文档库 最新最全的文档下载
当前位置:文档库 › 合工大版材料成型原理课后习题参考答案(重要习题加整理)

合工大版材料成型原理课后习题参考答案(重要习题加整理)

第二章 凝固温度场P49

8. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。采用同样焊接规范去

焊同样厚度的不锈钢板或铝板会出现什么后果?为什么?

解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳

钢差,电弧热无法及时散开的缘故;

相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的

缘故。

9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产

生原因并提出相应工艺解决方案。

解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊

件熔透,因此会出现一定长度的未焊透。

(2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔

透后再恢复到正常焊接规范。生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。

第四章 单相及多相合金的结晶 P90

9.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为:

R G L <

N

L

D R

L

L L e K K D C m δ-+-0

011

当“液相只有有限扩散”时,δN =∞,

0C C L =,代入上式后得

R G L

<000)1(K K D C m L L -

( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K )

成分过冷的大小主要受下列因素的影响:

1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷

6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。 (注:其中的G L 和 R 为工艺因素,相对较易加以控制; m L , C 0 , D L , K 0 ,为材料因素,较难控制 ) 13.影响枝晶间距的主要因素是什么?枝晶间距与材料的机械性能有什么关系?

答: 影响枝晶间距的主要因素:

纯金属的枝晶间距主要决定于晶面处结晶潜热散失条件,而一般单相合金的枝晶间距则还受控于溶质元素在枝晶间的扩散行为。通常采用的有一次枝晶(柱状晶主干)间距d1、和二次分枝间距d2两种。前者是胞状晶和柱状树枝晶的重要参数,后者对柱状树枝晶和等轴枝晶均有重要意义。

一次枝晶间距与生长速度R、界面前液相温度梯度G L直接相关,在一定的合金成分及生长条件下,枝晶间距是一定的,R及G L增大均会使一次间距变小。

二次臂枝晶间距与冷却速度(温度梯度G L及生长速度R)以及微量变质元素(如稀土)的影响有关。

枝晶间距与材料的机械性能:

枝晶间距越小,组织就越细密,分布于其间的元素偏析范围就越小,故越容易通过热处理而均匀化。而且,这时的显微缩松和非金属夹杂物也更加细小分散,与成分偏析相关的各类缺陷(如铸件及焊缝的热裂)也会减轻,因而也就越有利于性能的提高。

第七章液态金属与气相的相互作用P132

7. 氮、氢、氧对金属的质量有何影响?

答:1.使材料脆化钢材中氮、氢或氧的含量增加时,其塑性和韧性都将下降,尤其是低温韧性下降更为严重。

2.形成气孔氮和氢均能使金属产生气孔。液态金属在高温时可以溶解大量的氮或氢,而在凝固时氮或氢的溶解度突然下降,这时过饱和的氮或氢以气泡的形式从液态金属中向外逸出。当液态金属的凝固速度大于气泡的逸出速度时,就会形成气孔。

3.产生冷裂纹冷裂纹是金属冷却到较低温度下产生的一种裂纹,其危害性很大。氢是促使产生冷裂纹的主要因素之一。

4.引起氧化和飞溅氧可使钢中有益的合金元素烧损,导致金属性能下降;焊接时若溶滴中含有较多的氧和碳,则反应生成的CO气体因受热膨胀会使熔滴爆炸,造成飞溅,影响焊接过程的稳定性。此外应当指出,焊接材料具有氧化性并不都是有害的,有时故意在焊接材料中加入一定量的氧化剂,以减少焊缝的氢含量,改善电弧的特性,获得必要的熔渣物化性能。

第九章液态金属的净化与精炼P154

1、何谓沉淀脱氧?试述生产中常用的几种沉淀脱氧反应。

答:(1)沉淀脱氧是指溶解于液态金属中的脱氧剂直接和熔池中的[FeO]起作用,使其转化为不溶于液态金属的氧化物,并析出转入熔渣的一种脱氧方式。

(2)生产中几种常用的沉淀脱氧反应:

a 锰的脱氧反应,[Mn]+[FeO]=[Fe]+(MnO)

b 硅的脱氧反应,[Si]+2[FeO]=2[Fe]+(SiO2)

c 硅锰联合脱氧反应。

4.综合分析熔渣的碱度对脱氧、脱磷、脱硫的影响。

脱氧在熔渣脱氧时,碱度高不利于脱氧,但在用硅沉淀脱氧时,碱度高可以提高硅的脱氧效果。

脱硫:熔渣的还原性和碱度渣中氧化钙的浓度高和氧化亚铁的浓度低都有利于反应的行因此,在还原期中脱硫是有利的。熔渣碱度高也有利于脱硫。

脱磷脱磷的有利条件是高碱度和强氧化性的、粘度小的熔渣,较大的渣量和较低的温度。

5、试述熔渣脱硫的原理及影响因素。

答:(1)熔渣脱硫的原理与扩散脱氧相似,。根据它是利用FeS在熔渣中和金属液中的分配定律,通过在熔渣中脱S,达到对金属的脱S作用。CaO、CaC2、MnO、MgO与熔渣中的FeS反应而进行脱硫,当熔渣中的FeS含量减少时,钢液中的FeS就向熔渣中扩散,这样就间接达到了脱去钢液中FeS的目的。

(2)影响因素

a、熔渣的还原性和碱度。在熔渣还原期中和熔渣的碱度高时都有利于脱硫。

b、粘度。粘度小有利于脱硫。

c、温度。脱硫反应是吸热反应,因此温度高有利于脱硫。

d、硫的活度。硫的活度大,容易从金属液中析出,有利于脱硫。

第十章焊接热影响区的组织与性能P168

1、何谓焊接热循环?焊接热循环的主要特征参数有那些?

答:焊接热循环:在焊接热源的作用下,焊件上某点的温度随时间的变化过程,即焊接过程中热源沿焊件移动时,焊件上某点温度由低而高,达到最高值后,又由高而低随时间的变化。

决定焊接热循环特征的主要参数有以下四个:

(1)加热速度ωH焊接热源的集中程度较高,引起焊接时的加热速度增加,较快的加热速度将使相变过程进行的程度不充分,从而影响接头的组织和力学性能。

(2)最高加热温度Tmax也称为峰值温度。距焊缝远近不同的点,加热的最高温度不同。焊接过程中的高温使焊缝附近的金属发生晶粒长大和重结晶,从而改变母材的组织与性能。

(3)相变温度以上的停留时间t H在相变温度T H以上停留时间越长,越有利于奥氏体的均匀化过程,增加奥氏体的稳定性,但同时易使晶粒长大,引起接头脆化现象,从而降低接头的质量。

(4)冷却速度ωC(或冷却时间t8 / 5) 冷却速度是决定焊接热影响区组织和性能的重要参数之一。对低合金钢来说,熔合线附近冷却到540℃左右的瞬时冷却速度是最重要的参数。也可采用某一温度范围内的冷却时间来表征冷却的快慢,如800~500℃的冷却时间t8 / 5,800~300℃的冷却时间t8/3,以及从峰值温度冷至100℃的冷却时间t100。

总之,焊接热循环具有加热速度快、峰值温度高、冷却速度大和相变温度以上停留时间不易控制的特点3.简要说明易淬火钢和不易淬火钢HAZ粗晶区的组织特点和对性能的影响?

答:(1)易淬火钢HAZ粗晶区:

在紧靠焊缝相当于低碳钢过热区的部位,由于晶粒严重粗化,故得到粗大的马氏体,强度硬度很高,塑性韧性较低;正火区得到细小的马氏体,强度硬度较高,但是比粗大马氏体要低,塑性韧性比粗大马氏体好。

(2)不易淬火钢HAZ粗晶区:

由于金属处于过热的状态,奥氏体晶粒发生严重的粗化,冷却之后便得到粗大的组织。并极易出现脆性的魏氏组织。故该区的塑性、韧性较差。焊接刚度较大的结构时,常在过热粗晶区产生脆化或裂纹。

9.如何提高热影响区的韧性?韧化的途经有那些?

答:(1)提高热影响区的韧性的措施

1)控制组织:对低合金钢,应控制含碳量,使合金元素的体系为低碳微量多种合金元素的强化体系,应尽量

控制晶界偏析。

2)韧化处理: 对于一些重要的结构,常采用焊后热处理来改善接头的性能。合理制定焊接工艺,正确地选择

焊接线能量和预热、后热温度是提高焊接韧性的有效措施。

(2)韧化的途径:除了上述措施外,还有如细晶粒钢(利用微量元素弥散强化、固熔强化、控制析出相的尺寸及形态等)采用控轧工艺,进一步细化铁素体的晶粒,也会提高材质的韧性;采用炉内精炼,炉外提纯等一系列措施,从而得到高纯净钢,使钢中的杂质(S、P、O、N等)含量极低,使钢材的韧性大为提高,也提高了焊接HAZ的韧性。

10.某厂制造大型压力容器,钢材为14MnMoVN钢,壁厚36mm,采用手弧焊:

1)计算碳当量及HAZ最大硬度Hmax(t8/5=4s);

2)根据Hmax来判断是否应预热;

3)如何把Hmax降至350HV以下;

解:(1)依据

B V

Mo Ni Cr Cu Mn Si C 51015602030P cm ++++++++

=

查得14MnMoVN 的成分wC=(0.10-0.18)%,wMn=(1.2-1.6)%,wMo=(0.41-0.65)%, wV=(0.05-0.15)%,代入上式得 Pcm=0.255

依据 H max (HV10)= 140 + 1089 P cm - 8.2 t 8∕5 t 8∕5=4s , Pcm=0.255得 H max=524.89 HV

(2)H max=524.89 HV 说明其淬硬倾向较大,冷裂倾向也随之较大,应该预热 (3)依据 H max (HV10)= 140 + 1089 P cm - 8.2 t 8∕5 H max <350,Pcm=0.255得 t 8∕5>8.26 s

由壁厚36mm 可知钢板为厚板 所以

冷却时间

5

8t 随着线能量E 和初始温度T 0的提高而延长,焊接方式和材料确定,则线能

量E 确定,主要是通过提高初始温度即预热温度来降低冷却速度,延长

5

8t 时间大于8.26s 。从而降低H max.

