文档库 最新最全的文档下载
当前位置:文档库 › 电子科技大学图论作业答案1-3章

电子科技大学图论作业答案1-3章

电子科技大学图论作业答案1-3章
电子科技大学图论作业答案1-3章

电大离散数学作业答案(图论部分)

离散数学作业5 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 要求:将此作业用A4纸打印出来,手工书写答题,字迹工整,解答题要有解答过程,要求2018年12月5日前完成并上交任课教师(不收电子稿)。并在05任务界面下方点击“保存”和“交卷”按钮,以便教师评分。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是15. 2.设给定图G (如右由图所示),则图G 的点割集是 {f}. 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点度数之和等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且等于出度. 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于n-1,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为W(G-V1)≤∣V 1∣. 7.设完全图K n 有n 个结点(n ≥2),m 条边,当n 为奇数时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足e=v-1关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i =5. 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回

电子科技大学研究生试题《图论及其应用》(参考答案)

电子科技大学研究生试题 《图论及其应用》(参考答案) 考试时间:120分钟 一.填空题(每题3分,共18分) 1.4个顶点的不同构的简单图共有__11___个; 2.设无向图G 中有12条边,已知G 中3度顶点有6个,其余顶点的度数均小于3。则G 中顶点数至少有__9___个; 3.设n 阶无向图是由k(k ?2)棵树构成的森林,则图G 的边数m= _n-k____; 4.下图G 是否是平面图?答__是___; 是否可1-因子分解?答__是_. 5.下图G 的点色数=)(G χ______, 边色数=')(G χ__5____。 图G 二.单项选择(每题3分,共21分) 1.下面给出的序列中,是某简单图的度序列的是( A ) (A) (11123); (B) (233445); (C) (23445); (D) (1333). 2.已知图G 如图所示,则它的同构图是( D ) 3. 下列图中,是欧拉图的是( D ) 4. 下列图中,不是哈密尔顿图的是(B ) 5. 下列图中,是可平面图的图的是(B ) A C D A B C D

6.下列图中,不是偶图的是( B ) 7.下列图中,存在完美匹配的图是(B ) 三.作图(6分) 1.画出一个有欧拉闭迹和哈密尔顿圈的图; 2.画出一个有欧拉闭迹但没有哈密尔顿圈的图; 3.画出一个没有欧拉闭迹但有哈密尔顿圈的图; 解: 四.(10分)求下图的最小生成树,并求其最小生成树的权值之和。 解:由克鲁斯克尔算法的其一最小生成树如下图: 权和为:20. 五.(8分)求下图G 的色多项式P k (G). 解:用公式 (G P k -G 的色多项式: )3)(3)()(45-++=k k k G P k 。 六.(10分) 22,n 3个顶点的度数为3,…,n k 个顶点的度数为k ,而其余顶点的度数为1,求1度顶点的个数。 解:设该树有n 1个1度顶点,树的边数为m. 一方面:2m=n 1+2n 2+…+kn k 另一方面:m= n 1+n 2+…+n k -1 v v 1 3 图G

图论及其应用答案电子科大

图论及其应用答案电子科 大 Newly compiled on November 23, 2020

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两 个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通, 而在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从 u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。

答案(电子科大版)图论及其应用第一章

习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ● 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

图论及应用第一章完整作业

习 题 1 1. 证明在n 阶连通图中 (1) 至少有n -1条边。 (2) 如果边数大于n -1,则至少有一条闭通道。 (3) 如恰有n -1条边,则至少有一个奇度点。 证明 (1) 若对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,矛盾! 若G 中有1度顶点,对顶点数n 作数学归纳。 当n=2时,G 显然至少有一条边,结论成立。 设当n=k 时,结论成立, 当n=k+1时,设d(v)=1,则G-v 是k 阶连通图,因此至少有k-1条边,所以G 至少有k 条边。 (2) 考虑v 1→v 2→?→v n 的途径,若该途径是一条路,则长为n-1,但图G 的边数大于n-1,因此存在v i ,v j ,使得v i adgv j ,这样,v i →v i+1→?→v j 并上v i v j 构成一条闭通道;若该途径是一条非路,易知,图G 有闭通道。 (3) 若不然,对?v ∈V(G),有d(v)≥2,则:2m=∑d(v)≥2n ? m ≥n >n-1,与已知矛盾! 2. 设G 是n 阶完全图,试问 (1) 有多少条闭通道? (2) 包含G 中某边e 的闭通道有多少? (3) 任意两点间有多少条路? 答 (1) (n-2)! (2) (n-1)!/2 (3) 1+(n-2)+(n-2)(n-3)+(n-2)(n-3)(n-4)+…+(n -2)…1. 3. 证明图1-27中的两图不同构: 证明 容易观察出两图中的点与边的邻接关系各不相同,因此,两图不同构。 4. 证明图1-28中的两图是同构的 证明 将图1-28的两图顶点标号为如下的(a)与(b)图 图 1-27 图1-28

