文档库 最新最全的文档下载
当前位置:文档库 › 水热条件对硅酸盐水泥的水化及其干缩性能的影响分析

水热条件对硅酸盐水泥的水化及其干缩性能的影响分析

水热条件对硅酸盐水泥的水化及其干缩性能的影响分析
水热条件对硅酸盐水泥的水化及其干缩性能的影响分析

水热条件对硅酸盐水泥的水化及其干缩性能的影响分析

水热条件对硅酸盐水泥的水化及其干缩性能的影响分析

摘要:本文通过对水泥强度、干缩度、砂浆孔径以及NMR和

TG-DSC进行测定,分析了水热条件下硅酸盐水泥的水化和干缩性能的概况。实验结果表明硅酸盐水泥早期水化程度与水养温度呈正相关,也就是随着水养温度的增高,其水化程度越加显著。但是在水化后期,水泥的强度和干缩度却随着温度增高而减小。

关键词:水热条件硅酸盐水水泥干缩性能水化

1、前言

水泥水化温度指的是水泥在硬化过程中产生的温度。水泥水化后产生的较高温度在很大程度上影响水泥浆体和水泥基材料的性能和

干缩。若水化温度造成水泥干缩增大,那么水泥基材料就会产生较为严重的裂缝,影响其使用。控制水泥水化温度是水泥研究工作者一直以来的研究内容,但是目前高校的控制水化和利用水化温度的方法仍未被研究出来[1]。本文就硅酸盐水泥在不同水热条件下的性能变化情况进行试验分析,旨在真正了解水化及干缩机理,从而更好的指导实际生产。

2、实验过程

2.1材料准备

压汞仪:PM-60-GT-3型,来自美国公司。

水泥:P.II 52.5R硅酸盐水泥。来自台湾远东集团水泥有限公司。水泥中三氧化硫(SO3)的总含量占2.05%。比表面积为368m2/kg,密度为3.13 g/cm3。

砂子:选择的是河北欧亚兴邦科技有限公司的ISO标准砂。

2.2实验方法

(1)控制水热。水热条件对于硅酸盐水泥的所有检验工作都有着极其密切的关系。所谓的水热指的是水养护的温度,是实验试件在成型并拆模两天后的水养温度。同样情况下,标准的水养温度应该是20℃或者60℃。

(2)测定水泥砂浆孔径。具体的步骤是首先进行砂浆干缩实验,将砂浆干缩成为一个小试块,试块的大小为三面均为1.414cm。将砂浆小试块进行24小时的养护后开始拆模,拆模完毕后将小试块放到标准的水热养护条件下养护48小时。待养护结束后将试块进行切样,切成直径约为3~5mm的小颗粒,然后使用无水乙醇对小颗粒进行水化终止和抽空干燥,待所有步骤全部完成后3天内使用压汞仪对砂浆颗粒孔径的分布概况进行全面测量[2]。

(3)测定NMR和TG-DSC。首先,第一步要求制作和准备试样。具体步骤是,将要进行试验的水泥调节成净浆,净浆的水灰比为0.5,制作完成后将净浆放在密封的试管内进行标准水热条件养护,养护时间为3天。3天后停止水热养护并停止净浆水化,然后将停止水化的净浆研磨成粉状。将研细后的净浆放到60℃养护条件下烘烤6小时。然后使用这些净浆作为NMTR和TG-DSC测定的主要样品。其次,使用探头为4mm、振幅为15KHZ的核磁共振仪对NMR进行测试;使用温度提升速度为10℃/min的综合热分析仪对TG-DSC进行测定。

(4)侧性水泥性能。水泥性能包括水泥的干缩性和强度。在这里,水泥强度的测定主要依据ISO法内规定的标准进行确定,且确定的标准还包括水泥的养护条件是水热条件范围内,若是在在控制之外的时段进行那么则不能够使用该标准法进行确定;水泥干缩度的测试是按照JC/T603-1995测试法内的标准步骤进行。具体测试步骤是,将水泥进行57天的干燥养护后确保你内部无水分后,将其峰值在温度为标准养护温度(20℃)的水当中,密切观察水泥在不同时期的干缩情况,做好记录,并将这些记录绘制成为一个想象的曲线图。

3、实验结果

3.1水泥强度变化测试结果

试样脱模并放入不同水热条件(20℃或者60℃)后,其抗压和抗拉强度变化结果为:水泥在水热温度为20℃和60℃时其抗压强度变化极大,但是其抗拉强度变化却比较小。在不同水热条件下水泥前后两期的抗压强度的差距非常明显,后期的强度均小于前期强度。

3.2水泥砂浆孔径测定结果

使用压汞法测量的砂浆孔径的大小主要分几种情况,即≤200、

100~200、30~100、10~30、≤10,单位均为mm。不同水热条件下孔径结果测定为:孔径≤30mm的孔体积在20℃水热条件中的水养护样要小于60℃水热条件中的水养护样,特别是当孔径小于10mm时,两者之间的水养护样差距更是明显,也就是说,水泥的早期(3天)水化速度和浆体紧密度与温度变化成正相关,也就是水温越高,水化复速度越快,浆体密度越大[3]。

3.3NMR和TG-DSC的测定结果

NMR测定结果表明,无论在何种温度下,也就说无论是在20℃还是在60℃水热条件下,水泥在水化3天后产生的物质均不可避免要发生硅氧聚合反应。但是,随着测试时间不断增加,只有60℃水热条件下的水化产物会再次发生硅氧聚合反应,而20℃的水热条件并没有再次发生化学反应。意思就是说水热温度与水产物致密性呈正相关,与产物的表面积和性能呈负相关。

TG-DSC的测定结果显示,当水温为90~105℃时,水泥的凝胶出现较明显的脱水吸热现象;当水温为154℃时水泥有较为明显的脱水吸热现象;当水温为440~672℃时,出现了氢氧化钙的分解吸热现象。可见,水养护温度与水泥早期的水化速度和水化产物生成数量呈正相关,也就是温度越高,水化越快,产物越多。

3.4水泥性能测试结果

这里分析水热条件下的干缩性能变化测试结果。具体变化情况为:硅酸盐水泥的总干缩值随着温度的升高而逐渐减小,从0.063%降到0.043%,减少了0.02%;硅酸水泥的不可逆干缩值没有明显变化;可逆干缩值与总干缩值一致,均随着温度的增加而出现大幅度降低。可见,温度变化严重影响水泥干缩。

4、讨论

从以上几个实验结果中可知,工程使用的水泥基材料出现干缩现象的根本原因是水泥浆体在水化过程中出现干缩所致。目前见到的硬化水泥浆体(或者橙汁为水泥石)的主要组成部位为:C-S-H凝胶、胶体表面的水、结晶产物、水泥颗粒以及水泥内的孔隙组成。这几个组成部分中,结晶产物与水泥颗粒内部均含有大量的氢氧化钙和AFt,这两个物质具有抑制收缩性能,在水泥水化过程中能够抑制水泥干

缩;而组成部分中的C-S-H凝胶和孔径却具有较强的收缩性质。所以也就意味着,水泥本身的组成物质就具有干缩和抑制干缩的能力。是否会出现较大程度的干缩,取决于这些物质的数量和反应情况。假设水泥的水化条件相同,那么影响水泥干缩的主要因素不再是C-S-H凝胶结构而是水泥水化程度,简单来说就是C-S-H凝胶量越多,那么干缩度就越大;假若不考虑C-S-H凝胶结构的收缩性质的影响,单从水泥孔径、强度以及NMR和TG-DSC几个方面分析干缩情况,那么则可

