且可 以对有关对象的属性直接编辑修改。 (4)选择内存面板:把当前原理图文件或所有打开的原理图文件中的选取对象存入某一内部存储器中,需要时直接调用;还可以随时把新的选取对象加入内部存储器 中或者清除不在需要的对象等。 ①存储:Shift+1或者STO1按钮;②浏览:apply;③调用:RCL1按钮。 4、联合与片段: (1)联合及打碎器件:选中对象+右键unions。联合后的对象可以作为单个对象在窗口内进行移动、排列等编辑操作或者删除。 (2)片段:片段的生成与联合的生成过程基本相同。所不同的是,片段可以长久保存,并且能够使用系统提供的片段面板进行查看、管理。System-snippets PCB设计: 1、多层板的埋孔、过孔和盲孔(作用:连接所设计的电子线路,电气检查也不会报错) 导通孔:一种用于内层连接的金属化孔,并不用于插入元件引线或其他增强材料; 过孔:至少连通顶层和底层之间的电气连接通孔,过孔在顶层和底层上没有实际的电气连接;埋孔:一端连接在顶层或底层,另一端连接在中间层的电气连接半开孔;(一面没有空间允许设置过孔焊盘,另外在高速电路设计时设置埋孔还可以减小过孔焊盘的寄生电容、寄生电感对电子线路的影响) 盲孔:在两层中间层之间进行电气连接的金属化孔;(可以增加其他层面的走线空间,在高速电路设计中盲孔有利于电子线路电气性能的提高) 元件孔:用于将插针式元器件固定在印刷版上并进行电气连接的孔。 注:使用盲孔、埋孔一是因为对印刷电路板尺寸有要求,布线密度高,布线空间不够;二是在高速电路设计中,使用埋孔、盲孔能有效减小线路信号辐射,从而减小布线给高频小信号带来的电气干扰,但是在多层设计中大规模使用盲孔和埋孔会增加印刷版的制造成本。使用过孔对不同板层间的电子线路进行电气连接,能有效地减小印刷电路板的制造成本,也有利于提高印刷电路板的成品率。 2、印刷电路板常用术语 封装:插针式、表贴式; 过孔:被沉积上一层金属导电膜的小孔,用来连接不同层之间的铜膜导线,以建立电气连接。

PADS多层板PCB设计

多层线路板设计-适合于初学者 1.多层PCB 层叠结构 在设计多层PCB 电路板之前,设计者需要首先根据电路的规模、电路板的尺寸和电磁兼容(EMC)的要求来确定所采用的电路板结构,也就是决定采用4 层,6 层,还是更多层数的电路板。确定层数之后,再确定内电层的放置位置以及如何在这些层上分布不同的信号。这就是多层PCB 层叠结构的选择问题。层叠结构是影响PCB 板EMC 性能的一个重要因素,也是抑制电磁干扰的一个重要手段。本节将介绍多层PCB 板层叠结构的相关内容。 1.1 层数的选择和叠加原则 确定多层PCB 板的层叠结构需要考虑较多的因素。从布线方面来说,层数越多越利于布线,但是制板成本和难度也会随之增加。对于生产厂家来说,层叠结构对称与否是PCB 板制造时需要关注的焦点,所以层数的选择需要考虑各方面的需求,以达到最佳的平衡。对于有经验的设计人员来说,在完成元器件的预布局后,会对PCB 的布线瓶颈处进行重点分析。结合其他EDA 工具分析电路板的布线密度;再综合有特殊布线要求的信号线如差分线、敏感信号线等的数量和种类来确定信号层的层数;然后根据电源的种类、隔离和抗干扰的要求来确定内电层的数目。这样,整个电路板的板层数目就基本确定了。确定了电路板的层数后,接下来的工作便是合理地排列各层电路的放置顺序。在这一步骤中,需要考虑的因素主要有以下两点。 1)特殊信号层的分布。 2)电源层和地层的分布。 如果电路板的层数越多,特殊信号层、地层和电源层的排列组合的种类也就越多,如何来确定哪种组合方式最优也越困难,但总的原则有以下几条。 (1)信号层应该与一个内电层相邻(内部电源/地层),利用内电层的大铜膜来为信号层提供屏蔽。 (2)内部电源层和地层之间应该紧密耦合,也就是说,内部电源层和地层之间的介质厚度应该取较小的值,以提高电源层和地层之间的电容,增大谐振频率。内部电源层和地层之间的介质厚度可以在Protel 的Layer Stack Manager (层堆栈管理器)中进行设置。选择【Design】/【Layer Stack Manager…】命令,系统弹出层堆栈管理器对话框,用鼠标双击Prepreg 文本,弹出如图1-1 所示对话框,可在该对话框的Thickness 选项中改变绝缘层的厚度。如果电源和地线之间的电位差不大的话,可以采用较小的绝缘层厚度,例如5mil(0.127mm)。