电子科技大学-图论第一次作业-

课本习题一: ● 。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 ● 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 ●11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1) 不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 11 12312 (1,1,,1,,,) d d n d d d d d π ++ =---是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ●12.证明:若,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干个连通的情形来证明。设,对于中的路若与邻接,则构成一个圈。若是一条路,由于,因此,对于,存在与之邻接,则构成一个圈。 ●17.证明:若G不连通,则连通。 证明:对于任意的,若与属于G的不同连通分支,显然与在中连通;若与属于的同一连通分支,设为G的另一个连通分支中的一个顶点,则与

离散数学第八章一些特殊的图知识点总结

图论部分 第八章、一些特殊的图 8.1 二部图 二部图:定义设无向图G=, 若能将V 划分成V1 和V2 (V1?V2=V, V1?V2=?), 使得G中的每条边的两个端 点都一个属于V1, 另一个属于V2, 则称G为二部图, 记为, 称V1和V2为互补顶点子集. 完全二部图:又若G是简单图, 且V1中每个顶点都与V2中每个顶点相邻, 则称G为完全二部图, 记为K r,s, 其中r=|V1|, s=|V2|. 注意: n 阶零图为二部图. 匹配:设G=, 匹配(边独立集): 任2条边均不相邻的边子集 极大匹配: 添加任一条边后都不再是匹配的匹配 最大匹配: 边数最多的匹配 匹配数: 最大匹配中的边数, 记为β1 例下述3个图的匹配数依次为3, 3, 4.

设M为G中一个匹配 v i与v j被M匹配: (v i,v j)∈M v为M饱和点: M中有边与v关联 v为M非饱和点: M中没有边与v关联 M为完美匹配: G的每个顶点都是M饱和点 定理(Hall定理) 设二部图G=中,|V1|≤|V2|. G中存 在从V1到V2的完备匹配当且仅当V1中任意k 个顶点至少与V2中的k个顶点相邻(k=1,2,…,|V1|). 由Hall定理不难证明, 上一页图(2)没有完备匹配. 定理设二部图G=中, 如果存在t≥1, 使得V1中每个顶点至少关联t 条边, 而V2中每个顶点至多关联t条边,则G 中存在V1到V2的完备匹配.

Hall定理中的条件称为“相异性条件”, 第二个定理中的条件称为t 条件. 满足t 条件的二部图一定满足相异性条件. 8.2 欧拉图 欧拉通路: 图中行遍所有顶点且恰好经过每条边一次的通路. 欧拉回路: 图中行遍所有顶点且恰好经过每条边一次的回路. 欧拉图: 有欧拉回路的图. 半欧拉图: 有欧拉通路而无欧拉回路的图. 几点说明: 上述定义对无向图和有向图都适用. 规定平凡图为欧拉图. 欧拉通路是简单通路, 欧拉回路是简单回路. 环不影响图的欧拉性.

图论1-3藏习题解答

学号:0441 姓名:张倩 习题1 4.证明图1-28中的两图是同构的 证明:将图1-28的两图顶点标号为如下的(a)与(b)图 作映射f : f(v i )u i (1 i 10) 容易证明,对v i v j E((a)),有f(v i v j )u i u j E((b)) (1 i 10, 1j 10 ) 由图的同构定义知,图1-27的两个图是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : (a) v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9 v 10 u 1 u 2 u 3 u 4 u 5 u 6 u 7 u 8 u 9 u 10 (b)

m=2:m=3:

m=4:m=5:m=6:

因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 ()1 1 123121,1,,1,,,=d d n d d d d d π++---L L 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 12.证明:若δ≥2,则G 包含圈。 证明 只就连通图证明即可。设V(G)={v1,v2,…,vn },对于G 中的路v1v2…vk,若vk 与v1邻接,则构成一个圈。若vi1vi2…vin 是一条路,由于 2,因此,对vin ,存在点vik 与之邻接,则vik vinvik 构成一个圈 。 17.证明:若G 不连通,则G 连通。 证明 对)(,_ G V v u ∈?,若u 与v 属于G 的不同连通分支,显然u 与v 在_ G 中连通;若u 与v 属于g 的同一连通分支,设w 为G 的另一个连通分支中的一个顶点,则u 与w ,v 与w 分别在_ G 中连通,因此,u 与v 在_ G 中连通。 18.证明:若()e E G ∈,则()()()1G G e G ωωω≤-≤+. 证明:若e 为G 的割边,则()()1G e G ωω-=+,若e 为G 的非割边,则 ()()G e G ωω-=,所以,若()e E G ∈,则有()()()1G G e G ωωω≤-≤+. 习题2 1.证明:每棵恰有两个1度顶点的树均是路。 证明:设树T 为任意一个恰有两个1度顶点的树,则T 是连通的,且无圈,

图论及其应用答案电子科大

图论及其应用答案电子科 大 This model paper was revised by the Standardization Office on December 10, 2020

习题三: 证明:e是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u,v)必含e . 证明:充分性: e是G的割边,故G ?e至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G中的u ,v不连通, 而在G中u与v连通,所以e在每一条(u ,v )路上,G中的(u ,v )必含e。 必要性:取12,u V v V ∈∈,由假设G中所有(u ,v )路均含有边e,从而在G ?e中不存在从 u与到v的路,这表明G不连通,所以e 是割边。 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G是块,任取G的一点u,一边e,在e边插入一点v,使得e成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G中的u,v 位于同一个圈上,于是G 1中u 与边e都位于同一个圈上。 (2)→(3): G无环,且任意一点和任意一条边都位于同一个圈上,任取G的点u ,边e ,若u在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u不在e上,由定理,e的两点在同一个闭路上,在e边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G连通,若G不是块,则G中存在着割点u,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u在每一条(x ,y )的路上,则与已知矛盾,G是块。 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v是单图G的割点,则G ?v有两个连通分支。现任取x ,y ∈V (G ?v ), 如果x ,y 不在G ?v的同一分支中,令u是与x ,y处于不同分支的点,那么,x ,与y在G ?v的补图中连通。若x ,y在G ?v的同一分支中,则它们在G ?v的补图中邻接。所以,若v是G 的割点,则v不是补图的割点。 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

图论 王树禾 答案

图论第一次作业 By byh

|E(G)|,2|E(G)|2G υυ??≤ ??? ?? ??? 1.1 举出两个可以化成图论模型的实际问题 略 1.2 证明其中是单图 证明:(思路)根据单图无环无重边的特点,所以 最大的情形为任意两个顶点间有一条边相连,即极 端情况为。

?1.4 画出不同构的一切四顶单图 ?0条边:1条边: ?2条边:3条边: ?4条边:5条边:?6条边:

1.10G?H当且仅当存在可逆映射θ:V G→V H,使得uv∈E G?θuθv∈E H,其中G和H是单图。(证明充分性和必要性) ?必要性 ?若G?H,由定义可得,存在可逆映射θ:V G→V Hφ:E G→E(H)当且仅当ψ G e=uv时,ψHφe=θuθ(v),所以uv∈E G? θuθv∈E H ?充分性 ?定义?:E G→E(H),使得uv∈E G和θuθv∈E(H)一一对应,于是?可逆,且ψ e=uv的充要条件是ψHφe=θuθv,得G?H G

1.12求证(a)?K m ,n =mn,(b)G是完全二分图,则?G≤1 4 v G2 ?(a)对于K m ,n ,将顶集分为X和Y,使得X∪Y=V K m,n, X∩Y= ?,X=m,Y=n,对于X中的每一顶点,都和Y中所有顶点相连,所以?K m,n =mn ?(b)设G的顶划分为X,Y,X=m,Y=v?m,则?G≤ ??K m ,v-m =v?m m≤v2 4

?证明: ?(a)第一个序列考虑度数7,第二个序列考虑6,6,1 ?(b)将顶点v分成两部分v’和v’’ ?v’ = {v|v= v i, 1≤ i≤ k}, ?v’’ = {v|v= v i, k< i≤ n} ?以v’点为顶的原图的导出子图度数之和小于 ?然后考虑剩下的点贡献给这k个点的度数之和最大可能为