以得出,水养护水温越高(60℃)干缩率越大。但是,实际是水养护水温越高,干缩率越小。所以,实验结果为C-S-H凝胶是影响水泥干缩最主要的因素。

5、结束语

从以上研究可知,影响硅酸盐水泥水化和干缩性能的因素非常多,在不同水热条件下,水泥的强度、干缩度、水化速度、水化产物数量等均各不相同。出现这种现象的原因主要是因为水泥内部组成结构性能影响所。在分析多个可能性之后得出,C-S-H凝胶是影响水泥水化速度、水化产物数量、干缩的最重要因素。也就是说,控制硅酸盐水泥中的C-S-H凝胶数量和改变其结构性能,对于控制水泥水化温度,减少水泥基材料干缩现象具有非常重大的意义。

参考文献:

[1]张风臣,马保国,谭洪波,蹇守卫.不同环境下水泥基材料硫酸盐侵蚀类型和机理[J].济南大学学报(自然科学版),2008,41(01):85-87.

[2]蔡安兰,黄颖星,严生,许仲梓,邓敏.水泥石的结构、组成与干缩性能的关系[J].材料科学与工程学报,2005,20(04):212-213.

[3]黄颖星,严生,蔡安兰,邓敏.养护条件对水泥砂浆干缩性能的影响[J].南京工业大学学报(自然科学版),2006,10(03):141-142.

------------最新【精品】范文

水化热讲解

第一章设计说明

第二章大体积混凝土承台水化热有限元分析 2.1 概论 2.1.1 大体积混凝土定义 目前国际上对大体积混凝土仍无一个统一的定义。就如美国混凝土学会的定义:任何就地现浇的混凝土,其尺寸到达必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂的,称之为大体积混凝土。又如日本建筑学会对大体积混凝土的标准定义:结构断面最小尺寸在80cm以上;水热化引起混凝土内的最高温度与外界气温之差,预计超过25℃的混凝土。而我国《大体积混凝土施工规范》认为,混凝土结构物实体最小几何尺寸不小于1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土属于大体积混凝土。 由以上可见,大体积混凝土主要是依靠结构物的断面尺寸和水化热引起的温度变化来定性的。 2.1.2 大体积混凝土温度裂缝成因 施工期间水泥的水化热作用,在其浇筑后将经历升温期、降温期和稳定期三个阶段。大体积混凝土自身有一定的保温性能,因此在升温期其内部温升幅度较其表层的温升幅度要大得多,而在降温期内部降温速度又比其表层慢得多,在这些阶段中,混凝土各部分的温度变形及由于其相互约束及外界环境温度约束的作用,在混凝土内产生的温度应力是相当复杂的。由于混凝土的抗拉能力比较弱,一旦温度应力超过混凝土所能承受的拉力极限值时,混凝土就会出现裂缝。 因此必需掌握其水化热的变化规律,从而为混凝土配合比的修改及养护方案的制定提供依据。 2.1.3 本章研究的主要内容 (一)利用MADIS有限元软件建立大体积混凝土承台模型,并对其进行仿 真水化热计算。 (二)对其水化热进行参数分析。

水泥水化热试验方法(直接法)

水泥水化热试验方法(直接法) 本标准适用于测定水泥水化热。 本标准是在热量计周围温度不变条件下,直接测定热量计内水泥胶砂温度的变化,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7天内的水化热(单位是卡/克)。 注:水泥水化7天今期的水化热可按附录方法推算,但试验结果有争议时,以实测法为准。 一、仪器设备 1.热量计 (1)保温瓶:可用备有软木塞的五磅广口保温瓶,内深约22厘米,内径为8.5厘米。 (2)截锥形圆筒:用厚约0.5毫米的铜皮或白铁皮制成,高17厘米,上口径7.5厘米,底径为6.5厘米。 (3)长尾温度计:0-50℃,刻度精确至0.1℃。 2.恒温水槽 水槽容积可根据安放热量计的数量及温度易于控制的原则而定,水槽内水的温度应准确控制在20±0.1℃,水槽应装有下列附件: (1)搅拌器。 (2)温度控制装置:可采用低压电热丝及电子继电器等自动控制。 (3)温度计:精确度为±0.1℃。 (4)固定热量计用的支架与夹具。 二、准备工作 3.温度计:须在15、20、25,30、35及40℃范围内,用标准温度计进行校核。 4·软木塞盆:为防止热量计的软木塞盖渗水或吸水,其上、下走向及周围应用蜡涂封。较大孔洞可先用胶泥堵封,然后再涂蜡。封蜡前先将软木塞中心钻一插温度计用的小孔并称重,底面封蜡后再称其重以求得蜡重,然后在小孔中插入温度计。温度计插入的深度应为热量计中心稍低一些。离软木塞底面约12厘米,最后再用蜡封软木塞上表面以及其与温度计间的空隙。 5.套管:温度计在插入水泥胶砂中时,必须先插入一端封口的薄玻璃营管或铜套管,其内径较温度计大约2毫米,长约12厘米,以免温度计与水泥胶砂直接接触。 6.保温瓶、软木塞、截锥形圆筒、温度计等均需编号并称量,每个热量计的部件不宜互换,否则需重新计算热量计的平均热容量。 三、热量计热容量的计算 7.热量计的平均热容量C,按下式计算: g g1 C=0.2×── +0.45×── +0.2×g2+0.095×g3+0.79×g4+0.4×g5 2 2 +0.46×V 式中:C──不装水泥胶砂时热量计的热容量,卡/℃; g──保温瓶重,克; g1──软木塞重,克; g2──玻璃管重,克(如用铜管时系数改为0.095); g3──铜截锥形圆筒重,克(如用白铁皮制时系数改为0.11); g4──软木塞底面的蜡重,克; g5──塑料薄膜重,克; V──温度计伸人热量计的体积,厘米[3](0.46是玻璃的容积比热,卡/厘米[3]·℃)。 式中各系数分别为所用材料的比热(卡/克·℃)。 四、热量计散热常数的测定

水泥水化机理

4.1水泥的水化机理 从化学角度来看,水泥的水化反应是一个复杂的溶解沉淀过程,在这一过程中,与单一成分的水化反应不同,各组分以不同的反应速度同时进行水化反应,而且不同的矿物组分彼此之间存在着互相影响。水泥中最多的熟料矿物是硅酸盐化合物,是制约水泥水化性质及相关性能的关键组分。水泥中的硅酸盐熟料矿物的主要成分为硅酸三钙和硅酸二钙。 (1)硅酸三钙(C3S)的水化 硅酸三钙是水泥熟料中的含量最多的组分,通常占材料总量的50%左右,有时高达60 %。硅酸钙的水化产物的化学组成成分不稳定,常随着水相中钙离子的浓度、温度、使用的添加剂、养护程度而发生变化,而且形态不固定,通常称为“C-S-H”凝胶。 C3S在常温下发生水化反应,可大致用下列方程式表述: 硅酸三钙的水化速率很快,其水化过程根据水化放热速率随时间的变化,可以将C3S的水化过程划分为五个阶段,各阶段的化学过程和动力学行为如表1.1所示。 表1.1 C3S水化各阶段的化学过程和动力学行为时期早期中期后期 反应阶段诱导前期诱导期加速期减速期稳定期 化学过程初始水解, 离子进入溶 液 继续溶解, 早期C-S-H 稳定水化产 物开始生长 水化产物继 续生长,微 结构发展 微结构组件 密实 动力学行为反应很快反应慢反应快反应变慢反应很慢(2)硅酸二钙的水化 C2S也是水泥主要熟料矿物组分之一,水化过程与C3S相似,也有诱导期、加速期,但是水化速率特别慢。C2S的水化反应可大致用下列方程表述:

(3)铝酸三钙的水化 C3A是水泥熟料矿物的重要组分之一,其水化产物的组成与结构受溶液中的氧化铝、氧化钙浓度的影响很大,它对水泥的早期水化和浆体的流变性能起着重要的作用。纯水中C3A的水化:大量的研究结果表明,C3A遇水后能够立即在表面形成一种具有六边形特征的初始胶凝物质粒子,开始时其结晶度很差也很薄,呈不规则卷层物,随着水化时间的推移,这些卷层物生长成结晶度较好的,成分为C4AH19和C2AH8济的六边形板状物。这种六边形水化物是亚稳的,并能转化成立方形稳定的晶体颗粒。常温下C3A在纯水中的水化反应可用下式表示: 有石膏存在时C3A的水化:在水泥浆体中,熟料中的C3A实际上是在和有石膏存在的环境中水化的,C3A在Ca(OH)2饱和溶液中的水化反应可以表述为C3A+CH+12H=C3AH13。当处于水泥浆体的碱性介质中时,C3AH13在室温下能稳定存在,其数量增长也很快,这是水泥浆体产生瞬时凝结的主要原因之一。(4)铁铝酸四钙的水化 铁铝酸四钙的水化与铝酸三钙的水化过程相似,只是反应速率很慢,而且产物是含铁和铝的共同产物。

水泥水化热对混凝土早期开裂影响资料

水泥水化热对混凝土早期开裂影响 【来源:水泥工艺网】【2011年09月13日】 0 引言 对于预拌混凝土应用过程出现的早期开裂现象,有些混凝土专家归因于水泥比表面积太大和早期强度太高;而水泥界则认为,我国目前水泥的比表面积和早期强度并不比国外的高,混凝土的早期开裂主要是混凝土施工和养护不当所致。笔者认为,必须通过混凝土生产者和水泥生产商沟通,对早期裂缝的成因达成共识,在水泥生产、混凝土配制及施工养护等环节共同采取措施加以解决。“高强早强、高比表面积”及“水泥磨得太细”,这些都是表面现象,其本质是早期水化热太高及混凝土温度应力大的缘故。 1 水化热高是混凝土早期开裂的重要原因 混凝土早期开裂主要是由于初凝前后干燥失水引起的收缩应变和水化热产生的热应变所引起。关于混凝土的开裂,大家都已接受如下认识:抗拉强度越高,则混凝土开裂的危险性越小;弹性模量大、收缩大则开裂的危险性大;徐变大则开裂的危险性小。弹性模量越低,一定收缩量(或应变)产生的拉应力越小。混凝土处于塑性状态时弹性模量几乎为零,任何收缩或应变都不会产生拉应力,只有凝结固化具有一定强度后才有弹性模量,混凝土弹性模量随强度增加而增大。因此,混凝土强度的发展既有利于减少混凝土的开裂又因弹性模量增大而增加混凝土的开裂性。根据美国ACI建筑法规,混凝土弹性模量与标准圆柱体28d抗压强度的平方根成正比。混凝土徐变越大,应力松弛量越大,纯拉应力越小。因此,弹性模量低、徐变大及收缩小的混凝土开裂的危险小。高强混凝土因收缩

较大和徐变较小而较易开裂,而低强混凝土可能因收缩小和徐变大,而往往裂缝较少。关于干燥收缩及其避免或减少收缩的措施,大家都已达成共识,本文不拟赘述,但对于温度应变引起的应力往往认识不足。 温度应力是目前预拌混凝土早期开裂的一个很重要的因素。R.Springenschmid认为,混凝土的2/3应力来自于温度变化,1/3来自干缩和湿胀。水泥水化热是混凝土早期温度应力的主要来源。按照瑞典学者J.Byfors的观点,“混凝土拌和物成型的最初几个小时,还没有形成凝聚结构,此时主要表现为黏塑性。随着水化进行,塑性减少,弹性模量增大,成型后4~8h,弹性模量从10~102MPa迅速增长至104~105MPa,增加了3个数量级,而此期间抗压和抗拉强度以正常速度增长,因此极限抗拉应变由2h的4.0×10-3急剧下降至6~8h的0.04×10-3左右,即极限应变减小到原来的1/100,因此成型后6~8h极限抗拉应变达到最低值”。在混凝土终凝时,抗压强度只有0.7MPa,抗拉强度只有0.07MPa,混凝土弹性模量按1.0×104MPa计,只要产生大于0.07/(1.0×104)=7×10-6的应变即可使混凝土开裂。混凝土的热膨胀系数为10×10-6/℃,只要混凝土内外温差为1℃就足可使此时混凝土开裂。国外为使混凝土的早期不开裂,要求12h抗压强度不大于6MPa,相应的抗拉强度约0.6MPa,即使弹性模量仍按1.0×104MPa计,此时应变不应大于6×10-5,相当于内外温度梯度不大于6℃。而国内学者要求24h抗压强度不大于12MPa,相应的抗拉强度约1.2MPa,此时应变不应大于12×10-5,相当于内外温差不大于12℃。不幸的是,水泥的水化热释放主要集中在早期,水泥加水拌和后,立即出现放热(称为第一个放热峰),持续几分钟,这可能是铝酸盐和硫酸盐的溶解热。下一阶段是形成钙矾石所放出的热量,对于大部分

10水泥水化热操作规程

第二十六节水泥水化热测定仪作业指导书 一、原理、适用范围与技术参数 1、SHR-650型水泥水化热测定仪,主要用于测定水泥水化前后,在一定浓度的标准酸中的溶解热以二者之差来确定水泥在任何龄期的水泥水化热。水泥水化热测定仪产品符合 GB/T12959-2008《水泥水化热测定方法(溶解热法)》标准要求,选用高精度智能仪表,全程采用电脑信息采集处理器完成整个生产实验过程,具有操作简单,实验数据准确的优点。 2、水泥水化热测定仪,适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥等的任何水化龄期的水化热测定。其他水泥品种当指定采用溶解热法测定水化热时也可使用本仪器。 3、水泥水化热测定仪,溶解热法测定水化热是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。 水泥水化热测定仪主要技术参数: 1、真空瓶容积:650ml 2、真空瓶内径: 75㎜ 3、真空瓶深度:160㎜ 4、贝克曼温度计示差范围:5~6℃ 5、分度值:0.01℃ 6、水槽温度:20℃±0.1℃ 7、电源、功率:2500W/ AC220V/50Hz 8、净重:100kg 三、操作方法(溶解热法) (一)试验准备 在试验开始时,应将试验内筒从水槽内提升至水面以上位置固定好,打开试验内筒筒盖,将真空瓶、耐酸内衬、酸液搅拌棒放入内筒,将试验筒盖盖好,并拧紧蝶形螺母, 密封筒盖,再将内筒慢慢沉入水中固定。 将温度传感器插入水槽盖板上的插孔内并联接到控制仪,将其它各插件联接到控制仪 相应插口。接通电源,检查接地是否可靠,打开控制仪电源开关。 当水槽内水温高于20.1℃时,应慢慢地向水槽内放入冰块或冷水,待温度略底于20℃ 时即停止,此时,系统会自动将水温升至标准规定温度,并保持恒温。