第十一章 凝固缺陷及控制 P211

14、何谓液化裂纹?出现在焊接接头的哪个区域?为什么?

答: 液化裂纹是母材近缝区或焊缝层间金属,在高温下发生晶间液膜分离而导致的开裂现象。出现在焊

接接头的焊接热影响区。

从液化裂纹的定义可以知道,液化裂纹常出现在焊接热影响区或多层焊的层间金属中。

这是由于热影响区或多层焊层间金属奥氏体晶界上的低熔点共晶,在焊接高温下发生重新熔化,使金属的

塑性和强度急剧下降,在拉伸应力作用下沿奥氏体晶界开裂而形成的。此外,在不平衡加热和冷却条件下,由于金属间化合物分解和元素的扩散,造成局部地区共晶量偏高而发生局部晶间液化,也会产生液化裂纹。

15. 试叙冷裂纹的种类及特征 答:(1)冷裂纹的分类

1)按形成的原因分为三种:延迟裂纹、淬硬脆化裂纹、低塑性脆化裂纹。 2)按加工工艺特点:铸造裂纹和焊接裂纹等。 (2)裂纹的基本特征

冷裂纹有时在焊后或加工后立即出现,有时则要经过一段时间才出现。多起源于具有缺口效应、易产生

应力集中的部位,或物理化学不均匀的部位。焊接裂纹经常出现在焊接热影响区。断口形态比较复杂,从宏观上看,冷裂纹断口具有发亮的金属光泽,呈脆性断裂特征:从微观上看,有的沿晶间断裂,有的为穿晶断裂,而更常见的是沿晶和穿晶共存的断裂缺口形态。有氢作用时会出现明显的氢致准理解断口,淬硬倾向大,沿晶断裂特征越趋明显。

16、分析氢在形成冷裂纹中的作用,简述氢致裂纹的特征和机理。 答:(1)氢的作用

焊缝凝固时,高温下溶入液态金属中的氢将来不及析出,呈过饱和态残留在接头中。由于氢原子的体积小,

因此可以在接头中自由扩散,称之为接头中的扩散氢。扩散氢易于在焊接热影响区、焊趾、焊根等部位偏聚,使金属脆化。尤其是当这些部位存在显微裂纹时,扩散氢易向裂纹尖端的三向拉伸应力区扩

()()⎥

⎤⎢⎣⎡---=

0058T 8001

T 50012E t πλ

散、聚集,当接头中的扩散氢达到氢的临界含量时,将导致冷裂纹的出现。

(2)氢致裂纹的形成机理及特征

形成机理:接头中的扩散氢不仅使金属脆化,当金属内部存在显微裂纹等缺陷时,在应力的作用下,裂纹前沿会形成应力集中的三向应力区,诱使接头中的扩散氢向高应力区扩散并聚集为分子态氢,体积膨胀使裂纹内压力增高,裂纹向前扩展,在裂纹尖端形成新的三向应力区,这一过程周而复始持续进行。当接头中的氢含量超过临界值时,显微裂纹将扩展成为宏观裂纹。

特征:氢致裂纹从潜伏、萌生、扩展直至开裂具有延迟特征;

存在氢致延迟裂纹的敏感温度区间(Ms以下200℃至室温范围);

常发生在刚性较大的低碳钢、低合金钢的焊接结构中。

第十二章金属塑性成形的物理基础P240

3.试分析多晶体塑性变形的特点。

答:①多晶体塑性变形体现了各晶粒变形的不同时性。

②多晶体金属的塑性变形还体现出晶粒间变形的相互协调性。

③多晶体变形的另一个特点还表现出变形的不均匀性。

④多晶体的晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。

4. 晶粒大小对金属塑性和变形抗力有何影响?

答:晶粒越细,单位体积内晶界越多,塑性变形的抗力大,金属的强度高。金属的塑性越好。

5. 合金的塑性变形有何特点?

答:合金组织有单相固溶体合金、两相或多相合金两大类,它们的塑性变形的特点不相同。

单相固溶体合金的塑性变形是滑移和孪生,变形时主要受固溶强化作用,

多相合金的塑性变形的特点:多相合金除基体相外,还有其它相存在,呈两相或多相合金,合金的塑性变形在很大程度上取决于第二相的数量、形状、大小和分布的形态。但从变形的机理来说,仍然是滑移和孪生。

根据第二相又分为聚合型和弥散型,第二相粒子的尺寸与基体相晶粒尺寸属于同一数量级时,称为聚合型两相合金,只有当第二相为较强相时,才能对合金起到强化作用,当发生塑性变形时,首先在较弱的相中发生。当第二相以细小弥散的微粒均匀分布于基体相时,称为弥散型两相合金,这种弥散型粒子能阻碍位错的运动,对金属产生显著的强化作用,粒子越细,弥散分布越均匀,强化的效果越好。

6. 冷塑性变形对金属组织和性能有何影响?

答:对组织结构的影响:晶粒内部出现滑移带和孪生带;

晶粒的形状发生变化:随变形程度的增加,等轴晶沿变形方向逐步伸长,当变形量很大时,晶粒组织成纤维状;

晶粒的位向发生改变:晶粒在变形的同时,也发生转动,从而使得各晶粒的取向逐渐趋于一致(择优取向),从而形成变形织构。

对金属性能的影响:塑性变形改变了金属内部的组织结构,因而改变了金属的力学性能。

随着变形程度的增加,金属的强度、硬度增加,而塑性和韧性相应下降。即产生了加工硬化。

7. 产生加工硬化的原因是什么?它对金属的塑性和塑性加工有何影响?

答:加工硬化:在常温状态下,金属的流动应力随变形程度的增加而上升。为了使变形继续下去,就需要增加变形外力或变形功。这种现象称为加工硬化。

加工硬化产生的原因主要是由于塑性变形引起位错密度增大,导致位错之间交互作用增强,大量形成缠结、不动位错等障碍,形成高密度的“位错林”,使其余位错运动阻力增大,于是塑性变形抗力提高。

13. 组织状态、变形温度应变速率对金属塑性有何影响?

答:组织状态状态对金属塑性的影响:当金属材料的化学成分一定时,组织状态的不同,对金属的塑性有很大影响。⑴晶格类型的影响,面心立方(滑移系12个)的金属塑性最好;体心立方晶格(滑移系12个)塑性次之,密排六方晶格的金属塑性更差。⑵晶粒度的影响,晶粒度越小,塑性越高,晶粒度均匀

的塑性好,晶粒大小相差悬殊的多晶体,各晶粒间的变形难易程度不同,造成变形和应力分布不均匀,所以塑性降低。⑶相组成的影响,当合金元素以单相固溶体形式存在时,金属的塑性较高;当合金元素以过剩相存在时,塑性较低。⑷铸造组成的影响,铸造组织具有粗大的柱状晶粒,具有偏析、夹杂、气泡、疏松等缺陷,因而塑性较差。

变形温度对金属塑性的影响:对大多少金属而言,总的趋势是随着温度升高,塑性增加。但是这种增加并不是线性的,在加热的某些温度区间,由于相态或晶界状态的变化而出现脆性区,使金属的塑性降低。(蓝脆区和热脆区)

应变速率对金属塑性的影响:应变速率可以理解成变形速度,提高应变速率,没有足够的时间进行回复或再结晶,对金属的软化过程不能充分体现,使金属塑性降低。但提高应变速率,在一定程度上使金属温度升高,温度效应增加,温度的升高可以促使变形过程中的位错重新调整,有利于金属塑性提高;提高应变速率可以降低摩擦因数,从而降低金属的的流动阻力,改善金属的充填性。而且,在非常高的应变速率下(如爆炸成形)对塑性较差的难成形金属的塑性加工是有利的。

14. 化学成分、组织状态、变形温度、变形程度对变形抗力有何影响?

答:化学成分:对于纯金属,纯度越高,变形抗力越小。对于合金,主要取决于合金元素的原子与基体原子间相互作用的特性、合金原子在基体原子中的分布等有关。合金元素引起基体点阵畸变程度越大,金属的变形抗力也越大。

组织状态:退火状态下,金属和合金的变形抗力会大大降低。组织结构的变化,例如发生相变时,变形抗力也发生变化。一般地说,硬而脆的第二相在基体相晶粒内呈颗粒状弥散分布时,合金的变形抗力就高;且第二相越细,分布越均匀,数量越多,变形抗力就越大。金属和合金的晶粒越细,同一体积内的晶界越多,在室温下由于晶界强度高于晶内,所以变形抗力就高。

变形温度:变形抗力一般都随温度的升高而降低。

变形程度: 变形程度的增加,只要回复和再结晶过程来不及进行,必然会产生加工硬化,使继续变形发生困难,因而变形抗力增加。但当变形程度较高时,随着变形程度的进一步增加,变形抗力的增加变得比较缓慢,因为这时晶格畸变能增加,促进了回复与再结晶过程的进行,以及变形热效应的作用加强。

15. 应力状态对金属的塑性和变形抗力有何影响?