电子科技大学-图论第二次作业

习题四: 3.(1)画一个有Euler 闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个即没有Hamilton圈也没有Euler闭迹的图; 解:找到的图如下: (1)一个有Euler 闭迹和Hamilton圈的图; (2)一个有Euler闭迹但没有Hamilton圈的图; (3) 一个有Hamilton圈但没有Euler闭迹的图; (4)一个即没有Hamilton圈也没有Euler闭迹的图. 4.设n阶无向简单图G有m条边,证明:若,则是图。证明: G是H图。 若不然,因为G是无向简单图,则,由定理1:若G是的非单图,则G 度弱于某个.于是有:

2,1()()(2)(1)(1)2 11 1(1)(2)(1)(21)221 1.2m n E G E C m n m n m m m n m m m n m n ??≤= +---+-??-??=+------- ? ?? -??≤+ ??? 这与条件矛盾!所以G 是H 图。 8.证明:若G 有 个奇点,则存在条边不重的迹 ,使得 . 证明:不失一般性,只就G 是连通图进行证明。设G=(n, m)是连通图。令v l ,v 2,…,v k ,v k+1,…,v 2k 是G 的所有奇度点。在v i 与v i+k 间连新边e i 得图G*(1≦i ≦k).则G*是欧拉图,因此,由Fleury 算法得欧拉环游C.在C 中删去e i (1≦i ≦k).得k 条边不重的迹Q i (1≦i ≦k): 12()() () ()k E G E Q E Q E Q = 10.证明:若: (1)不是二连通图,或者 (2)是具有二分类的偶图,这里 , 则是非Hamilton 图。 证明:(1)不是二连通图,则不连通或者存在割点,有,由于课本 上的相关定理:若是Hamilton 图,则对于 的任意非空顶点集,有: ,则该定理的逆否命题也成立,所以可以得出:若不是二连通图, 则是非Hamilton 图 (2)因为是具有二分类 的偶图,又因为 ,在这里假设 ,则有,也就是说:对于 的非空顶点集,有: 成 立,则可以得出则是非Hamilton 图。 11.证明:若有Hamilton 路,则对于V 的每个真子集S ,有 .

图论习题参考答案

二、应用题 题0:(1996年全国数学联赛) 有n (n ≥6)个人聚会,已知每个人至少认识其中的[n /2]个人,而对任意的[n /2]个人,或者其中有两个人相互认识,或者余下的n -[n /2]个人中有两个人相互认识。证明这n 个人中必有3个人互相认识。 注:[n /2]表示不超过n /2的最大整数。 证明 将n 个人用n 个顶点表示,如其中的两个人互相认识,就在相应的两个顶点之间连一条边,得图G 。由条件可知,G 是具有n 个顶点的简单图,并且有 (1)对每个顶点x , )(x N G ≥[n /2]; (2)对V 的任一个子集S ,只要S =[n /2],S 中有两个顶点相邻或V-S 中有 两个顶点相邻。 需要证明G 中有三个顶点两两相邻。 反证,若G 中不存在三个两两相邻的顶点。在G 中取两个相邻的顶点x 1和y 1,记N G (x 1)={y 1,y 2,……,y t }和N G (y 1)={x 1,x 2,……,x k },则N G (x 1)和N G (y 1)不相交,并且N G (x 1)(N G (y 1))中没有相邻的顶点对。 情况一;n=2r :此时[n /2]=r ,由(1)和上述假设,t=k=r 且N G (y 1)=V-N G (x 1),但N G (x 1)中没有相邻的顶点对,由(2),N G (y 1)中有相邻的顶点对,矛盾。 情况二;n=2r+1: 此时[n /2]=r ,由于N G (x 1)和N G (y 1)不相交,t ≥r,k ≥r,所以r+1≥t,r+1≥k 。若t=r+1,则k=r ,即N G (y 1)=r ,N G (x 1)=V-N G (y 1),由(2),N G (x 1)或N G (y 1)中有相邻的顶点对,矛盾。故k ≠r+1,同理t ≠r+1。所以t=r,k=r 。记w ∈V- N G (x 1) ∪N G (y 1),由(2),w 分别与N G (x 1)和N G (y 1)中一个顶点相邻,设wx i0∈E, wy j0∈E 。若x i0y j0∈E ,则w ,x i0, y j0两两相邻,矛盾。若x i0y j0?E ,则与x i0相邻的顶点只能是(N G (x 1)-{y j0})∪{w},与y j0相邻的顶点只能是(N G (y 1)-{x j0})∪{w}。但与w 相邻的点至少是3,故N G (x 1)∪N G (y 1)中存在一个不同于x i0和y j0顶点z 与w 相邻,不妨设z ∈N G (x 1),则z ,w ,x i0两两相邻,矛盾。 题1:已知图的结点集V ={a ,b ,c ,d }以及图G 和图D 的边集合分别为: E (G )={(a ,a ), (a ,b ), (b ,c ), (a ,c )} E (D)={, , , , } 试作图G 和图D ,写出各结点的度数,回答图G 、图D 是简单图还是多重图? 解: a d a d b c b c 图G 图D 例2图