PCB多层板设计建议及实例

PCB多层板设计建议及实例(4,6,8,10,12层板)说明 -------------------------------------------------------------------------------- PCB多层板设计建议及实例(4,6,8,10,12层板)说明 A. 元件面、焊接面为完整的地平面(屏蔽); B. 无相邻平行布线层; C. 所有信号层尽可能与地平面相邻; D. 关键信号与地层相邻,不跨分割区。 方 案1:在元件面下有一地平面,关键信号优先布在TOP层;至于层厚设置,有以下建议:? 满足阻抗控制 ? 芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去耦效果。 方案2:缺陷 ? 电源、地相距过远,电源平面阻抗过大 ? 电源、地平面由于元件焊盘等影响,极不完整 ? 由于参考面不完整,信号阻抗不连续 方案3: 同方案1类似,适用于主要器件在BOTTOM布局或关键信号在底层布线的情况。

方案3:减少了一个信号层,多了一个内电层,虽然可供布线的层面减少了,但是该方案解决了方案1和方案2共有的缺陷。 优点: ? 电源层和地线层紧密耦合。 ? 每个信号层都与内电层直接相邻,与其他信号层均有有效的隔离,不易发生串扰。? Siganl_2(Inner_2)和两个内电层GND(Inner_1)和POWER(Inner_3)相邻,可以用来传输高速信号。两个内电层可以有效地屏蔽外界对Siganl_2(Inner_2)层的干扰和Siganl_2(Inner_2)对外界的干扰。 方案1:采用了4层信号层和2层内部电源/接地层,具有较多的信号层,有利于元器件之间的布线工作。 缺陷: ? 电源层和地线层分隔较远,没有充分耦合。 ? 信号层Siganl_2(Inner_2)和Siganl_3(Inner_3)直接相邻,信号隔离性不好,容易发生串扰。

多层线路板生产制造项目申请报告

多层线路板生产制造项目 申请报告 规划设计/投资分析/产业运营

多层线路板生产制造项目申请报告 多层线路板顾名思议就是两层以上的电路板才能称作多层,比如说四层,六层,八层等等。当然有些设计是三层或五层线路的,也叫多层PCB 线路板。 该多层线路板项目计划总投资5045.68万元,其中:固定资产投资4011.19万元,占项目总投资的79.50%;流动资金1034.49万元,占项目总投资的20.50%。 达产年营业收入8290.00万元,总成本费用6562.05万元,税金及附加90.66万元,利润总额1727.95万元,利税总额2056.95万元,税后净利润1295.96万元,达产年纳税总额760.99万元;达产年投资利润率34.25%,投资利税率40.77%,投资回报率25.68%,全部投资回收期5.39年,提供就业职位144个。 坚持安全生产的原则。项目承办单位要认真贯彻执行国家有关建设项目消防、安全、卫生、劳动保护和环境保护的管理规定,认真贯彻落实“三同时”原则,项目设计上充分考虑生产设施在上述各方面的投资,务必做到环境保护、安全生产及消防工作贯穿于项目的设计、建设和投产的整个过程。 ......

多层板的制作方法一般由内层图形先做,然后以印刷蚀刻法作成单面或双面基板,并纳入指定的层间中,再经加热、加压并予以粘合,至于之后的钻孔则和双面板的镀通孔法相同。是在1961年发明的。

多层线路板生产制造项目申请报告目录 第一章申报单位及项目概况 一、项目申报单位概况 二、项目概况 第二章发展规划、产业政策和行业准入分析 一、发展规划分析 二、产业政策分析 三、行业准入分析 第三章资源开发及综合利用分析 一、资源开发方案。 二、资源利用方案 三、资源节约措施 第四章节能方案分析 一、用能标准和节能规范。 二、能耗状况和能耗指标分析 三、节能措施和节能效果分析 第五章建设用地、征地拆迁及移民安置分析 一、项目选址及用地方案

(完整word版)电路原理图及PCB设计规范报告

电路原理图及PCB设计规范探讨 一、原理图绘制规范 1、电阻标号规范:电阻的标号统一采用Rn,R代表的是电阻,n代表的是编号1、 2、3······依照依次增大的原则。滑动电阻标号统一采用RPn,RP代表的是电阻,n代表的是编号1、2、3······依照依次增大的原则。 2、电容标号规范:电容的标号统一采用Cn,C代表的是电容,n代表的是编号1、2、3······依照依次增大的原则。 3、其它元件的标号规范:三极管的标号统一采用Qn,排针和接头都采用JPn,Q代表的是三极管,JP代表的是排针和接头,n代表的是编号1、2、3······依照依次增大的原则。