答:塑性:金属在外力作用下发生永久变形而不破坏其完整性的能力。

应力状态不同对塑性的影响也不同:主应力图中压应力个数越多,数值越大,则金属的塑性越高;拉应力个数越多,数值越大,则金属的塑性就越低。这是由于拉应力促进晶间变形,加速晶界破坏,而压应力阻止或减小晶间变形;另外,三向压应力有利于抑制或消除晶体中由于塑性变形而引起的各种微观破坏,而拉应力则相反,它使各种破坏发展,扩大。

变形抗力:

变形抗力:金属在发生塑性变形时,产生抵抗变形的能力,称为变形抗力,一般用接触面上平均单位面积变形力表示

应力状态不同,变形抗力不同。如挤压时金属处于三向压应力状态,拉拔时金属处于一向受拉二向受压的应力状态。挤压时的变形抗力远比拉拔时变形抗力大. 第十三章 应力分析 P255

7. 已知受力物体内一点的应力张量为

⎪⎪⎪⎭⎫

⎛---=3075

8075050

805050

ij σ (MPa ),

试求外法线方向余弦为l=m=1/2,n=21

的斜切面上的全应力、正应力和切应力。

解:设全应力为S , s

x

y

s , s

z

分别为S 在三轴中的分量,

++=++=++=n m l S n m l S n m l S z yz xz z zy y xy y zx yx x x στττστττσ

则有:

⇒s x =5021⨯+ 5021⨯

+8021⨯=106.6

y

s =50

21⨯

+021⨯

-75

21

⨯=-28.0

s z =8021⨯-7521⨯

-30

21

⨯=-18.7

2

2

22z y x S S S S ++= 则得到 S =111.79 MPa n

S m S l S z y x ++=σ 则得到 σ=26.1 MPa

而222

στ

-=S 则得到 τ=108.7 MPa

8. 已知受力体内一点的应力张量分别为

⎪⎪⎪⎭

⎝⎛---=100

100100

10010

ij σ,

⎪⎪

⎪⎭⎫ ⎝⎛=10000001720172

0ij σ, ③

⎪⎪⎪⎭⎫ ⎝

⎛-----=40

0014

047ij σ (MPa)

1) 画出该点的应力单元体;

2) 求出该点的应力张量不变量、主应力及主方向、主切应力、最大切应力、等效应力、应力偏张量和应力球张量;

3) 画出该点的应力莫尔圆。 解:1)略 2)在①状态下: J 1=

x σ+y σ+z

σ=10 J 2=-(

x σy σ+

z y σσ+

x

z σσ)+

2xy τ+

2yz τ+

2

zx

τ=200

J 3=z y x σσσ+2zx yz xy τττ-(2yz x τσ+2zx y τσ+2

xy

z τσ)=0

10

14—和由

032213=---J J J σσσ

⇒1σ=20 , 2σ=0 , 3σ=-10

代入公式对于

1σ=20时:

对于

2σ=0时: 对于

3σ=-10时:

: 主切应力

最大切应力

等效应力:2

2132322213)()()(2

1J '=-+-+-=

σσσσσσσ =

700

应力偏张量:

⎥⎥⎥⎥⎥⎥

⎤⎢⎢⎢⎢⎢⎢⎣

⎡---='3200

100340

0100320

ij

σ5

2

3

223±=-±

=σστ10

22

112±=-±

=σστ15

2

1

331±=-±

=σστ15

2

1

331±=-±

=σστ,211=

l 0

1=m 211-

=n l

2

12=

l 0

2=m 2

12=

n 03=l 1

3=m 0

3=n

m σ=)(31321

σσσ++=310)10020(3

1=-+ 故

应力球张量:

9. 某受力物体内应力场为:3126x c xy x +-=σ, 22y c 23xy -=σ, y x c y c xy 2332--=τ,

===zx yz z ττσ,

试从满足平衡微分方程的条件中求系数 1

c 、

2

c 、

3

c 。

解:

⎥⎥

⎥⎥⎥

⎥⎦

⎤⎢⎢⎢⎢⎢⎢⎣

⎡3100

00310

0003103

20

=

'⇒x σ320

='z σ3

40

-

='y σ;36212x c y y

x

+-=∂∂σσxy

c y

y 23-=∂∂σ2

3223x c y c y

yx --=∂∂τy

c x

xy 32-=∂∂τ

由平衡微分条件:

第十四章 应变分析 P272

1. 陈述下列术语的物理含义:位移,位移分量,线应变,工程切应变,对数应变,主应变,主切应变,最大切应变,应变张量不变量,等效应变,应变增量,应变速率,位移速度。

答:位移:变形体内质点M (x ,y ,z )变形后移动到M1,我们把它们在变形前后的直线距离称为位移; 位移分量:在坐标系中,一点的位移矢量在三个坐标轴上的投影称为该点的位移分量; 线应变:表示线元的单位长度的变化;

工程切应变:单元体在某一平面内发生了角度的变化;

对数应变:对数应变真实反映变形的累积过程,表示在应变主轴不变的情况下应变增量的总和; 主应变:发生在主平面单位面积上的内力称为主应力; 主切应变:发生在主切平面上的应变;

最大切应变:主切应变中绝对值最大的一个称为最大切应变

应变张量不变量:对于一个确定的应变状态,主应变只有一组值,即主应变具有单值性。由此,应变张量

1

I 、

2

I 、

3

I 也应是单值的,所以将

1

I 、

2

I 、

3

I 称为应变张量不变量。

等效应变:一个不变量,在数值上等于单向均匀拉伸或压缩方向上的线应变1ε。等效应变又称广义应

变。

应变增量:塑性变形是一个大变形过程,在变形的整个过程中,质点在某一瞬时的应力状态一般对应于该瞬时的应变增量

应变速率:单位时间内的应变称为应变速率。 位移速度:质点在单位时间内的位移叫做位移速度。 7. 对数应变有何特点?它与相对线应变有何关系? 答:对数应变特点: 对数应变适用于大变形;

叠加性 设某物体的原长度为l0,历经变形过程l1、l2到 l3,则总的对数应变为各分量对数应变之和,即

0=∂∂=∂∂=∂∂=

∂∂=

∂∂z

x x z

y

z

xz zx zy yx σττττ⎩

⎧=--=--+-0320336232322212xy c xy c x c y c x c y ⎪⎩⎪

⎨⎧=-==⇒321

3

21c c c

ε

2

3

120123120103ln ln ln )ln(ln d 3

0l l l l l l l l l l l l l l l l l l ++=⋅⋅===⎰

= ε 1+ ε 2+ ε 3

对应的各阶段的相对应变为

00101l l l -=

ε; 11212l l

l -=ε; 22

323l l l -=ε

显然,

23120103εεεε++≠

这表明,对数应变具有可叠加性,而相对应变不具有可叠加性。

(3)可比性 对数应变为可比应变,相对应变为不可比应变。假设将试样拉长一倍,再压缩一半,则物体的变形程度相同。

拉长一倍时

ε

2ln 2ln

==+

l l

压缩一半时

ε

2ln 5.0ln

-==-

l l

负号表示应变方向相反。而用相对应变时,以上情况分别为

%10020

0=-=

+l l l ε %505.00

0-=-=

-l l l ε

因而,相对应变为不可比应变。

9. 设一物体在变形过程中某一极短时间内的位移为

310)1.02.020(-⨯++=z xy u 3

10)2.01.010(-⨯+-=yz x v

3

10)2.020(-⨯-=xyz w 试求:点A(1,1,-1)的应变分量、应变球张量、应变偏张量、主应

变、等效应变

解:由几何方程

z w y

v x u z y x ∂∂=∂∂=

∂∂=εεε ⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂==∂∂+∂∂==∂∂+∂∂==)(21)(21)(21z u x w y w z v x v y u xz

zx zy yz yx xy γγγγγγ来求得应变分量

根据公式)(31

z y x m εεεε++=和应变球张量表达式⎥⎥⎥⎦⎤

⎢⎢⎢⎣

⎡m m

m εεε0

00000

求球

再根据⎥⎥⎥

⎢⎢⎢⎣

⎡---m z zy zx

yz m y yx xz xy m

x εεγγγεεγγγεε来求应变偏张量

先求三个应变张量不变量1I 2I

3

I

代入特征方程

032213=I I I ---εεε可求。 1ε, 2ε, 3ε

然后根据

213232221)()()(32

εεεεεε-+-+-=

可求等效应变 第十五章 屈服准则 P287

4. 理想塑性材料两个常用的屈服准则的物理意义?中间主应力对屈服准则有何影响? 答:如已知三个主应力的大小顺序时,设为σ1>σ2>σ

3

时,则Tresca 屈服准则只需用线性式13s σσσ-=就可以判断屈服。但该准则未考虑中间主应力σ2

的影响,而Miss 屈服准则考虑了σ2对质

点屈服的影响。1

3s σσβσ-= 其中

2

2

βμ=

+为应力修正系数。所以Miss 屈服准则与Tresca

屈服准则在形式上仅相差一个应力修正系数。当 1 1

σ

μβ=±=时,两准则一致,这时的应力状态中有

两向主应力相等,当0 1.155

σ

μβ==时,两准则相差最大,此时为平面变形应力状态。

两个屈服准则的统一表达式为 132K σσ-=

对于Tresca 屈服准则,

s K 0.5σ= ;对于Mises 屈服准则,

s

K 0.50.577σ =()

5. 某理想塑性材料的屈服应力为100=s σMPa ,试分别用屈雷斯加及密塞斯准则判断下列应力状态处于什么状态(是否存在、弹性或塑性)。

①⎪⎪⎪⎭⎫ ⎝⎛1000000000100,②⎪⎪⎪⎭⎫ ⎝⎛5000050000

150,③⎪⎪⎪⎭⎫ ⎝⎛000010000120,④

⎪⎪

⎪⎭⎫ ⎝⎛-00005000050(MPa )

解:根据屈雷斯加准则

s

s

s σσσσσσσσσ=-=--133221=时就发生屈服,

根据密塞斯准则

()()()22132322212S σσσσσσσ=-+-+- 或

()()()[]

2

2132322213161S E E σνσσσσσσν

+=-+-+-+

1σ=100 2σ=0 3σ=100

100-0=100发生屈服,

(100-0)2

+(0-100)2

+(100-100)2

=20000=2s

σ2

发生屈服

1σ=150 2σ=50 3σ=50

150-50=100发生屈服

(150-50)2

+(50-50)2

+(150-50)2

=20000=22

s

σ发生屈服

1σ=120 2σ=10 3σ=0

120-0=120s

σ〉

(120-10)2

+(10-0)2

+(120-0)2

=26600s

σ2〉2

该力不存在 ④

1σ=50 2σ=-50 3σ=0

50-(-50)=100=

s σ发生屈服

(50+50)2

+(50-0)2

+(0+50)2

=15000〈22

s

σ处于弹性状态

6. 一薄壁管(参见图16-11),内径

φ80 mm ,壁厚4mm ,承受内压p ,

材料的屈服应力为200=s σMPa ,

现忽略管壁上的径向应力(即设

=ρσ)。试用两个屈服准则分别求出下列情况下管子屈服时的

p ;