离散数学作业7答案(数理逻辑部分)

离散数学数理逻辑部分形成性考核书面作业本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第三次作业,大家要认真及时地完成数理逻辑部分的综合练习作业。 要求:将此作业用A4纸打印出来,并在07任务界面下方点击“保存”和“交卷”按钮,以便教师评分.作业应手工书写答题,字迹工整,解答题要有解答过程,完成后上交任课教师(不收电子稿). 一、填空题 1.命题公式() →∨的真值是 1 . P Q P 2.设P:他生病了,Q:他出差了.R:我同意他不参加学习.则命题“如果他生病或出差了,我就同意他不参加学习”符号化的结果为P∨Q→R . 3.含有三个命题变项P,Q,R的命题公式P∧Q的主析取范式是(P∧Q∧┐R)∨(P∧Q∧R) . 4.设P(x):x是人,Q(x):x去上课,则命题“有人去上课.”可符号化为?x ( P ( x) ∧Q ( x)). 5.设个体域D={a, b},那么谓词公式) xA? ∨ x ?消去量词后的等值式为 yB ( ) (y (A(a)∨A(b))∨(B(a) ∧B(b)). 6.设个体域D={1, 2, 3},A(x)为“x大于3”,则谓词公式(?x)A(x) 的真值为0 . 7.谓词命题公式(?x)((A(x)∧B(x)) ∨C(y))中的自由变元为y .8.谓词命题公式(?x)(P(x) →Q(x) ∨R(x,y))中的约束变元为x . 三、公式翻译题 1.请将语句“今天是天晴”翻译成命题公式. 解:

图论第二次作业

图论第二次作业 一、第四章 4.3(1)画一个有Euler闭迹和Hamilton圈的图; (2)画一个有Euler闭迹但没有Hamilton圈的图; (3)画一个有Hamilton圈但没有Euler闭迹的图; (4)画一个既没有Euler闭迹也没有Hamilton圈的图;解:(1)一个有Euler闭迹和Hamilton圈的图形如下: (2)一个有Euler闭迹但没有Hamilton圈的图形如下: (3)一个有Hamilton圈但没有Euler闭迹的图形如下: (4)一个既没有Euler闭迹也没有Hamilton圈的图形如下:

4.7 证明:若G 没有奇点,则存在边不重的圈C 1,C 1,···,C m ,使得 )()()()(21m C E C E C E G E ???=。 证明:将G 中孤立点除去后的图记为1G ,则1G 也没有奇点,且2)(1≥G δ,则1G 含圈1C ,在去掉)(11C E G -的孤立点后,得图2G ,显然2G 仍无奇度点,且2)(2≥G δ,从而2G 含圈2C ,如此重复下去,直到圈m C ,且)(m m C E G -全为孤立点为止,于是得到)()()()(21m C E C E C E G E ???=。 4.10 证明:若 (1)G 不是二连通图,或者 (2)G 是具有二分类),(Y X 的偶图,这里Y X ≠, 则G 是非Hamilton 图。 证明:(1)因为G 不是二连通图,则G 不连通或者存在割点v ,有2)(≥-v G w ,由相关定理得:若G 是Hamilton 图,则对于v(G)的任意非空顶点集S ,有:S S G w ≤-)(,则该定理得逆否命题也成立,所以可得:若G 不是二连通图,则G 是非Hamilton 图。 (2)因为G 是具有二分类),(Y X 的偶图,又因为Y X ≠,在这里假设Y X ≤,则有X Y X G w >=-)(,也就是说:对于v(G)的非空顶点集S ,有:S S G w >-)(成立,则可以得出G 是非Hamilton 图。 4.12 设G 是有度序列),,,(21n d d d ???的非平凡简单图,这里n d d d ≤???≤≤21,证明:若不存在小于 2 )1(+n 的正整数m ,使得m d m <且m n d m n -<+-1,则G 有Hamliton 路。 证明:在G 之外加上一个新点v ,把它和G 的其余各点连接,得图G 1: G 1的度序列为:),1,,1,1(21n d d d n +???++,由已知:不存在小于2 )1(+n 的正整数