4、电源标识规范:正负电源统一采用+VCC,—VCC。当有其它的不同电源值的电源的时候,其规范为+或—所加的电源值,如正负电源3.3V分别表示为+3.3V,—3.3V。 5、布局规范:在设计允许的范围内,尽量按照原理图的设计思路,比如方波、三角波、正弦波之间的相互转换。 6、其他规范:在元器件的放置时考虑美观,原理图对称的时候放置元器件也对称,走线也遵循这样的原则,之后生成元器件报表。 7、原理图 二、PCB设计流程 (一)Pcb设计准备 1.与项目主管确认电路原理图设计已经通过评审,且不会有较大更改。 2.确认所有器件封装都已经建立,位于Powerpcb标准器件库或临时器件库。 3.熟悉电路要求:了解电路原理、接口和模块划分;了解电路设计中对PCB 设计有特殊要求的网络和器件,如高速信号、设计关键点、特定封装的器件(如对于安装在印刷电路板上的较大的组件,要加金属附件固定,以提高耐振、耐冲击性能);对PCB布局设计的特殊要求(如需要尽量放在正面的器件、需要考虑散热的器件等)。 4.了解结构制约:与项目主管、工业设计人员一起协商确定外部接口的要求、 影响内在结构的器件和电路板尺寸的要求。 5.分析和确定PCB的层数、基本布局、层安排、散热考虑、产品EMC/ESD等。(二)Pcb布局设计(前期设计) 1.网表输入:运行“FILE->INPORT”导入。

PCB叠层结构知识 多层板设计技巧

PCB叠层结构知识多层板设计技巧 较多的PCB工程师,他们经常画电脑主板,对Allegro等优秀的工具非常的熟练,但是,非常可惜的是,他们居然很少知道如何进行阻抗控制,如何使用工具进行信号完整性分析.如何使用IBIS模型。我觉得真正的PCB高手应该还是信号完整性专家,而不仅仅停留在连连线,过过孔的基础上。对布通一块板子容易,布好一块好难。 小资料 对于电源、地的层数以及信号层数确定后,它们之间的相对排布位置是每一个PCB工 程师都不能回避的话题; 层的排布一般原则: 元件面下面(第二层)为地平面,提供器件屏蔽层以及为顶层布线提供参考平面; 所有信号层尽可能与地平面相邻; 尽量避免两信号层直接相邻; 主电源尽可能与其对应地相邻; 兼顾层压结构对称。 对于母板的层排布,现有母板很难控制平行长距离布线,对于板级工作频率在50MHZ 以上的(50MHZ以下的情况可参照,适当放宽),建议排布原则: 元件面、焊接面为完整的地平面(屏蔽); 无相邻平行布线层; 所有信号层尽可能与地平面相邻; 关键信号与地层相邻,不跨分割区。 注:具体PCB的层的设置时,要对以上原则进行灵活掌握,在领会以上原则的基础上,根据实际单板的需求,如:是否需要一关键布线层、电源、地平面的分割情况等,确定层 的排布,切忌生搬硬套,或抠住一点不放。 以下为单板层的排布的具体探讨: *四层板,优选方案1,可用方案3 方案电源层数地层数信号层数 1 2 3 4 1 1 1 2 S G P S 2 1 2 2 G S S P 3 1 1 2 S P G S 方案1 此方案四层PCB的主选层设置方案,在元件面下有一地平面,关键信号优选布TOP 层;至于层厚设置,有以下建议: 满足阻抗控制芯板(GND到POWER)不宜过厚,以降低电源、地平面的分布阻抗;保证电源平面的去藕效果;为了达到一定的屏蔽效果,有人试图把电源、地平面放在TOP、BOTTOM 层,即采用方案2: 此方案为了达到想要的屏蔽效果,至少存在以下缺陷:

PCB电路板ADP原理图与PCB设计教程第章

PCB电路板ADP原理图与PCB设计教程 第章

第4章原理图设计 在前面几章讲述了电路设计的基础知识后,现在可以学习具体的原理图设计。本章主要讲述电子元件的布置、调整、布线、绘图以及元件的编辑等,最后将以一个FPGA应用板原理图和一个译码器原理图设计为实例进行讲解。 4.1元件库管理 在向原理图中放置元件之前,必须先将该元件所在的元件库载入系统。如果一次载入过多的元件库,将会占用较多的系统资源,同时也会降低应用程序的执行效率。所以,最好的做法是只载入必要且常用的元件库,其他特殊的元件库在需要时再载入。一般在放置元件时,经常需要在元件库中查找需要放置的元件,所以需要进行元件库的相关操作。 4.1.1浏览元件库 浏览元件库可以执行Design→BrowseLibrary命令,系统将弹出如图4-1所示的元件库管理器。在元件库管理器中,用户可以装载新的元件库、查找元件、放置元件等。 图4-1元件库管理器 (1)查找元件 80