石灰石对水泥水化过程的影响

石灰石对水泥水化过程的影响-中国水泥技术网 2010-4-1 作者: 摘要:EN标准(EN 197)规定波特兰水泥中石灰石粉(主要为方解石)的掺加量最多可达5%,而全世界范围内,在特种水泥中石灰石的掺加量都要高得多。然而人们关注着富含石灰石的水泥的性能问题。由于尚未充分了解石灰石粉添加剂的作用:石灰石粉到底是一种活性添加剂还是惰性填充材料,或者是二者共存,所以目前还不能对此做些什么。本文展示如何辅以有针对性的试验进行计算来说明具有活性低含量方解石的作用。本文提供的发现显示了现代热动力学作为研究水泥浆体矿物学的一种有效方法的功能。 1 引言和基本原则 水泥生产商在生产具有较高早期强度和优良耐久性的优质水泥的同时,承受着降低成本和减少排放的压力。在这种情况下,常采用石灰石粉部分地替代水泥,并且经证明含量至少达到5%时是无害的:石灰石粉是EN 197标准允许的一种添加剂。由于按照该标准,所用石灰石中碳酸钙的含量不能低于70%(许多商用石灰石超过了此限值),因此,采用方解石进行模拟分析是合理的。 石灰石通常与熟料共同粉磨,由于其硬度比熟料小,所以粉磨之后的石灰石粒径的分布范围较广,但是其平均粒径明显比熟料的更细。由此产生的石灰石细粉无疑能改善固体颗粒与水混合后的固结性。然而物理堆积的优化过程相当复杂,不仅取决于石灰石粉的掺加量,还取决于所使用的粉磨设备类型以及熟料、石灰石的相对易磨性,由于这些都是变量,因此需要不同工厂各自进行评估。 Ingram和Daugherty对石灰石粉的物理作用作了评述。随后,Livesey等和Vuk等报道了石灰石水泥的强度发展。Tsivilis等人报道了加入石灰石粉后的混合物的渗透性,并将其与混合物基体的碳化速度和钢筋的潜在腐蚀性联系起来进行了分析。Uchikawa 等人在检查混凝土时发现由于石灰石粉的加入会使孔结构细化,并声称石灰石粉不具有火山灰活性,因此,对氢氧钙石含量也没有影响另一面,Catinaud等人指出,由于碳铝酸盐的形成,石灰石粉会阻止AFt(钙矾石)向AFm(单硫型硫铝酸盐)转化。这正与Sawicz、Henig和Kuzel等人的结果相一致,他们认为石灰石粉阻止了钙矾石向单硫酸盐转变,取而代之的则是单碳铝酸盐和半碳铝酸盐的形成。由以上文献可以看出,对于石灰石粉在波特兰水泥混合物中的活性还没有达成统一认识。 借助于选择的几种矿物活性实验以及热力学计算,我们再次对石灰石粉的活性进行检测,实

溶解法测定水泥水化热试验操作技巧

溶解法测定水泥水化热试验操作技巧 摘要: GB/T 12959—1991《水泥水化热测定方法(溶解法)》规定了水泥的水化温度(20±1)℃,以便于测定水泥的恒温水化速度、水化热量尤其是长龄期水泥水化热量。其原理是:依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。由于本规范的各项要求都非常严格,实际操作中稍有不慎就可能使测试数据误差较大,导致测试结果作废。本文着重探讨减少操作误差的操作技巧。 1、仪器设备 1.1、广口保温瓶及贝克曼温度计 GB/T 12959—1991 第 3.1.4 规定:贝克曼差示温度计,插入酸液部分必须涂以石蜡或其他耐氢氟酸涂料;第6.1.1 规定:试验前保温瓶内壁用石蜡或其他耐氢氟酸腐蚀的涂料涂覆。实践中发现,保温瓶内壁和贝克曼温度计尾部涂上石蜡后,操作 5~10 次就有部分石蜡涂层脱落,尤其是保温瓶口和贝克曼温度计尾部,保温瓶口在塞入软木塞时以及贝克曼温度计尾部在插入时容易造成石蜡涂层脱落,往往造成刚刚标定好热量计,还没有进行水泥溶解热测试,所标定的热量计已经不准确了,必须重新涂蜡并标定,如果错过了设定的水泥水化龄期,还必须重新制作水泥试样,重新测定此时未水化水泥的溶解热。我们曾经 20 多次试验也未测出水泥的 3d、7d、28d整套水化热数据。我们采用 E- 44(6101)环氧树脂和低分子 650 聚酰胺树脂 1:1 混合搅匀,如果黏度太大就用丙酮稀释,均匀涂在广口保温瓶内壁、酸液搅拌器下部以及贝克曼温度计尾部,在常温下 24h后即可使用。还有就是广口保温瓶内壁口部 1cm 部分不涂,这部分一般接触不到酸液并且每次塞入软木塞时容易摩擦该部分的涂层。贝克曼温度计尾部的涂层要薄,多余的涂料必须在未固化时抹去,以免造成温度计尾部太粗,插不进相应的孔中。 1.2、分度吸量管 根据溶解热的测定原理可知,氢氟酸作为一种强酸对溶解热测试结果影响较大,所以加入的氢氟酸必须十分准确,GB/T12959—1991 没有规定怎样量取8mL 的 48%氢氟酸, 我们建议使用分度吸量管。分度吸量管一般由玻璃制成,玻璃的主要化学成分是硅,遇氢氟酸生成硅酸。所以氢氟酸很容易腐蚀玻璃分度吸量管,尤其是吸量管的尖嘴部分,而吸量管又不能作防腐层(作防腐层影响吸量管的精度),每次使用完毕后用蒸馏水清洗,一支吸量管连续使用 10 次,其尖嘴部分就有明显的腐蚀迹象。所以应该多准备几支分度吸量管。 1.3 、酸液搅拌棒

硅酸盐水泥的水化与硬化

第七章硅酸盐水泥的水化与硬化 本章主要内容: 1.熟料矿物的水化 2.硅酸盐水泥的水化 3.水化速率 4.硬化水泥浆体 补充: 熟料矿物水化的原因 1.熟料矿物结构不稳定。 造成熟料矿物结构不稳定的原因是: ⑴ 熟料烧成后快速冷却,使其保留了介稳状态的高温型晶体结构; ⑵熟料中的矿物不是纯的C3S和C2S ,而是Alite 和Belite等有限固溶体; ⑶微量元素的掺杂使晶格排列的规律性受到某种程度的影响。 2.熟料矿物中钙离子的氧离子配位不规则。 水泥的水化、凝结、硬化 ? 水化-物质由无水状态变为有水状态,由低含水变为高含水,统称为水化。 ? 凝结-水泥加水拌和初期形成具有可塑性的浆体,然后逐渐变稠并失去可塑性的过程称为凝结。 ? 硬化-此后,浆体的强度逐渐提高并变成坚硬的石状固体(水泥石),这一过程称为硬化。 §7.1 熟料矿物的水化 一.C3S的水化 1.常温下的水化反应 3CaO.SiO2+nH2O=xCaO.SiO2.yH2O+(3-x)Ca(OH)2