(1)

管子两端自由; (2) 管子两端封闭; (3)管子两端加100KN 的压力。

解:(1)当两端自由 由于

ρ

σ可以忽略为0 两端自由

0=Z σ

θσ=

t

r p 22=

t pr

〉0

显然

1σ=s σ=

t

pr ,

2σ=z σ=0, 3σ=ρσ=0

Mises 准则:

1σ⇒=s σ 即

t

pr =

s σ=200 MPa 代入可得

P=20 MPa Tresca 准则

1σ-3σ=s σ p=20 MPa

(2)当管子两端封闭时:

z σ=

t

pr 2,

θσ=

t

pr

1σ=θσ=

t

pr ,

2σ=z σ=

t pr

2 ,3σ=ρσ=0 Mises 准则:t

pr

23=s σ⇒P=

3

2

r

t s

σ⨯ 代入可得

P=23.09 MPa

Tresca 准则:

t

pr

-0=s σ⇒p=

r

t r

σ 代入数据可得 p=20.0 MPa

(3)当管子两端加100KN 的 压力时:

z σ=0

210152〈⨯-rt r p ππ

θσ=

t

pr

0〉 ∴ 1σ=θσ=

t pr

0〉

2σ=ρσ=0; z σσ=3=

rt

r p ππ21015

2⨯-

由密塞斯屈服准则:

()()()22132322212s σσσσσσσ=-+-+-

⇒(

0-t pr

)2

+(

rt r p ππ210152⨯-)2

+(

rt

r p ππ21015

2⨯--

t

pr )2

=2

2

s

σ

代入数据得: p 13≈ MPa

由屈雷斯加屈服准则:

z σσθ-=s

σ s

rt r p t pr σππ=⨯--⇒210152

t pr

2⇒

=200-100=100 MPa

10=⇒p MPa

故p=10 MPa

7. 图16-12所示的是一薄壁管承受拉扭的复合载荷作用而屈服,管壁受均匀的拉应力σ和切应力τ,

试写出下列情况的屈雷斯加和密塞斯屈服准则表达式。

(提示:利用应力莫尔圆求出主应力,再代入两准则) (答案 屈雷斯加准则:1

42

2=⎪

⎪⎭⎫

⎝⎛+⎪⎪⎭⎫ ⎝⎛s s

στσ

σ;密塞斯准则:132

2=⎪⎪⎭⎫

⎝⎛+⎪⎪⎭⎫ ⎝⎛s s

στσσ)

解:由图知:

x σ=σ y σ=0 χγ

τ=τ

由应力莫尔圆知:

2

231)2

(2xy y x y x τσσσσσσ+-±+=

∴1σ=2

2

42

τσσ++

2σ=0

3σ=2

2

4

2

τσσ

+-

Tresca 准则

1σ-3σ=s σ

2

2

4

2

τσσ+=∴s

⇒(s σσ)2+4(s

στ)2

=1

密塞斯准则 ()()()2

2132322212S σσσσσσσ=-+-+-

⇒22σ+62τ=22

s

σ

∴(s σσ

)2+3(s

στ)2

=1

第十六章 材料本构关系 P299

1. 解释下列概念:

简单加载;增量理论;全量理论

答:简单加载:是指在加载过程中各应力分量按同一比例增加,应力主轴方向固定不变。

增量理论:又称流动理论,是描述材料处于塑性状态时,应力与应变增量或应变速率之间关系的理论,它是针对加载过程的每一瞬间的应力状态所确定的该瞬间的应变增量,这样就撇开加载历史的影响。

全量理论:在小变形的简单加载过程中,应力主轴保持不变,由于各瞬间应变增量主轴和应力主轴重合,所以应变主轴也将保持不变。在这种情况下,对应变增量积分便得到全量应变。在这种情况下建立塑性变形的全量应变与应力之间的关系称为全量理论,亦称为形变理论。

图16-12

受拉扭复合的薄

3.已知塑性状态下某质点的应力张量为50

050150050350ij σ-⎡⎤⎢⎥=-⎢⎥

⎢⎥-⎣⎦(MPa ),应变增量0.1x d εδ

=(δ为一无限小)。试求应变增量的其余分量。

解:由

()[]

z y

x

x d d σσ

σσ

ε

ε+-=

()⎥⎦⎤

⎢⎣⎡----=

35015021501.0σεδd ,由此可解得,

δσ

ε

200

1

.0=

d ,所以其余分量为

023===xy yx xy d d d τσ

ε

γγ

()()δδσσσσεε025.035050211502001.021=⎥⎦

⎢⎣⎡----=⎥⎦⎤⎢⎣⎡+-=

z x y y d d

023===yz zy yz d d d τσε

γγ

()()δδσσσσεε075.015050213502001.021-=⎥⎦⎤⎢⎣⎡----=⎥⎦⎤⎢⎣⎡+-=

y x z z d d

δδτσεγγ800352001.02323=⨯⨯==

=zx xz zx d d d

5.有一薄壁管, 材料的屈服应力

s σ,承受拉力和扭矩的联合作用而屈服。现已知轴向正应力分量

2

s

z σσ=

,试求切应力分量

z θτ以及应变增量各分量之间的比值。

(答案

2

s

z θστ=

:::(1):(1):2:3

z z d d d d ρθθεεεε=--)

第十七章 金属塑性变形与流动问题 P311

3. 影响塑性变形和流动的因素有哪些?举例分析?

答:影响塑性变形和流动的因素有摩擦力,工具形状,金属各部分之间的关系,金属本身性质不均匀。因为摩擦力的影响,矩形断面的棱柱体在平板间镦粗时,各个方向的阻力不同,断面不再保持矩形,遵循最小周边原则,最后趋于圆形,。在圆弧形砧上或V 型砧中拔长圆截面坯料时,由于工具的侧面压力使金属沿横向流动受到阻碍,金属大量沿轴向流动。在凸弧形砧上,正好相反,加大横向流动。

4. 残余应力有哪几类?它会产生什么后果?如何产生、消除?

答:残余应力:引起附加应力的外因去处后,在物体内仍残存的应力叫残余应力,残余应力是弹性应力,不超过材料的屈服应力,也是相互平衡成对出现的。

残余应力分为三类:第一类残余应力存在与变形体各区域之间;第二类残余应力存在于各晶粒之间;第三类残余应力存在于晶粒内部。

残余应力引起的后果:

⑴具有残余应力的物体再承受塑性变形时,其应力分布及内部应力分布更不均匀。

⑵缩短制品的使用寿命,当外载作用下的工作应力与残余应力叠加超过材料的强度时,会使零件破坏,设备出现故障。

⑶使在制品的尺寸和形状发生变化。当残余应力的平衡受到破坏时,相应部分的弹性变形也发生变化,从而引起尺寸和形状的变化。

⑷增加塑性变形抗力,降低塑性、冲击韧性及抗疲劳强度。

⑸降低制品表面耐蚀性,具有残余应力的金属在酸液中或其他溶液中的溶解速度加快。

残余应力一般是有害的,特别是表面层中具有残余拉应力的情况。但当表面层具有残余压应力时,可以显著提高材料的强度和疲劳强度,反而可提高其使用性能。

残余应力的消除方法:热处理法,机械处理方法 5. 塑性成形中的摩擦有何特点?举例分析其利弊?

答:塑性成形中的摩擦有如下的特点:①接触面单位压力高②伴随着塑性变形③在高温下进行 利:模锻中利用飞边槽桥部的摩擦力来保证模膛充满,滚锻和轧制时依靠足够的摩擦使坯料被咬入轧辊。弊:改变应力状态,增大变形抗力,引起不均匀变形,产生附加应力和残余应力,降低模具寿命。 第十八章 塑性成形力学的工程应用 P337

1.主应力法的基本原理和求解要点是什么?

答:主应力法(又成初等解析法)从塑性变形体的应力边界条件出发,建立简化的平衡方程和屈服条件,并联立求解,得出边界上的正应力和变形的力能参数,但不考虑变形体内的应变状态。其基本要点如下:

⑴把变形体的应力和应变状态简化成平面问题(包括平面应变状态和平面应力状态)或轴对称问题,以便利用比较简单的塑性条件,即

13s σσβσ-=。对于形状复杂的变形体,可以把它划分为若干形状简

单的变形单元,并近似地认为这些单元的应力应变状态属于平面问题或轴对称问题。

⑵根据金属流动的方向,沿变形体整个(或部分)截面(一般为纵截面)切取包含接触面在内的基元体,且设作用于该基元体上的正应力都是均布的主应力,这样,在研究基元体的力的平衡条件时,获得简化的常微分方程以代替精确的偏微分方程。接触面上的摩擦力可用库仑摩擦条件或常摩擦条件等表示。

⑶在对基元体列塑性条件时,假定接触面上的正应力为主应力,即忽略摩擦力对塑性条件的影响,从而使塑性条件大大简化。即有

x y Y x y σσβσσ-=(当>)

⑷将经过简化的平衡微分方程和塑性条件联立求解,并利用边界条件确定积分常数,求得接触面上的应力分布,进而求得变形力。

由于经过简化的平衡方程和屈服方程实质上都是以主应力表示的,故而得名“主应力法”。

2.一20钢圆柱毛坯,原始尺寸为mm 50mm 50⨯φ,在室温下镦粗至高度h=25mm ,设接触表面摩擦切

应力Y 2.0=τ。已知MPa 74620

.0ε=Y ,试求所需的变形力P 和单位流动压力p 。

解:根据主应力法应用中轴对称镦粗得变形力算得的公式

)61(h d

m Y p +

=

而本题Y 2.0=τ与例题

2,Y

k mk =

=τ相比较得:m=0.4,因为该圆柱被压缩至h=25mm

根据体积不变定理,可得

2

25=e r , d=50

2 ,h=25

又因为Y =746

)152

21(2.0+

ε

3.在平砧上镦粗长矩形截面的钢坯,其宽度为a 、高度为h ,长度l a ,若接触面上的摩擦条件符合库仑摩擦定律,试用主应力法推导单位流动压力p 的表达式。

解:本题与例1平面应变镦粗的变形力相似,但又有 其不同点,不同之处在于

y

u στ=这个摩擦条件,故在

dx

h

u d y y σσ2-

=中是一个一阶微分方程,

y

σ算得的结果不一样,

后面的答案也不 一样,

4.一圆柱体,侧面作用有均布压应力0σ,试用主应力法求镦粗力

P 和单位流动压力p(见图19-36)。

解:该题与轴对称镦粗变形力例题相似,但边界条件不一样,当e

r r = ,

0σσ=re

而不是

0=re σ,故在例题中,求常数c 不一样:

022στ

++=

k x h c e

2)(2στ

σ++--=∴k x x h e y ⎰⎥

⎦⎤

⎢⎣⎡++--=⇒e

x e k h x x l F 002)(22στ

⎭⎫

⎝⎛++=⇒022στk h x lx F e e 0

22στ++==

⇒k h x lx F

p e e

5.什么是滑移线?什么是滑移线场?