图论与抽象代数复习

2013-2014二学期图论与抽象代数复习 第一部分 1.第三篇总复习题1,2,3题 2.第四篇总复习题1,4,6题 3.习题9 9.1题 4. *运算如下表所示,哪个能使({a,b},*)成为单元半群?() 5. Q 是有理集,(Q,*)(其中*为普通乘法)不能构成()。 A.群B.单元半群C.半群D.交换半群 6.设Z 是整数集,+,·分别是普通加法和乘法,则(Z,+,·)是()。 A.域B.整环和域C.整环D.含零因子环 7. 在代数系统中,整环和域的关系为()。 A.整环一定是域B.域不一定是整环 C.域一定是整环D.域一定不是整环 8. 设D =< V,E >为有向图,V = {a, b, c, d, e, f },E = {( a,b),(b,c),(a, d), ( d, e),(f, e)}是()。A.强连通图B.单向连通图C.弱连通图D.不连通图 9. 在有n 个结点的连通图中,其边数()。 A.最多有n?1 条B.至少有n?1 条 C.最多有n 条D.至少有n 条 10设G = (n,m)为无向简单图,可构成邻接矩阵的数目为()。 A.n! B.m! C.D. 11. 欧拉回路是()。 A.通路B.简单回路 C.既是基本回路也是简单回路D.既非基本回路也非简单回路 12. 哈密尔顿回路是()。 A.通路B.简单回路 C.既是基本回路也是简单回路D.既非基本回路也非简单回路 13. 下面哪一种图不一定是树?() A.无回路的连通图B.有n 个结点n ?1条边的连通图 C.每对结点间都有通路的图D.连通但删去一条边则不连通的图 下述偏序集(见下图)中能构成格的是() 下述偏序集中哪一个不构成格?()

电子科大图论答案

图论第三次作业 一、第六章 2.证明: 根据欧拉公式的推论,有m ≦l*(n-2)/(l-2), (1)若deg(f)≧4,则m ≦4*(n-2)/2=2n-4; (2)若deg(f)≧5,则m ≦5*(n-2)/3,即:3m ≦5n-10; (3)若deg(f)≧6,则m ≦6*(n-2)/4,即:2m ≦3n-6. 3.证明: ∵G 是简单连通图,∴根据欧拉公式推论,m ≦3n-6; 又,根据欧拉公式:n-m+φ=2,∴φ=2-n+m ≦2-n+3n-6=2n-4. 4.证明: (1)∵G 是极大平面图,∴每个面的次数为3, 由次数公式:2m==3φ, 由欧拉公式:φ=2-n+m, ∴m=2-n+m,即:m=3n-6. (2)又∵m=n+φ-2,∴φ=2n-4. (3)对于3n >的极大可平面图的的每个顶点v ,有()3d v ≥,即对任一一点或者

子图,至少有三个邻点与之相连,要使这个点或子图与图G 不连通,必须把与之相连的点去掉,所以至少需要去掉三个点才能使()(H)w G w G <-,由点连通度的定义知()3G κ≥。 5.证明: 假设图G 不是极大可平面图,那么G 不然至少还有两点之间可以添加一条边e ,使G+e 仍为可平面图,由于图G 满足36m n =-,那么对图G+e 有36m n '=-,而平面图的必要条件为36m n '≤-,两者矛盾,所以图G 是极大可平面图。 6.证明: (1)由()4G δ=知5n ≥当n=5时,图G 为5K ,而5K 为不可平面图,所以6n ≥,(由()4G δ=和握手定理有24m n ≥,再由极大可平面图的性质36m n =-,即可得6n ≥)对于可平面图有()5G δ≤,而6n ≥,所以至少有6个点的度数不超过5. (2)由()5G δ=和握手定理有25m n ≥,再由极大可平面图的性质36m n =-,即可得12n ≥,对于可平面图有()5G δ≤,而12n ≥,所以至少有12个点的度数不超过5. 二、第七章 2.证明: 设n=2k+1,∵G 是Δ正则单图,且Δ>0, ∴m(G)==>k Δ,由定理5可知χˊ(G)=Δ(G)+1.