简写为:C3S + nH = C-S-H + (3-x)CH 水化产物:水化硅酸钙(也称C-S-H凝胶)和氢氧化钙。 2.C3S水化过程 Ⅰ诱导前期(时间:15分钟 ) 反应:激烈—第一个放热峰,钙离子浓度迅速提高 浆体状态:是具有流动性(Ca(OH)2没有饱和) Ⅱ诱导期又称静止期(时间:2—4小时) 反应:极慢——放热底谷:钙离子浓度增高慢 浆体状态:Ca(OH)2达饱和。此间:具有流动性,结束:失去流动性,达初凝 Ⅲ加速期(时间:4~8小时) 反应:又加快——第二放热高峰 浆体状态:Ca(OH)2过饱和最高:生成Ca(OH)2、填充空隙、 中期:失去可塑性、达终凝,后期:开始硬化 Ⅳ减速期(时间:12—24小时) 反应:随时间的增长而下降 原因:在C3S表面包裹产物—阻碍水化。 Ⅴ稳定期 反应:很慢—基本稳定(只到水化结束) 原因:产物层厚:水很少—产物扩散困难。 3.诱导期的本质 ⑴保护膜理论 ⑵晶核形成延缓理论 ⑶晶格缺陷的类别和数量是决定诱导期长短的主要因素 二.C2S水化 C2S的水化过程与C3S相似,也有静止期,加速期等,但水化速率很慢约为C3S的1/20

GBT1295991水泥水化热测定方法溶解热法

水泥水化热测定方法(溶解热法) 标准名称:水泥水化热测定方法(溶解热法) 标准类型:中华人民共和国国家标准 标准号:GB/T 12959-91 发布单位:国家技术监督局 标准名称(英) Test method for heat of hydration of cement-The heat of solution method 标准发布日期 1992-06-04批准 标准实施日期 1993-03-01实施 标准正文 1 主题内容与适用范围 本标准规定了用溶解热法测定水泥水化热试验的方法原理、仪器设备、试验步骤及结果计算等。 本标准适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥和其他指定采用本方法的水泥品种。 2 方法原理 本方法是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。 3 仪器设备 3.1 热量计:如下图所示。由保温水槽、内筒、广口保温瓶、贝克曼差示温度计、搅拌装置等主要部件组成。另配一个曲颈玻璃漏斗和一个直颈装酸漏斗。 3.1.1 保温水槽:水槽内外壳之间装有隔热层,内壳横断面为椭圆形的金属筒,横断面长长轴450mm,短轴300mm,深310mm,容积约30L。并装有控制水位的溢流管。溢流管高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中的酸液。 3.1.2 内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm筒内衬有软木层或泡沫塑料。筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧的孔分别安装加料漏斗和贝克曼差示温度计。 3.1.3 广口保温瓶:容积约为600mL,当盛满比室温高5℃的水,静置30min时,其冷却速度不得超过0.001℃/min·℃。 3.1.4 贝克曼差示温度计(以下简称贝氏温度计):精度为0.01℃,最大差示温度为5 ̄ 6℃,插入酸液

改性硅酸盐水泥的水化历程研究

第21卷 第1期石家庄铁道学院学报(自然科学版) Vol .21 No .1 2008年3月 JOURNAL OF SH I J I A ZHUANG RA I L WAY I N STITUTE (NATURAL SCIENCE ) Mar .2008 改性硅酸盐水泥的水化历程研究 任书霞1 , 田秀淑1 , 李仕群 2 (1.石家庄铁道学院材料科学与工程分院,河北石家庄 050043;2.济南大学材料分院,山东济南 250022) 摘要:将磷铝酸盐水泥熟料(简称:P ALC )掺入硅酸盐水泥(简称:PC )对其进行改性,研究 了不同磷铝酸盐水泥熟料掺量对改性硅酸盐水泥力学性能和水化历程的影响。研究结果表明,适宜的磷铝酸盐水泥熟料掺量(外掺3%)可以加速改性硅酸盐水泥的水化,提高其早期和后期强度;但掺量过多,由于磷铝酸盐水泥水化较快,产生的水化产物较致密,这些致密的水化产物包裹在C 3S 、C 2S 等水泥颗粒的外层,阻止了其进一步的水化,使改性水泥出现一个持续时间较长的第二诱导期,从而使表现出较慢的水化速率和较低的早期强度。 关键词:磷铝酸盐水泥;改性硅酸盐水泥;力学性能;水化历程中图分类号:T Q172 文献标识码:A 文章编号:167420300(2008)0120047204 收稿日期:2007211212 作者简介:任书霞 女 1975年出生 讲师 1 引言 硅酸盐水泥是以Si 2O 和A l 2O 为主阴离子团的传统水泥,其水化产物主要有水化硅酸钙、水化铝酸钙及氢氧化钙等。虽然硅酸盐水泥服务于人类200多年来,做出了极大的贡献。然而也存在着各种弊端[1,2]。新开发的磷铝酸盐水泥[3,4]是以P 2O 和A l 2O 为主阴离子团的新型特种水泥,其水化产物主要有铝胶、水化磷铝酸钙和水化磷酸钙凝胶及其相应的晶相。由于在该水泥中,P 5+ 和A l 3+ 之间的不等价取代,在结构中形成大量缺陷,增加了系统的水化活性,使其水化浆体具有早强、高强、后期强度增进好及耐水性好等一系列等优点。利用这些特点,将磷铝酸盐水泥掺入到硅酸盐水泥中对其进行改性,研究了不同磷铝酸盐水泥掺量对改性硅酸盐水泥性能的影响,并运用SE M 和热导式微热仪等现代分析手段进一步分析了影响机理。 2 实验 2.1 原材料及组成 硅酸盐水泥熟料和石膏来自山东水泥厂,磷铝酸盐水泥熟料自制及外加剂B ,化学分析见表1。 表1 水泥熟料和石膏的化学组成 名称 Ca O Si O 2A l 2O 3Fe 2O 3Mg O S O 3P 2O 5 其他PC 熟料66.4921.354.233.583.21——0.93石膏33.14————45.14—20.96P ALC 40.04 10.39 29.75 —— —19.82 4.35 2.2 实验方法 根据前期的研究[5] ,磨制改性硅酸盐水泥时,最佳粉磨工艺为先将P ALC 熟料与外加剂混磨,石膏与PC 熟料混磨,然后将两混合料混磨,外加剂的掺量即为单独P ALC 熟料磨制水泥时的最佳参量。因此,这里只需确定P ALC 熟料,方案设计如下:当石膏的掺量为2.5%时,设计P ALC 的掺量分别为3%、6%和10%,分别简写为P O3,P O6和P O10。 根据标准稠度实验确定改性硅酸盐水泥和PC 净浆浆体的需水量,按相应的实验数据将各种水泥成型为20mm ×20mm ×20mm 的水泥净浆试块,养护至规定龄期后测定强度,取破型后的试块中部浸泡于