答:滑移线:金属由晶体组成,其塑性变形主要是通过内部原子滑移的方式而实现,滑移痕迹可以在变形后的金属表面上观察到,我们将塑性变形金属表面所呈现的由滑移而形成的条纹称为滑移线。

滑移线场:经研究证明,滑移线就是塑性变形体内最大切应力的轨迹线,因为最大切应力成对出现,相互正交,因此,滑移线在变形体内呈两族相互正交的网络,即所谓的滑移线场。

6.什么是滑移线的方向角?其正、负号如何确定?

答:α线的切线方向与ox 轴的夹角以ω表示(见图19-8),并规定ox 轴的正向为ω角的量度起始线,逆时针旋转形成的ω角为正,顺时针旋转形成的ω角为负。

19-36

12.已知某物体在高温下产生平面塑性变形,且为理想刚塑性体,其滑移线场如图19-37所示α族是直线族,

β族为一族同心圆,C 点的平均应力为MPa 90-=mc σ,最大切应力为K=60MPa 。试确定C 、B 、D

三点的应力状态。并画出D 点的应力莫尔圆。

解:在

901-=mc σα线上:MPa

4

π

-

=c w

因为B,C 同在

1α线上,由

()()⎩⎨

⎧=-=-4122βξσβξσb mb c mc kw kw 90-==⇒mc mb σσ MPa

线上:4β

()()⎩⎨

⎧=+=+2122αησαησd md b mb kw kw

()π

σσ32k

w w k b d md mb =-=-∴

MPa k mb md 83.1543-=⎪⎭⎫

⎝⎛-

+=πσσ

MPa me 83.154-=σ

13.试用滑移线法求光滑平冲头压入两边为斜面的半无限高坯料时的极限载荷P(图19-38)。设冲头宽度为2b ,长为l ,且l 2b 。

解:本题与平冲头压入半无限体例题相似,我 认为我 做的滑移线原来滑移线一样,交点也在原来那儿

只不过 F 点

=y σ,

γ

π

+=

4

F w

不一样而已,点E 有y

x σσ,的作用,均匀压应力,且

p

y -=σ

其 绝对值大于

,x σ K P mE +-=σ

,

4

γπ

+=

F W

-

=E W

4

22π

σσK

KW mE F mF -=-

4242πγπk

k p K K ++-=⎪⎭

⎝⎛+--

()r k p 22++=⇒π

()γπ2222++=⨯==⇒blk bl P PS F

16.图19-41表示用平底模正挤压板料,挤压前坯料厚度为H ,挤出后板料厚度为h ,挤压比2=h H 。

板料宽度为B ,且B H ,即可视为平面应变。设挤压筒(凹模)内壁光滑,即0=μ,其滑移线场如图19-41所示。试用滑移线法求单位挤压力,并画出速端图。

解:由于对称性故在轴线ox 上的剪应力为零且有

,0〈=y x σσ 因此点0处可得

01==x σσ

k

y 23-==σσ故

k mo -=σ由此确定α

线,

β

线如图

所示,显然

π

43

=o w

=

b w

⇒沿α线有()ππσσ+-=-=1k k mc mb

由于∆是均匀应力区故mB mA σσ=

在A 点 处由

β

线逆时针可得

()πσσ+-=-=2K K mA nA

()⎪⎭⎫

⎛+==

212πσk h

h P nA

19-41

图19-39 图

19-40

(完整版)表面粗糙度习题参考答案

习题 5-1填空题 (1)表面粗糙度是指零件表面出现的许多间距较小的、凹凸不平的微小的峰和谷。表面粗糙度越小,表面越光洁。 (2)评定长度是指用于判别被评定轮廓表面粗糙度所必需的一段长度,它可以包含一个或几个取样长度。 (3)国家标准中规定表面粗糙度的主要评定参数有高度参数和间距参数两项。 (4)表面粗糙度的选用,应在满足表面功能要求的情况下,尽量选用大的表面粗糙度数值。 (5)同一零件表面,工作表面的粗糙度参数值小于非工作表面的粗糙度参数值。 (6)当零件所有表面具有相同的表面粗糙度时,其代号、符号可在图样右上角统一标注。 5-2 是非题 (1)表面粗糙度是微观的形状误差,所以对零件使用性能影响不大。(×)(2)表面粗糙度的取样长度一般即为评定长度。(×)(3)Ra能充分反映表面微观几何形状的高度特征,是普遍采用的评定参数。(√)(4)零件的尺寸精度越高,通常表面粗糙度参数值相应取得越小。(√)(5)表面粗糙度值越大,越有利于零件耐磨性和抗腐蚀性的提高。(×)(6)表面粗糙度不划分精度等级,直接用参数代号及数值表示。(√)(7)表面粗糙度数值越小越好。(×)5-3 选择题 (1)表面粗糙度是B误差。 A.宏观几何形状 B.微观几何形状 C.宏观相互位置 D.微观相互位置 (2)选择表面粗糙度评定参数值时,下列论述不正确的有A A. 同一零件上工作表面应比非工作表面参数值大 B. 摩擦表面应比非摩擦表面的参数值小 C. 配合质量要求高,表面粗糙度参数值应小 D. 受交变载荷的表面,表面粗糙度参数值应小 (3)评定表面粗糙度的取样长度至少包含 B 个峰和谷。

A. 3 B. 5 C. 7 D. 9 (4)表面粗糙度代号在图样标注时尖端应A。 A.从材料外指向标注表面 B.从材料内指向标注表面 C.以上二者均可 (5)通常车削加工可使零件表面粗糙度Ra达到 A μm。 A 0.8~6. 3 B 0.4~6.3 C 0.4~12.5 D.0.2~1.6 (6)车间生产中评定表面粗糙度最常用的方法是 D 。 A.光切法 B.针描法 C.干涉法 D.比较法 5-4 简答题 (1)表面粗糙度的含义是什么?它与形状误差有何区别? 答:在金属切削加工过程中,由于刀具和被加工表面间的摩擦、切削过程中切屑分离时表层金属材料的塑性变形、工艺系统的高频振动等原因,零件表面会出现许多间距较小的、凹凸不平的微小的峰和谷。这种零件表面上的微观几何形状误差称为表面粗糙度。 表面粗糙度属微观几何形状误差,而形状误差是宏观的形状误差。 (2)表面粗糙度对零件的功能有何影响? 答:1.对摩擦和摩损的影响 2.对机械零件接触刚度的影响 3.对配合性质的影响 4.对结合密封性影响 5.对抗腐蚀性影响 6.对疲劳强度影响 (3)为什么要规定取样长度和评定长度?两者之间的关系如何? 在实际轮廓线上测量表面粗糙度时,由于属于表面粗糙度特征的峰谷不可能相同,有的相差较大,如果只在一个峰谷范用测量,其结果不准确,如果沿基准线上测量,范围长度超过一定数值,又会受到波纹度影响。为了能在测量范围内保持表面粗糙度特征,限制和减弱表面波度对表面粗糙度测量结果的影响,因此要规定取样长度。 由于零件各部分的表面粗糙度不一定均匀,单一取样长度上的测量和评定不足以反映整个零件表面的全貌。因此,需要在表面上取几个取样长度,测量后取其平均值作为测量结果。一般情况下ln =51r。若被测表面均匀性较好,可选用小于51r的评定长度;反之,可选用大于51r的评定长度。

合工大版材料成型原理课后习题参考答案(重要习题加整理)

第二章 凝固温度场P49 8. 对于低碳钢薄板,采用钨极氩弧焊较容易实现单面焊双面成形(背面均匀焊透)。采用同样焊接规范去 焊同样厚度的不锈钢板或铝板会出现什么后果?为什么? 解:采用同样焊接规范去焊同样厚度的不锈钢板可能会出现烧穿,这是因为不锈钢材料的导热性能比低碳 钢差,电弧热无法及时散开的缘故; 相反,采用同样焊接规范去焊同样厚度的铝板可能会出现焊不透,这是因为铝材的导热能力优于低碳钢的 缘故。 9. 对于板状对接单面焊焊缝,当焊接规范一定时,经常在起弧部位附近存在一定长度的未焊透,分析其产 生原因并提出相应工艺解决方案。 解:(1)产生原因:在焊接起始端,准稳态的温度场尚未形成,周围焊件的温度较低,电弧热不足以将焊 件熔透,因此会出现一定长度的未焊透。 (2)解决办法:焊接起始段时焊接速度慢一些,对焊件进行充分预热,或焊接电流加大一些,待焊件熔 透后再恢复到正常焊接规范。生产中还常在焊件起始端固定一个引弧板,在引弧板上引燃电弧并进行过渡段焊接,之后再转移到焊件上正常焊接。 第四章 单相及多相合金的结晶 P90 9.何为成分过冷判据?成分过冷的大小受哪些因素的影响? 答: “成分过冷”判据为: R G L < N L D R L L L e K K D C m δ-+-0 011 当“液相只有有限扩散”时,δN =∞, 0C C L =,代入上式后得 R G L <000)1(K K D C m L L - ( 其中: G L — 液相中温度梯度 R — 晶体生长速度 m L — 液相线斜率 C 0 — 原始成分浓度 D L — 液相中溶质扩散系数 K 0 — 平衡分配系数K ) 成分过冷的大小主要受下列因素的影响: 1)液相中温度梯度G L , G L 越小,越有利于成分过冷 2)晶体生长速度R , R 越大,越有利于成分过冷 3)液相线斜率m L ,m L 越大,越有利于成分过冷 4)原始成分浓度C 0, C 0越高,越有利于成分过冷 5)液相中溶质扩散系数D L, D L 越底,越有利于成分过冷 6)平衡分配系数K 0 ,K 0<1时,K 0 越 小,越有利于成分过冷;K 0>1时,K 0越大,越有利于成分过冷。 (注:其中的G L 和 R 为工艺因素,相对较易加以控制; m L , C 0 , D L , K 0 ,为材料因素,较难控制 ) 13.影响枝晶间距的主要因素是什么?枝晶间距与材料的机械性能有什么关系?