图论及其应用第三章答案电子科大

习题三: ● 证明:e 是连通图G 的割边当且仅当V(G)可划分为两个子集V1和V2,使对任意u ∈V 1及v ∈V 2, G 中的路(u ,v )必含e . 证明:充分性: e 是G 的割边,故G ?e 至少含有两个连通分支,设V 1是其中一个连通分支的顶点集,V 2是其余分支的顶点集,对12,u V v V ?∈?∈,因为G 中的u,v 不连通,而 在G 中u 与v 连通,所以e 在每一条(u,v)路上,G 中的(u,v)必含e 。 必要性:取12,u V v V ∈∈,由假设G 中所有(u,v)路均含有边e ,从而在G ?e 中不存在从u 与到v 的路,这表明G 不连通,所以e 是割边。 ● 3.设G 是阶大于2的连通图,证明下列命题等价: (1) G 是块 (2) G 无环且任意一个点和任意一条边都位于同一个圈上; (3) G 无环且任意三个不同点都位于同一条路上。 (1)→(2): G 是块,任取G 的一点u ,一边e ,在e 边插入一点v ,使得e 成为两条边,由此得到新图G 1,显然G 1的是阶数大于3的块,由定理,G 中的u,v 位于同一个圈上,于是G 1中u 与边e 都位于同一个圈上。 (2)→(3): G 无环,且任意一点和任意一条边都位于同一个圈上,任取G 的点u ,边e ,若u 在e 上,则三个不同点位于同一个闭路,即位于同一条路,如u 不在e 上,由定理,e 的两点在同一个闭路上,在e 边插入一个点v ,由此得到新图G 1,显然G 1的是阶数大于3的块,则两条边的三个不同点在同一条路上。 (3)→(1): G 连通,若G 不是块,则G 中存在着割点u ,划分为不同的子集块V 1, V 2, V 1, V 2无环,12,x v y v ∈∈,点u 在每一条(x,y)的路上,则与已知矛盾,G 是块。 ● 7.证明:若v 是简单图G 的一个割点,则v 不是补图G ?的割点。 证明:v 是单图G 的割点,则G ?v 有两个连通分支。现任取x,y ∈V(G ?v), 如果x,y 不在G ?v 的同一分支中,令u 是与x,y 处于不同分支的点,那么,x,与y 在G ?v 的补图中连通。若x,y 在G ?v 的同一分支中,则它们在G ?v 的补图中邻接。所以,若v 是G 的割点,则v 不是补图的割点。 ● 12.对图3——20给出的图G1和G2,求其连通度和边连通度,给出相应的最小点割和最小边割。 解:()12G κ= 最小点割 {6,8} 1()2G λ= 最小边割{(6,5),(8,5)}

离散数学图论部分形成性考核书面作业4答案

离散数学作业4 离散数学图论部分形成性考核书面作业 本课程形成性考核书面作业共3次,内容主要分别是集合论部分、图论部分、数理逻辑部分的综合练习,基本上是按照考试的题型(除单项选择题外)安排练习题目,目的是通过综合性书面作业,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。本次形考书面作业是第二次作业,大家要认真及时地完成图论部分的综合练习作业。 一、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 15 . 2.设给定图G (如右由图所示),则图G 的点割集是 {f} . 3.设G 是一个图,结点集合为V ,边集合为E ,则 G 的结点 度数之和 等于边数的两倍. 4.无向图G 存在欧拉回路,当且仅当G 连通且 等于出度 . 5.设G=是具有n 个结点的简单图,若在G 中每一对结点度数之和大于等于 n-1 ,则在G 中存在一条汉密尔顿路. 6.若图G=中具有一条汉密尔顿回路,则对于结点集V 的每个非空子集S ,在G 中删除S 中的所有结点得到的连通分支数为W ,则S 中结点数|S|与W 满足的关系式为 W(G-V1) ≤∣V 1∣ . 7.设完全图K n 有n 个结点(n ≥2),m 条边,当 n 为奇数 时,K n 中存在欧拉回路. 8.结点数v 与边数e 满足 e=v-1 关系的无向连通图就是树. 9.设图G 是有6个结点的连通图,结点的总度数为18,则可从G 中删去 4 条边后使之变成树. 10.设正则5叉树的树叶数为17,则分支数为i = 5 . 二、判断说明题(判断下列各题,并说明理由.) 1.如果图G 是无向图,且其结点度数均为偶数,则图G 存在一条欧拉回路.. (1) 不正确,缺了一个条件,图G 应该是连通图,可以找出一个反例,比如图G 是一个有孤立结点的图。