水泥水化热试验方法(20200511213548)

水泥水化热试验方法 标准适用于测定水泥水化热。 本标准是在热量计周围温度不变条件下,直接测定热量计内水泥胶砂温度的变化 ,计算热量计内积蓄和散失热量的总和,从而求得水泥水化7 天内的水化热(单位是卡/ 克)。 注:水泥水化7 天今期的水化热可按附录方法推算,但试验结果有争议 时,以实测法 为准。 一、仪器设备 1 .热量计 (1)保温瓶:可用备有软木塞的五磅广口保温瓶,内深约22 厘米,内径为8.5 厘米。 (2)截锥形圆筒:用厚约0.5 毫米的铜皮或白铁皮制成,高 17 厘米,上口径7.5 厘米,底径为6.5 厘米。 (3)长尾温度计:0 —50C,刻度精确至0. 1C。 2 .恒温水槽 水槽容积可根据安放热量计的数量及温度易于控制的原则而定,水槽内水的温度应准 确控制在20±0. 1C,水槽应装有下列附件: (1 )搅拌器。 2)温度控制装置:可采用低压电热丝及电子继电器等自动控

(3)温度计:精确度为土0. 1C。 ( 4)固定热量计用的支架与夹具。 二、准备工作 3 .温度计:须在15、20、25, 30、35及40C范围内,用标准温度计进行校核。 4?软木塞盆:为防止热量计的软木塞盖渗水或吸水,其上、下走向及周围应用 蜡涂封。较大孔洞可先用胶泥堵封,然后再涂蜡。封蜡前先将软木塞中心钻一插 温度计用 的小孔并称重,底面封蜡后再称其重以求得蜡重,然后在小孔中插入温度计。温度计插入 的深度应为热量计中心稍低一些。离软木塞底面约12厘米,最后再用蜡封软木塞上表面以 及其与温度计间的空隙。 5.套管:温度计在插入水泥胶砂中时,必须先插入一端封口的薄玻璃营管或铜 套管,其内径较温度计大约2毫米,长约12厘米,以免温度计与水泥胶砂直接接触。 6 .保温瓶、软木塞、截锥形圆筒、温度计等均需编号并称量,每个热量计的部 件不宜互换,否则需重新计算热量计的平均热容量。 、热量计热容量的计算 7 .热量计的平均热容量C,按下式计算: g1 C = 0.2 X—— + 0.45 X—— + 0.2 X g2+ 0.095 X g3+

防止水化热的不利影响措施

防止水化热的不利影响措施 计划基础底板混凝土浇灌时间为一个日历天数。大体积混凝土的施工技术要求比较高,特别在施工中要防止混凝土因水泥水化热引起的温度差产生温度应力裂缝。因此需要从材料选择上、技术措施等有关环节做好充分的准备工作,才能保证基础底板大体积混凝土顺利施工。 1、材料选择 (1)水泥:考虑普通水泥水化热较高,特别是应用到大体积混凝土中,大量水泥水化热不易散发,在混凝土内部温度过高,与混凝土表面产生较大的温度差,便混凝土内部产生压应力,表面产生拉应力。当表面拉应力超过早期混凝土抗拉强度时就会产生温度裂缝,因此确定采用水化热比较低的矿渣硅酸盐水泥,标号为525#,通过掺加合适的外加剂可以改善混凝土的性能,提高混凝土的抗渗能力。 (2)粗骨料:采用碎石,粒径5-25mm,含泥量不大于1。选用粒径较大、级配良好的石子配制的混凝土,和易性较好,抗压强度较高,同时可以减少用水量及水泥用量,从而使水泥水化热减少,降低混凝土温升。(3)细骨料:采用中砂,平均粒径大于0.5mm,含泥量不大于5。选用平均粒径较大的中、粗砂拌制的混凝土比采用细砂拌制的混凝土可减少用水量10%左右,同时相应减少水泥用量,使水泥水化热减少,降低混凝土温升,并可减少混凝土收缩。 (4)粉煤灰:由于混凝土的浇筑方式为泵送,为了改善混凝土的和易性便于泵送,考虑掺加适量的粉煤灰。按照规范要求,采用矿渣硅酸盐水泥拌制大体积粉煤灰混凝土时,其粉煤灰取代水泥的最大限量为25%。粉煤灰对水化热、改善混凝土和易性有利,但掺加粉煤灰的混凝土早期极限抗拉值均有所降低,对混凝土抗渗抗裂不利,因此粉煤灰的掺量控制在10以内,采用外掺法,即不减少配合比中的水泥用量。按配合比要求计算出每立方米混凝土所掺加粉煤灰量。 (5)外加剂:设计无具体要求,通过分析比较及过去在其它工程上的使用经验,混凝土确定采用(减水剂),每立方米混凝土2kg,减水剂可降低水化热峰值,对混凝土收缩有补偿功能,可提高混凝土的抗裂性。2、混凝土配合比 (1)混凝土采用由搅拌站供应的商品混凝土,因此要求混凝土搅拌站根据现场提出的技术要求,提前做好混凝土试配。 (2)混凝土配合比应提高试配确定。按照国家现行《混凝土结构工程施工及验收规范》、《普通混凝土配合比设计规程》及《粉煤灰混凝土应用技术规范》中的有关技术要求进行设计。 (3)粉煤灰采用外掺法时仅在砂料中扣除同体积的砂量。另外应考虑到水泥的供应情况,以满足施工的要求。 3、现场准备工作 (1)基础底板钢筋及柱、墙插筋应分段尽快施工完毕,并进行隐蔽工程验收。 (2)基础底板上的地坑、积水坑采用组合钢模板支模,不合模数部位采用木模板支模。 (3)将基础底板上表面标高抄测在柱、墙钢筋上,并作明显标记,供浇筑混凝土时找平用。 (4)浇筑混凝土时预埋的测温管及保温随需的塑料薄膜、草席等应提前准备好。 (5)项目经理部应与建设单位联系好施工用电,以保证混凝土振捣及施工照明用。 (6)管理人员、施工人员、后勤人员、保卫人员等昼夜排班,坚守岗位,各负其责,保证混凝土连续浇灌的顺利进行。 三、大体积混凝土温度和温度应力计算 (计附后) 根据业主及设计要求,对基础底板混凝土进行温度检测;基础底板混凝土中部中心点的温升高峰值,该温升值一般略小于绝热温升值。一般在混凝土浇筑后3d左右产生,以后趋于稳定不在升温,并且开始逐步降温。规范规定,对大体积混凝土养护,应根据气候条件采取控温措施,并按需要测定浇筑后的混凝土表面和内部温度,将温差控制在设计要求的范围内;当设计无具体,要求时,温差不宜超过25度;本工程设计无具体要求,即按规范执行。表面温度的控制可采取调整保温层的厚度。