高分子材料成型加工唐颂超第三版第2-10章课后习题答案(仅供参考)

高分子材料成型加工Chapter2-10 课后习题答案(仅供参考)Chapter2 高分子材料学 1.分别区分“通用塑料”和“工程塑料”、“热塑性塑料”和“热固性塑料”,并请各举2、3 例。 答:通用塑料:一般指产量大、用途广、成型性好、价廉的塑料。通用塑料有PE、PP、PVC 、PS 等 工程塑料是指拉伸强度大于50MPa 冲击强度大于6kJ/m2 ,长期耐热温度超过100℃,刚性好、蠕变小、自润滑、电绝缘、耐腐蚀等可代替金属用作结构件的塑料。工程塑料有PA、PET、PBT、POM 等。 热塑性塑料:加热时变软以至流动,冷却变硬。这种过程是可逆的、可以反复进行。如聚乙 烯、聚丙烯、聚氯乙烯、聚苯乙烯、聚甲醛、聚砜、聚苯醚好和氯化聚醚等都是热塑性塑料。 热固性塑料:第一次加热时可以软化流动,加热到一定温度,产生化学反应一交链固化而变硬,这种变化是不可逆的。此后,再次加热时,已不能再变软流动了。正是借助这种特性进 行成型加工,利用第一次加热时的塑化流动在压力下充满型腔,进而固化成为确定形状和尺 寸的制品。这种材料称为热固性塑料。酚醛、脲醛、三聚氰胺甲醛、不饱和聚酯、有机硅等 塑料都是热固性塑料。 2. 什么是聚合物的结晶和取向?它们有何不同?研究结晶和取向对高分子材料加工有何实 际意义? 聚合物的结晶:高聚物发生的分子链在三维空间形成局部区域的、高度有序的排列的过程。 聚合物的取向:高聚物的分子链沿某特定方向作优势的平行排列的过程。包括分子链、链段和结晶高聚物的晶片、晶带沿特定方向择优排列。 不同之处:(1)高分子的结晶属于高分子的一个物理特性,不是所有的高聚物都会结晶,而 所有的高聚物都可以在合适的条件下发生取向。(2)结晶是某些局部区域内分子链在三维空 间的规整排列,而取向一般是在一定程度上的一维或二维有序,是在外力作用下整个分子链 沿特定方向发生较为规整排列。(3)结晶是在分子链内部和分子链之间的相互作用下发生的, 外部作用也可以对结晶产生一定的影响;取向一般是在外力作用和环境中发生的,没有外力的作用,取向一般不会内部产生。(4)结晶主要发生在Tg~Tm 范围内,而取向可以发生在 Tg 或Tm 以上的任何温度(热拉伸或流动取向),也可以在室温下进行冷拉伸获得。(5)结晶单元为高分子链和链段,而取向单元还可以是微晶(晶粒)。 结晶是结晶性高聚物加工成型过程中必然经历的过程,结晶直接影响到聚合物的成型加 工和制品的性能。结晶温度越低,聚合物加工熔点越低且熔限越宽,结晶温度越高,熔点较 高且熔限越窄。化学结构相似而结晶度较大的聚合物成型加工温度较高。结晶过程中结晶速 度的快慢直接决定了制品的成型加工周期,结晶越快,冷却时间越短,而结晶越慢,加工成 型周期变长。聚合物结晶颗粒的尺寸对制品的透明性、表观形态和机械性能也有非常大的影 响。因此结晶在聚合物的成型加工过程中占有举足轻重的低位。 取向是聚合物在加工过程中或者加工后处理阶段形成的,结晶聚合物和非晶聚合物均可 以产生取向。非晶态高聚物的取向,包括链段的取向和大分子链的取向,而结晶态高分子的 取向包括晶区的取向和非晶区的取向,晶区的取向发展很快,非晶区取向较慢。取向能提高拉伸制品的力学强度,还可使分子链有序性提高,这有利于结晶度的提高,从而提高其耐热性。在纤维和薄膜的生产中取向状况的控制显得特别重要。但对其他成型制品,如果流动过程中取向得以保存,则制品的力学强度会降低并易变型,严重时会造成内力不均而易开裂。 3. 请说出晶态与非晶态聚合物的熔融加工温度范围,并讨论两者作为材料的耐热性的好坏。

传热学第五版课后习题答案(1)11页

传热学习题_建工版V 0-14 一大平板,高3m ,宽2m ,厚0.2m ,导热系数为45W/(m.K), 两侧表面温度分别为w1t 150C =?及w1t 285C =? ,试求热流密度计热流量。 解:根据付立叶定律热流密度为: 负号表示传热方向与x 轴的方向相反。 通过整个导热面的热流量为: 0-15 空气在一根内经50mm ,长2.5米的管子内流动并被加热,已知空气的平均温度为85℃,管壁对空气的h=73(W/m 2.k),热流密度q=5110w/ m 2, 是确定管壁温度及热流量?。 解:热流量 又根据牛顿冷却公式 管内壁温度为: 1-1.按20℃时,铜、碳钢(1.5%C )、铝和黄铜导热系数的大小,排列它们的顺序;隔热保温材料导热系数的数值最大为多少?列举膨胀珍珠岩散料、矿渣棉和软泡沫塑料导热系数的数值。 解: (1)由附录7可知,在温度为20℃的情况下, λ铜=398 W/(m ·K),λ碳钢=36W/(m ·K), λ铝=237W/(m ·K),λ黄铜=109W/(m ·K). 所以,按导热系数大小排列为: λ铜>λ铝>λ黄铜>λ钢 (2) 隔热保温材料定义为导热系数最大不超过0.12 W/(m ·K). (3) 由附录8得知,当材料的平均温度为20℃时的导热系数为: 膨胀珍珠岩散料:λ=0.0424+0.000137t W/(m ·K) =0.0424+0.000137×20=0.04514 W/(m ·K); 矿渣棉: λ=0.0674+0.000215t W/(m ·K) =0.0674+0.000215×20=0.0717 W/(m ·K); 由附录7知聚乙烯泡沫塑料在常温下, λ=0.035~0. 038W/(m ·K)。由上可知金属是良好的导热材料,而其它三种是好的保温材料。 1-5厚度δ为0.1m 的无限大平壁,其材料的导热系数λ=100W/(m ·K),在给定的直角坐标系中,分别画出稳态导热时如下两种情形的温度分布并分析x 方向温度梯度的分量和热流密度数值的正或负。 (1)t|x=0=400K, t|x=δ=600K; (2) t|x=δ=600K, t|x=0=400K; 解:根据付立叶定律 无限大平壁在无内热源稳态导热时温度曲线为直线,并且 x x 02121t t t t t dt x dx x x 0 δδ==--?===?--

材料科学基础(武汉理工大学,张联盟版)课后习题与答案第二章

第二章答案 2-1 略。 2-2 ( 1)一晶面在x、y、z轴上的截距分别为2a、 3b、6c,求该晶面的晶面指数;(2)一 晶面在 x 、、 z 轴上的截距分别为 a /3、 /2、,求出该晶面的晶面指数。y b c 答:( 1) h:k:l==3:2:1, ∴该晶面的晶面指数为(321); (2) h:k:l=3:2:1 ,∴该晶面的晶面指数为( 321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:( 001)与 [] ,( 111)与 [] ,()与 [111],()与 [236],( 257)与[] ,( 123)与 [] ,(102),(),(), [110], [],[] 答:

2-4 定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5 依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6 等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8 个四面体空隙、6个八面体空隙。 2-7 n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是 如何进行堆积的? 答: n 个等径球作最紧密堆积时可形成n 个八面体空隙、2n 个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分 别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8 写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、( 001)( 100)( 101)(110)(010)(011)( 111)(0)(0)(0)( 1)(1)(1)。