元件库管理器为用户提供了查找元件的工具。即在元件库管理器中,单击Search按钮,系统将弹出如图4-2所示的查找元件库对话框,如果执行T ools→Findponent命令也可弹出该对话框,在该对话框中,可以设定查找对象以及查找范围。可以查找的对象为包含在.Intlib文件中的元件。该对话框的操作及使用方法如下: 图4-2简单查找元件库对话框 1)简单查找。图4-2所示为简单查找对话框,如果要进行高级查找,则单击图4-2所示对话框中的“Advanced”按钮,然后会显示高级查找对话框。 ●Filters操作框。在该操作框中可以输入查找元件的域属性, 如Name等;然后选择操作算子(Operator),如 Equals(等于)、Contains(包含)、StartsWith(起始)或者 EndsWith(结束)等;在Vlaue(值)编辑框中可以输入或选 择所要查找的属性值。 ●Scope操作框。该操作框用来设置查找的范围。当选中 AvailableLibraries单选按钮时,则在已经装载的元件库中 查找;当选中LibrariesonPath单选按钮时,则在指定的

多层板PCB层叠设计方案指南.

Page 1 of 2 PCBstandards PCB LAYER CONFIGURATION STACK-UPS Rev A Layer Configurations.doc 3/20/2003 9:44 AM a 2003 PCBstandards, Inc. 3/20/2003 02A 02B 02C Layer 1 Layer 2 (Top) (Bottom) (Top) (GND) (GND) (Bottom) 04A 04B 04C 04D 04E 04F Layer 1 Layer 2 Layer 3 Layer 4 (Top) (GND) (PWR) (Bottom) (Top) (PWR) (GND) (Bottom) (PWR) (Signal) (Signal) (GND) (GND) (Signal) (Signal) (PWR) (GND) (Sig/Pwr) (Sig/Pwr) (GND) (Top) (Signal) (Signal) (Bottom) 06A 06B 06C 06D 06E 06F 06G 06H 06J 06K 06L Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 (Top) (GND) (Signal) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (Signal) (GND) (PWR) (Signal) (Bottom) (Top) (Signal) (PWR) (GND) (Signal) (Bottom) (GND) (Signal) (GND) (PWR) (Signal) (GND) (GND) (Signal) (PWR) (GND) (Signal) (GND) (Top) (GND) (Signal) (PWR) (GND) (Bottom) (Top) (GND) (PWR) (Signal) (GND) (Bottom) (Top) (PWR) (GND) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (GND) (PWR) (Bottom) (Top) (Signal) (Signal) (Signal) (Signal) (Bottom) 08A 08B 08C 08D 08E 08F 08G 08H 08J 08K 08L Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 (Top) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Bottom) (Top) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Bottom) (Top) (GND) (Signal) (GND) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (GND) (Signal) (GND) (Bottom) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (GND) (GND) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (PWR) (Top) (GND) (Sig/Pwr) (GND) (Sig/Pwr) (GND) (Sig/Pwr) (Bottom) (Top) (GND) (PWR) (Signal) (Signal) (PWR) (GND) (Bottom) (Top) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Bottom) 10A 10B 10C 10D 10E 10F 10G 10H 10J 10K Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 (Top) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (GND) (Signal) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (Signal) (Signal) (PWR) (Signal) (GND) (Bottom) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (GND) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Signal) (GND) (GND) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (PWR) (Signal) (GND) 12A 12B 12C 12D 12E 12F 12G 12H 12J 12K 12L Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6 Layer 7 Layer 8 Layer 9 Layer 10 Layer 11 Layer 12 (Top) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Signal) (Signal) (GND) (PWR) (Bottom) (Top) (PWR) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (PWR) (GND) (Bottom) (Top) (GND) (Signal) (PWR) (Signal) (GND) (PWR) (Signal) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (GND) (Signal) (PWR) (GND) (Signal) (PWR) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Bottom) (Top) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Bottom) (Top) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (PWR) (Signal) (Signal) (GND) (Bottom) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (Top) (GND) (Signal) (Signal) (PWR) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (GND) (PWR) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (Signal) (Signal) (GND) (PWR) Note: This document is used for the naming convention of the PowerPCB Start Files, PowerPCB CAM Files, PowerPCB 2D-Line “Below Board Text” items and AutoCAD Lay-up Details.

相关文档
相关文档 最新文档