2004图论复习题答案

图论复习题答案 一、 判断题,对打√,错打 1.无向完全图是正则图。( √ ) 2.零图是平凡图。( ) 3.连通图的补图是连通图. ( ) 4.非连通图的补图是非连通图。( ) 5.若连通无向简单图G中无圈,则每条边都是割边。( √ ) 6.若无向简单图G是(n,m)图,并且m=n-1,则G是树。( ) 7.任何树都至少有2片树叶。( ) 8.任何无向图G都至少有一个生成树。( ) 9.非平凡树是二分图。( √ ) 10.所有树叶的级均相同的二元树是完全二元树。( ) 11.任何一个位置二元树的树叶都对应唯一一个前缀码。( √ ) 12.3,3 K是欧拉图也是哈密顿图。( ) 13.二分图的对偶图是欧拉图。( ) 14.平面图的对偶图是连通图。( √ ) 15.设G*是平面图G的对偶图,则G*的面数等于G的顶点数。( )二、填空题 1.无向完全图K6有 15 条边。 2.有三个顶点的所有互不同构的简单无向图有 4 个。 3.设树T中有2个3度顶点和3个4度顶点,其余的顶点都是树叶,则T中有 10 片树叶。 4.若连通无向图G是(n,m)图,T是G的生成树,则基本割集 有 n-1 个,基本圈有 m-n+1 个。 5.设连通无向图G有k个奇顶点,要使G变成欧拉图,在G中至少要 加k / 2 条边。 6.连通无向图G是(n,m)图,若G是平面图,则G有m-n+2 个面。 三、解答题 1.有向图D如图1所示,利用D的邻接矩阵及其幂运算 求解下列问题: (1)D中长度等于3的通路和回路各有多少条。(2)求D的可达性矩阵。 (3)求D的强分图。 a b e 图1

解: (1) M=????????????????00010 1000000001 010******* M 2 =?? ?? ??? ? ??? ?????010******* 00010 1000001000 M 3=????????????????1000001000010000001010000 M 4=??????? ?????????0001001000100000100000010 由M 3可知,D 中长度等于3的通路有5条,长度等于3的回路有3条。 (2) I+M+M 2+M 3+M 4 =????????????? ???100000100000100 0001000001 +??????????? ?? ???000101000000001 010******* +??? ???? ? ??? ?? ???010000001000010 1000001000 + ????????????????1000001000010000001010000 +??? ?? ???????????0001001000100000100000010 = ??? ???? ? ????????21020 13010111110202011021 D 的可达性矩阵为 R=B (I+M+M 2+M 3+M 4 )=??? ???? ? ????? ???110101********* 1101011011 (3)R T =????????????????11111 1111100100 1111100101 R×R T =??? ???? ? ??? ?????11010 11010 001001101000001 由矩阵R×R T 可知,该有向图的强分图有:{a},{ b ,d ,e}, { c} a b e 图1

图论及其应用第一章答案(电子科大版)

习题一(yangchun): 4.证明下面两图同构。 证明:作映射f : v i ? u i (i=1,2….10) 容易证明,对?v i v j ∈ E ((a)),有f (v i v j,),=,u i,u j,∈,E,((b)) (1≤ i ≤ 10, 1≤j ≤ 10 ) 由图的同构定义知,图(a)与(b)是同构的。 5.证明:四个顶点的非同构简单图有11个。 证明:设四个顶点中边的个数为m ,则有: m=0: m=1 : m=2: m=3: m=4: (a) v 23 4 (b)

m=5: m=6: 因为四个顶点的简单图最多就是具有6条边,上面所列出的情形是在不同边的条件下的不同构的情形,则从上面穷举出的情况可以看出四个顶点的非同构简单图有11个。 11.证明:序列(7,6,5,4,3,3,2)和(6,6,5,4,3,3,1)不是图序列。 证明:由于7个顶点的简单图的最大度不会超过6,因此序列(7,6,5,4,3,3,2)不是图序列; (6,6,5,4,3,3,1)是图序列 1 1 12312(1,1,,1,,,)d d n d d d d d π++=--- 是图序列 (5,4,3,2,2,0)是图序列,然而(5,4,3,2,2,0)不是图序列,所以(6,6,5,4,3,3,1)不是图序列。 ● 12.证明:若 ,则包含圈。 证明:下面仅对连通图的下的条件下进行证明,不连通的情形可以通过分成若干 个连通的情形来证明。设 , 对于中的路 若与邻接,则构成一个闭路。若是一条路,由于,因 此,对于,存在与之邻接,则构成一个圈。 ● 17.证明:若G 不连通,则连通。 证明:对于任意的 ,若与属于G 的连通分支,显然与在中连通;

相关文档
相关文档 最新文档