金属学与热处理(哈尔滨工业大学_第二版)课后习题答案_附总复习提纲加习题

第六章 1.试用多晶体的塑性变形过程说明金属晶粒越细强度越高、塑性越好的原因是什么? 2. 答:由Hall-Petch 公式可知,屈服强度σs 与晶粒直径平方根的倒数 d v2呈线性关系。在多晶体中,滑移能否从先塑性变形的晶粒转移到相邻晶粒主要取决于在已滑移晶粒晶界附近的位错塞积群所产生的应力集中能否激发相邻晶粒滑移系中的位错源,使其开动起来,从而进行协调性的多滑移。由τ=nτ0知,塞积位错数目n越大,应力集中τ越大。位错数目n与引起塞积的晶界到位错源的距离成正比。晶粒越大,应力集中越大,晶粒小,应力集中小,在同样外加应力下,小晶粒需要在较大的外加应力下才能使相邻晶粒发生塑性变形。在同样变形量下,晶粒细小,变形能分散在更多晶粒内进行,晶粒内部和晶界附近应变度相差较小,引起的应力集中减小,材料在断裂前能承受较大变形量,故具有较大的延伸率和断面收缩率。另外,晶粒细小,晶界就曲折,不利于裂纹传播,在断裂过程中可吸收更多能量,表现出较高的韧性。 2.金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义?金属材料经塑性变形后为什么会保留残留内应力?研究这部分残留内应力有什么实际意义? 答:残余内应力存在的原因 1)塑性变形使金属工件或材料各部分的变形不均匀,导致宏观变形不均匀; 2)塑性变形使晶粒或亚晶粒变形不均匀,导致微观内应力; 3)塑性变形使金属内部产生大量的位错或空位,使点阵中的一部分原子偏离其平衡位置,导致点阵畸变内应力。 实际意义:可以控制材料或工件的变形、开裂、应力腐蚀;可以利用残留应力提高工件的使用寿命。 3.何谓脆性断裂和塑性断裂,若在材料中存在裂纹时,试述裂纹对脆性材料和塑性材料断裂过程中的影响。 答:塑性断裂又称为延性断裂,断裂前发生大量的宏观塑性变形,断裂时承受的工程应力大于材料的屈服强度。在塑性和韧性好的金属中,通常以穿晶方式发生塑性断裂,在断口附近会观察到大龄的塑性变形痕迹,如缩颈。 金属脆性断裂过程中,极少或没有宏观塑性变形,但在局部区域任然存在着一定的微观塑性变形。断裂时承受的工程应力通常不超过材料的屈服强度,甚至低于按宏观强度理论确定的许用应力,因此又称为低应力断裂。 在塑性材料中,断裂是胃口形成、扩大和连接的过程,在打的应力作用下,基体金属产生塑性变形后,在基体和非金属夹杂物、析出相粒子周围产生应力集中,使界面拉开,或使异相颗粒折断形成微孔。微孔扩大和链接也是基体金属塑性变形的结果。当微孔扩大到一定的程度,相邻微孔见的金属产生较大的塑性变形后就发生微观塑性失稳,就像宏观实验产生缩颈一样,此时微孔将迅速扩大,直至细缩成一线,最后由于金属与金属件的连线太少,不足以承载而发生断裂。 脆性材料中,由于断裂前既无宏观塑性变形,又无其他预兆,并且一旦开裂后,裂纹扩展迅速,造成整体断裂或河大的裂口,有时还产生很多碎片,容易导致严重事故。 4.何谓断裂韧度,它在机械设计中有何作用? 答:在弹塑性条件下,当应力场强度因子增大到某一临界值,裂纹便失稳扩展而导致材料断裂,这个临界或失稳扩展的应力场强度因子即断裂韧度。它反映了材料抵抗裂纹失稳扩展即抵抗脆断的能力,是材料的力学性能指标。 5.分析回复和再结晶阶段空位与位错的变化及其对性能的影响。

工程材料(金属材料)课后习题答案

工程材料参考答案 第1章机械工程对材料性能的要求 思考题与习题P20 1.3、机械零件在工作条件下可能承受哪些负荷?这些负荷对零件产生什么作用?p4 工程构件与机械零件(以下简称零件或构件)在工作条件下可能受到力学负荷、热负荷或环境介质的作用。有时只受到一种负荷作用,更多的时候将受到两种或三种负荷的同时作用。 在力学负荷作用条件下,零件将产生变形,甚至出现断裂; 在热负荷作用下,将产生尺寸和体积的改变,并产生热应力,同时随温度的升高,零件的承载能力下降; 环境介质的作用主要表现为环境对零件表面造成的化学腐蚀,电化学腐蚀及摩擦磨损等作用。 1.4 整机性能、机械零件的性能和制造该零件所用材料的力学性能间是什么关系?p7 机器的整机性能除与机器构造、加工与制造等因素有关外,主要取决于零部件的结构与性能,尤其是关键件的性能。在合理而优质的设计与制造的基础上,机器的性能主要由其零部件的强度及其它相关性能来决定。 机械零件的强度是由结构因素、加工工艺因素、材料因素和使用因素等确定的。在结构因素和加工工艺因素正确合理的条件下,大多数零件的体积、重量、性能和寿命主要由材料因素,即主要由材料的强度及其它力学性能所决定。 在设计机械产品时,主要是根据零件失效的方式正确选择的材料的强度等力学性能判据指标来进行定量计算,以确定产品的结构和零件的尺寸。 1.5常用机械工程材料按化学组成分为几个大类?各自的主要特征是什么?p17 机械工程中使用的材料常按化学组成分为四大类:金属材料、高分子材料、陶瓷材料和复合材料。

1.7、常用哪几种硬度试验?如何选用P18?硬度试验的优点何在P11? 硬度试验有以下优点: ●试验设备简单,操作迅速方便; ●试验时一般不破坏成品零件,因而无需加工专门的试样,试验对象可以是各类工程材料和各种 尺寸的零件; ●硬度作为一种综合的性能参量,与其它力学性能如强度、塑性、耐磨性之间的关系密切,由此 可按硬度估算强度而免做复杂的拉伸实验(强韧性要求高时则例外); ●材料的硬度还与工艺性能之间有联系,如塑性加工性能、切削加工性能和焊接性能等,因而可 作为评定材料工艺性能的参考; ●硬度能较敏感地反映材料的成分与组织结构的变化,故可用来检验原材料和控制冷、热加工质 量。 ●(提示:设备简单;试样方便(无需专门加工);在一定范围可与力学性能、工艺性能建立联系; 工程中常用)

习题册参考答案-《冷冲压工艺与模具设计(第二版)习题册》-B01-2822.docx

冷冲压工艺与模具设计(第二版) 习题册参考答案 1

第一章冷冲压工艺与模具基础知识 第一节冷冲压加工基础知识 一、填空题 1.各种压力机、模具、常温 2.冷压力加工、热压力加工 3.板料金属(非金属)、分离、塑性变形 4.高精度、高一致性、其他加工制造方法 5.变形工序 二、选择题 1.D 2.C 三、判断题 1.√2.√3.√4.× 四、名词解释 1.分离工序 是指使坯料沿一定的轮廓线相互分开而获得一定形状、尺寸和断面质量冲压件的工艺方法。 2.变形工序 是指使坯料在不被破坏的条件下发生塑性变形,产生形状和尺寸的变化,转化成为所需要的制件。 五、问答题 1.简述冷冲压加工的优点。 (1)冲压加工生产效率极高,如级进模冲压速度可达800 次/min,操作简单,易实现自动化。 (2)材料利用率高,冲压能耗小,属于无切削加工,经济性好。 (3)冲压制件的尺寸精度与冲模的精度有关,尺寸比较稳定,互换性好。 ( 4)可以利用金属材料的塑性变形适当地提高成形制件的强度、刚度等力 2

学性能指标。 (5)可获得其他加工方法难以加工或不能加工的形状复杂制件,如薄壳 制件、大型覆盖件(汽车覆盖件、车门)等。 (6)冲模使用寿命长,降低了产品的生产成本。 2.简述冷冲压加工中分离工序与变形工序有何不同。 分离工序是指使坯料沿一定的轮廓线相互分开而获得一定形状、尺寸和断面质量冲压件的工艺方法。分离工序中,坯料应力超过坯料的强度极限,即σ>R m。 变形工序是指使坯料在不被破坏的条件下发生塑性变形,产生形状和尺寸的变化,转化成为所需要的制件。变形工序中,坯料应力介于坯料的强度极限和屈服极限之间,即 R el<σ< R m。 3.在冲模标准化方面,我国主要颁布了哪些国家标准或行业标准? 我国已经发布了《冲模术语》、《冲模技术条件》、《冲裁间隙》、《冲模模架零件技术条件》、《冲模模架技术条件》、《冲模滑动导向模架》、《冲模滚动导向模架》和冲模零部件的国家标准或行业标准。 第二节冷冲压模具基础知识 一、填空题 1.非金属、成形 2.复合模、级进模 3.弯曲模、拉深模 4.上模、下模 5.定位零件、压料零件 6.保证作用、完善作用 二、选择题 1.C 2.C3.C4.C 三、判断题 1.√2.×3.× 四、问答题 3

2020年《材料成型工艺基础(第三版)》部分课后习题答案

《材料成型工艺基础(第三版)》部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝固原则和定向凝固原则?试对下图所示铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。 答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章

⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。

机械制造技术基础(第2版)第三章课后习题答案

《机械制造技术基础》部分习题参考解答 第三章机械制造中的加工方法及装备 3-1 表面发生线的形成方法有哪几种? 答:(p69-70)表面发生线的形成方法有轨迹法、成形法、相切法、展成法。 具体参见第二版教材p69图3-2。 3-2 试以外圆磨床为例分析机床的哪些运动是主运动,哪些运动是进给运动? 答:如图3-20(p87),外圆磨削砂轮旋转n c是主运动,工件旋转n w、砂轮的横向移动f r、工作台往复运动f a均为进给运动。 3-3机床有哪些基本组成部分?试分析其主要功用。 答:(p70-71)基本组成部分动力源、运动执行机构、传动机构、控制系统和伺服系统、支承系统。 动力源为机床运动提供动力;运动执行机构产生主运动和进给运动;传动机构建立从动力源到执行机构之间的联系;控制和伺服系统发出指令控制机床运动;支承系统为上述部分提供安装的基础和支承结构。 3-4什么是外联系传动链?什么是内联系传动链?各有何特点? 答:外联系传动链:机床动力源和运动执行机构之间的传动联系。如铣床、钻床传动链; 内联系传动链:执行件和执行件之间的传动联系。如车螺纹、滚齿的传动链。 外联系传动链两端没有严格的传动关系,而内联系传动链两端有严格的传动关系或相对运动要求。 3-5 试分析提高车削生产率的途径和方法。 答:(p76)提高切削速度;采用强力切削,提高f、a p;采用多刀加工的方法。 3-6 车刀有哪几种?试简述各种车刀的结构特征及加工范围。