水泥水化热测定方法

《水泥水化热测定方法(溶解热法))GB /T 12959-91 1 主题内容与适用范围 本标准规定了用溶解热法测定水泥水化热试验的方法原理、仪器设备、试验步骤及结果计算等。 本标准适用于中热硅酸盐水泥、低热矿渣硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰硅酸盐水泥、粉煤灰硅酸盐水泥和其他指定采用本方法的水泥品种。 2 方法原理 本方法是依据热化学的盖斯定律,即化学反应的热效应只与体系的初态和终态有关而与反应的途径无关提出的。它是在热量计周围温度一定的条件下,用未水化的水泥与水化一定龄期的水泥分别在一定浓度的标准酸中溶解,测得溶解热之差,即为该水泥在规定龄期内所放出的水化热。 3 仪器设备 3.1 热量计:如图1所示。由保温水槽、内筒、广口保温瓶、贝克曼差示温度计、搅拌装置等主要部件组成。另配一个曲颈玻璃漏斗和一个直颈装酸漏斗。 3.1.1 保温水槽:水槽内外壳之间装有隔热层,内壳横断面为椭圆形的金属筒,横断面长轴450mm I短轴300mm,深310mm,容积约30L。并装有控制水位的溢流管。溢流管高度距底部约270mm,水槽上装有二个搅拌器,分别用于搅拌水槽中的水和保温瓶中的酸液。 3.1.2 内筒:筒口为带法兰的不锈钢圆筒,内径150mm,深210mm,筒内衬有软木层或泡沫塑料。筒盖内镶嵌有橡胶圈以防漏水,盖上有三个孔,中孔安装酸液搅拌器,两侧的孔分别安装加料漏斗和贝克曼差示温度计。 3.1.3广口保温瓶:容积药为600mL,当盛满比室温高约5℃的水,静置30min时,其冷却速度不得超过0.001℃/ min·℃。 3.1.4 贝克曼差示温度计(以下简称贝氏温度计):精度为0.01℃,最大差示温度为5~6℃,插人酸液部分须涂以石蜡或其他耐氢氟酸的涂料。

化学外加剂对水泥水化历程的影响及作用机理研究

化学外加剂对水泥水化历程的影响及作用机理研究 张莉 【摘要】:本论文以国家“973”项目为课题背景,针对C_3S含量较高的硅酸盐水泥,采用多种测试评价方法,开展化学外加剂对水泥水化历程的影响、浆体初始结构的演变过程及其作用机理的研究。采用自动高效水化热测定仪以及无电极电阻率测定仪,将传统的水化热模型与初始结构形成模型结合起来,运用水化热模型的热敏感性与结构形成模型的结构敏感性,更加真实地描述了水泥浆体初始结构的瞬时形成状态;结合化学减缩与力学性能测试,系统全面地研究了化学外加剂对水泥水化历程的调控作用;运用微观测试方法,深入探讨了化学外加剂对水泥水化历程影响的作用机理。研究表明,普通减水剂与高效减水剂对水化历程有明显的改善作用。木钙主要是延缓C_3S水化,但其降低了二水石膏的溶解度,掺量较高时促进C_3A 始水解,加速AFt生成并向AFm转化,并且促进了六方水化铝酸钙的生成,并由于其引气作用,导致后期性能的下降。高效减水剂由于其高度减水分散作用,水泥初始水化速度加快,但其后由于减水剂的吸附及初期水化产物膜的增厚,水化速度降低,从而有利于浆体结构的密实与后期性能的发展。相同掺量下,X404聚羧酸系减水剂由于其良好的空间位阻效应,与UNF-5萘系减水剂相比可有效控制水泥水化历程,与水泥适应性较好。缓凝剂对水泥水化历程有较好的延缓作用。研究表明,缓凝剂可以减慢也可以加速C_3A水化,但均能延缓C_3S水化。锌盐主要是生成不溶性水化产物Ca(Zn(OH)_3)_2·2H_2O覆盖在水泥粒子表面而使水化受到延缓,且SO_4~(2-)离子浓度的增大有助于减弱Zn~(2+)的缓凝作用,因此ZnSO_4对水化的抑制作用弱于ZnCl_2。Na_5P_3O_(10)与Ca~(2+)生成稳定络合物——CaNa_3P_3O_(10),而不同于Na_3PO_4与Ca~(2+)生成不溶性产物Ca_3(PO_ 4)_2,从而使水化更加延缓。蔗糖、柠檬酸对水泥水化历程的调控作用存在双临界效应: 一、在掺量较低时,表现为缓凝效果,当掺量较大时,则表现为促凝作用,但是浆体长时间 不硬化;二、缓凝效果存在临界掺量值,低于临界值时,缓凝效果随掺量增加而增加,超过此临界值时,缓凝效果随掺量增加而下降。蔗糖、柠檬酸对化学减缩有较好的补偿作用,随着掺量的增加,初期化学减缩增大,其后化学减缩逐渐降低;而其对水化热历程的调控作用则表现为鞍状双峰现化学外相剂对术泥术厉很的形响及信用机玻研完象,随着掺量的增大,第一放热峰增强,第二放热峰宽化、弱化。这是由于蔗搪、柠檬酸均抑制了C3S水化,促进了C3A水解。但蔗搪促进了A王t的生成,而柠檬酸则可能因为降低了硫酸盐的溶解度而加速了AFt的生成并向AFm转化,并且促进了六方铝酸钙的生成。研究表明,锌盐、N玛P3OI。均使C3A水化受到延缓,而蔗糖、柠檬酸等有机缓凝剂则使C3A水解加速。 【关键词】:高C_3S含量水泥减水剂缓凝剂水化历程初始结构形成调控作用作用机理 学位授予单位】:武汉理工大学 【学位级别】:硕士 【学位授予年份】:2004 【分类号】:TQ172 【目录】: 第1章前言10-20

水泥的高性能化

水泥的高性能化 1 前言 生产水泥的目的是满足各种混凝土建筑工程的需要。国标中水泥按强度分等级,是为了满足混凝土建筑工程的基本物理性能要求。从广东过去几十年混凝土材料的发展过程来看,上世纪80年代前,工程绝大部分使用低标号混凝土(C30以下)。低标号混凝土对配制技术或配制材料的要求均较低,外加剂(减水剂)甚少用到混凝土工程。在此情况下,无论是立窑水泥或湿法窑、干法窑烧制的转窑水泥,在配制混凝土时抗压强度差异不大。即使今天,按此条件配制混凝土来进行对比,大部分的强度结果均有类似规律。 但从上世纪80年代到本世纪初,随着经济的高速发展,混凝土工程的大型化及混凝土材料的高性能化要求越来越多。以广州近几年混凝土材料的设计、施工要求来看,出现了垂直高度300多米的泵送混凝土,高抛自流平(26m高度抛下、免振)等高工作性能的混凝土;C80高强混凝土,F5.0~6.0的高抗折、耐磨性好的道路混凝土;S20高抗渗、耐酸耐碱混凝土;低收缩抗开裂混凝土,广州新机场跑道的高强、抗冲击、耐磨、低收缩率混凝土;低水化热、高强度的大体积混凝土等等。混凝土材料性能要求越来越高,数量日益增多。为满足城市化及混凝土材料性能提高的要求,广东省商品混凝土搅拌站已有上百家,外加剂普遍使用,与外加剂相容性好的高标号水泥被首选、配制混凝土的粗细骨料质量要求及配制技术不断提高。这些均是提高

混凝土材料性能的措施及保证。从混凝土材料的发展及配制技术的提高,人们也越来越认识到水泥高性能化的重要性。简而言之,社会、经济的发展,要求混凝土材料的高性能化。这促进了混凝土技术的发展,为配制高性能混凝土及降低生产成本,又提出了水泥的高性能化。它是混凝土高性能化及低成本生产混凝土的基础。目前广州市绝大部分重点工程、尤其是对混凝土性能要求较高的工程所用水泥均为省内几家大水泥厂提供,这主要是由水泥性能决定的。 2 水泥高性能化的含义 目前水泥生产厂家对水泥的高性能化认识不全面。在我国水泥与混凝土分属于两个行业,生产水泥的技术人员不了解混凝土技术及进展,更不懂得如何使水泥的性能与配制混凝土技术相适应,往往将高标号、高比表面积的水泥认为是优质水泥的唯一标准,结果出现了水泥与外加剂相容性差,配制大体积混凝土时温度应力大、收缩大及耐久性差等问题。 本文认为:水泥性能的优劣必须从水泥在混凝土中的使用性能及效果来衡量。水泥的高性能化应包括以下三方面的含义:(1)是用现代先进技术生产的可大幅度提高各项物理性能的水泥。(2)可满足混凝土性能的不同要求,显著改善混凝土的工作性能、力学性能、耐久性能,更有利于实现混凝土的高性能化。(3)在配制混凝土时,能够用最少的水泥用量来达到高性能混凝土目标。

水泥水化热研究与分析

水泥水化热研究与分析 摘要: 在水泥较长的散热过程中,水泥浆会逐渐凝结和硬化。水泥内部物质处于高能状态,随着时间推移,水泥浆体性质将会趋向于稳定。针对于水泥水化热的研究,不仅可以保证结构物的施工质量,还能适当降低工程成本造价,本文首先介绍了影响水泥水化热大小的影响因素以及计算法方法,然后根据笔者经验讲述了几种降低水泥水化热的措施。 关键词:水泥水化热、措施、配合比、增加、热量 引言 随着国家经济的快速发展,越来越多的工程建筑拔地而起,市场对于水泥需求量也是越来越大。水泥在水化过程中产生的热量将会聚集在结构物内部不易散失出去,将会导致混凝土温度提高,随着混凝土龄期增加,绝热升温将会在2至4天内达到最高状态,在未受地基约束的部位,如果混凝土的内外温差过大,内部温度较高的混凝土约束外强度远大于其抗拉强度,将在混凝土的表层产生拉应力,若此时混凝土的抗拉强度不足以抵抗这种拉应力时就会产生表层温度裂缝。若养护不当,表面裂缝将会进一步发展成深层裂缝。在受地基约束的部位,将会产生较小的压应力。因混凝土的散热系数较小,它从最高温度降至稳定温度需要较长时间,在此期间,混凝土的变形模量有了很大的增长,较小的变形就能产生较大的应力。由于混凝土的早期体积变形,主要来自于水泥的水化热温升,并且降低水化热是防止混凝土早期开裂的有效途径,因此,我们有必要对水泥混凝土的水化热进行研究,以尽量避免温度裂缝的出现。 一、水化热的计算与分析 1、水泥水化热分析 水泥在水化时会发生温度变化,这主要源于几种无水化合物组分的溶解热和几种水化物在溶液中的沉淀热。这些热值的代数和就是水泥在任何龄期下的水化热。国家标准GB T 12959-2008规定了水泥水化热的测定方法,但是水泥水化热的测定较复杂,一般水泥厂都不会配备有这方面的仪器,有些水泥厂曾经添置过水泥水化热的测试仪器,但也没能很好地使用,关键是水化热测试对仪器和操作技术的要求较高,一般的工人难以熟练掌握该技术。水泥水化热大小与水泥内部矿物质成分有一定的关系,在同等量的水泥情况下,具有C3A的水泥水化热最大,其次是C3S,最后是C4AF。水化热越大,水泥浆体单位时间内放出热量也将会越多。工程实践中一般是通过增加三氧化二铁与氧化铁含量之比作为降低C3A的指标,为了达到更好的效果,可以在上述基础上,对C3S含量进一步降低。 2、我国水泥水化热情况分析 我国在很多水泥里面都会添加不同数量的材料,如何对水泥水化热过程中释

什么叫水泥的水化热

什么叫水泥的水化热?影响水化热的主要因素有哪些? 水泥与水作用放出的热,称为水化热,以焦/克(J/g)表示。 影响水泥水化热的因素很多,包括水泥熟料矿物组成、水灰比、养护温度、水泥细度、混合材掺量与质量等,但主要是决定于熟料矿物的组成与含量。水泥主要矿物中,完全水化放出的热量,最大的是C3A,其次是C3S,再次之是C4AF。因此,降低C3A含量对限制水泥的水化热是有利的。 水泥生产中"两磨一烧"是指什么? 因为水泥生产过程分为三个阶段,即石灰质原料、粘土质原料、以及少量的校正原料,(立窑生产还要加入一定量的煤)经破碎或烘干后,按一定比例配合、磨细,并制备为成分合适、质量均匀的生料,称之为第一阶段:生料粉磨;然后将生料加入水泥窑中煅烧至部分熔融,得到以硅酸钙为主要成分的水泥熟料,称之为第二阶段:熟料煅烧;熟料加入适量的石膏,有时还加入一些混合材料,共同磨细为水泥,成为第三阶段:水泥粉磨。所以大家把水泥生产过程简称为:"两磨一烧"。 什么是水泥混合材?加入混合材的作用是什么? 在水泥生产过程中,为改善水泥性能、调节水泥标号而加到水泥中的矿物质材料,称之为水泥混合材料。在水泥中掺加混合材料不仅可以调节水泥标号与品种,增加水泥产量,降低生产成本,而且在一定程度上改善水泥的某些性能,满足建筑工程中对水泥的特殊技术要求。此外,还可以综合利用大量工业废渣,具有环保和节能的重要意义。 水化热 指物质与水化合时所放出的热。此热效应往往不单纯由水化作用发生,所以有时也用其他名称。例如氧化钙水化的热效应一般称为消解热。水泥的水化热称为硬化热比较确切,因其中包括水化、水解和结晶等一系列作用。水化热可在量热器中直接测量,也可通过熔解热间接计算。 水化热高的水泥不得用在大体积混凝土工程中,否则会使混凝土的内部温度大大超过外部,从而引起较大的温度应力,使混凝土表面产生裂缝,严重影响混凝土的强度及其他性能。 水化热对冬季施工的混凝土工程较为有利,能提高其早期强度。 在使用水化热较高的水泥时,应采取措施来防止混凝土内部的水化热过高。 也称水合热、水和能...... 在大体积的混凝土工程当中,由于聚集在制品内部的水化热不容易散出,常使制品内部的水化热在50到60度,由于温度应力作用使水泥产生膨胀性的裂缝,为此可以采用工程措施减轻水化热 降低水泥水化热 混凝土配合比设计: 对配合比设计的主要要求是:既要保证设计强度,又要大幅度降低水化热,既要使混凝土具有良好的和易性、可靠性,又要降低混凝土中水泥和水的含量。经过与商品混凝土供应单位合作进行反复试验,通过几十组的混凝土试配,设计了较满意的配合比。 1)、充分利用混凝土的后期强度,减少每立方米混凝土中的水泥用量,选用京都P.0.425

相关文档
相关文档 最新文档