答:(p77)外圆车刀(左、右偏刀、弯头车刀、直头车刀等),内、外螺纹车刀,切断刀或切槽刀,内孔车刀(通孔、盲孔车刀、)端面车刀、成形车刀等。 顾名思义,外圆车刀主要是切削外圆表面;螺纹车刀用于切削各种螺纹;切断或切槽车刀用于切断或切槽;内孔车刀用于车削内孔;端面车刀切断面;成形车刀用于加工成形表面。 3-7试述CA6140型卧式车床主传动链的传动路线。 答:(p82)CA6140型卧式车床主传动链的传动路线: 3-8 CA6140型卧式车床中主轴在主轴箱中是如何支承的?三爪自定心卡盘是怎样装到车床主轴上去的? 答:(p83-84) 3-9CA6140型卧式车床是怎样通过双向多片摩擦离合器实现主轴正传、反转和制动的? 答:如教材图3-17和3-18所示,操纵手柄向上,通过连杆、扇形齿块和齿条带动滑套8向右滑移,拨动摆杆10使拉杆向左,压紧左边正向旋转摩擦片,主轴实现正转; 若操纵手柄向下,通过连杆、扇形齿块和齿条带动滑套8向左滑移,拨动摆杆10使拉杆向右,压紧右边反向旋转摩擦片,主轴反转。 制动时操纵手柄处于中位,滑套8处于摆杆10的中间,此时杠杆7带动制动带8压紧制动轮,实现主轴制动。

机械工程材料(第二版)课后习题答案

2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构? 答:常见晶体结构有3种: ⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn 2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性? 答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。 第三章作业 3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小 第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。 答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是: (1)强度高:Hall-Petch公式。晶界越多,越难滑移。 (2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。 (3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。试解释这样做的目的及其原因? 答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)? 答:W、Sn的最低再结晶温度分别为: TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃ 所以W在1000℃时为冷加工,Sn在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么? (1)用厚钢板切出圆饼,再加工成齿轮; (2)由粗钢棒切下圆饼,再加工成齿轮; (3)由圆棒锻成圆饼,再加工成齿轮。 答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法1、2都可以,用方法3反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法3就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因? 答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因?答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。

(完整版)精细有机合成课后习题答案

卤化反应 NBS Br Br Br Br Br Br2/AcOH,LiBr 98%2% + +HBr AcOH 0o C,12 h Br H N Br O O H2O,25o C OH Br CH3(CH2)5CHO2 (C2H5)2O CH3(CH2)4CHBrCHO O O O CH2OH SOCl2,C5H5N rt,3~4h O CH2Cl COOH 2 COCl NO2 NH2 Br N2+BF4- F Br NaNO2/HCl NH4BF4 2010新增

COOH Cl 2/PCl 2170o C COOH Cl (CH 3)3CCH 3 O (1) Cl , NaOH, H O (2) H + (CH 3)3C O OH C H C H O C O CH 3H 2C C 5H 11 CCl 4, reflux C H C H O C O CH 3H C C 5H 11 Br CH 3(CH 2)14COOH HgO, Br , CCl , 0 o C CH 3(CH 2)14Br 磺化反应 Cl NO 2 NO 2 SO 3Na NO 2 2 NaHSO 3,MgO o NO 2 NH 2 SO 3Na NaHSO 3 NO 2 NH 2 NH 2 SO 3Na + NaHSO 3 2010新增 以甲苯为原料合成邻氯甲苯

烷基化反应 OH OH (H 3C)3C C(CH 3)3 H 2SO 465o C + 抗氧化剂BHT OH OCH 3 +(CH 3)3H 3PO 4or H 2SO 4 o OH OCH 3C(CH 3)3 抗氧化剂BHA OH HO +CH 3COCH 3 + 塑料抗氧化剂双酚A O O O O +CH 3I K 2CO 3/acetone C 4H 9C CH C 4H 9C CLi C 4H 9C CC 5H 11 n-C 4H 9Li HMPT,C 6H 14 n-C 5H 11Cl HC CH +HCHO 2 Cu HOH 2CC CCH 2OH 2+2C 2H 5Cl NaOH o 2H 5)2+HCl NH 2NHC 4H 9 NH 2 + C 4H 9ZnCl 2o NHC 4H 9 ZnCl 2 o C 4H 9

机械制造技术基础(第2版)第五章课后习题答案

《机械制造技术基础》部分习题参考解答 第五章工艺规程设计 5-1 什么是工艺过程?什么是工艺规程? 答:工艺过程——零件进行加工的过程叫工艺过程; 工艺规程——记录合理工艺过程有关内容的文件叫工艺规程,工艺规程是依据科学理论、总结技术人员的实践经验制定出来的。 5-2 试简述工艺规程的设计原则、设计内容及设计步骤。 5-3 拟定工艺路线需完成哪些工作? 5-4试简述粗、精基准的选择原则,为什么同一尺长方向上粗基准通常只允许用一次? 答:粗、精基准的选择原则详见教材P212-214。 粗基准通常只允许用一次的原因是:粗基准一般是毛面,第一次作为基准加工的表面,第二次再作基准势必会产生不必要的误差。 5-5加工习题5-5图所示零件,其粗、精基准应如何选择(标有 符号的为加工面,其余为非加工面)?习题5-5图a)、b)、c)所示零件要求内外圆同轴,端面与孔轴线垂直,非加工面与加工面间尽可能保持壁厚均匀;习题5-5图d)所示零件毛坯孔已铸出,要求孔加工余量尽可能均匀。 习题5-5图

解:按题目要求,粗、精基准选择如下图所示。 5-6为什么机械加工过程一般都要划分为若干阶段进行? 答:机械加工过程一般要划分为粗加工阶段、半精加工阶段、精加工阶段和光整加工阶段。其目的是保证零件加工质量,有利于及早发现毛坯缺陷并得到及时处理,有利于合理使用机床设备。 5-7 试简述按工序集中原则、工序分散原则组织工艺过程的工艺特征,各用于什么场合? 5-8什么是加工余量、工序余量和总余量? 答:加工余量——毛坯上留作加工用的材料层; 工序余量——上道工序和本工序尺寸的差值; 总余量——某一表面毛坯与零件设计尺寸之间的差值。 5-9 试分析影响工序余量的因素,为什么在计算本工序加工余量时必须考虑本工序装夹误差和上工序制造公差的影响? 5-10习题5-10图所示尺寸链中(图中A0、B0、C0、D0是封闭环),哪些组成环是增环?那些组成环是减环?

(完整版)材料力学课后习题答案

8-1 试求图示各杆的轴力,并指出轴力的最大值。 (2) 取1-1 (3) 取2-2 (4) 轴力最大值: (b) (1) 求固定端的约束反力; (2) 取1-1 (3) 取2-2 (4) (c) (1) 用截面法求内力,取1-1、2-2、3-3截面; (2) 取1-1 (3) 取2-2 (4) 取3-3截面的右段; (5) 轴力最大值: (d) (1) 用截面法求内力,取1-1、 (2) 取1-1 (2) 取2-2 (5) 轴力最大值: 8-2 试画出8-1解:(a) (b) (c) (d) 8-5 与BC 段的直径分别为(c) (d) F R N 2 F N 3 F N 1F F F

d 1=20 mm 和d 2=30 mm ,如欲使AB 与BC 段横截面上的正应力相同,试求载荷F 2之值。 解:(1) 用截面法求出 (2) 求1-1、2-28-6 题8-5段的直径d 1=40 mm ,如 欲使AB 与BC 段横截面上的正应力相同,试求BC 段的直径。 解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同; 8-7 图示木杆,承受轴向载荷F =10 kN 作用,杆的横截面面积A =1000 mm 2,粘接面的方位 角θ = 450,试计算该截面上的正应力与切应力,并画出应力的方向。 解:(1) (2) 8-14 2=20 mm ,两杆F =80 kN 作用,试校核桁架的强度。 解:(1) 对节点A (2) 列平衡方程 解得: (2) 8-15 图示桁架,杆1A 处承受铅直方向的载荷 F 作用,F =50 kN ,钢的许用应力[σS ] =160 MPa ,木的许用应力[ σW ] =10 MPa 。 解:(1) 对节点A (2) 84 mm 。 8-16 题8-14解:(1) 由8-14得到的关系; (2) 取[F ]=97.1 kN 。8-18 图示阶梯形杆A 2=100 mm 2,E =200GPa ,试计算杆AC 的轴向变形 解:(1) (2) AC 8-22 图示桁架,杆1与杆2的横截面面积与材料均相同,在节点A 处承受载荷F 作用。从 F A C B F F F AB F AC

完整版材料力学性能课后习题答案整理

材料力学性能课后习题答案第一章单向静拉伸力学性能 1、解释下列名词。 1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。 2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。 3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。 4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。 5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。 6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。 脆性:指金属材料受力时没有发生塑性变形而直接断裂的能力 韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。 7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。 8.河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。是解理台阶的一种标志。 9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。 10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。 沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。 11.韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变 2、说明下列力学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 P15 3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标? 答:主要决定于原子本性和晶格类型。合金化、热处理、冷塑性变形等能够改变金属材料的组织形态和晶粒大小,但是不改变金属原子的本性和晶格类型。组织虽然改变了,原子的本性和晶格类型未发生改变,故弹性模量对组织不敏感。【P4】 2、现有45、40Cr 、35 CrMo 钢和灰铸铁几种材料,你选择哪种材料作为机床起身,为什么? 选灰铸铁,因为其含碳量搞,有良好的吸震减震作用,并且机床床身一般结构简单,对精度要求不高,使用灰铸铁可降低成本,提高生产效率。 5、多晶体金属产生明显屈服的条件,并解释bcc 金属及其合金与fcc 金属及其合金屈服行为不同的原因。 答:多晶体金属产生明显屈服的条件:1)材料变形前可动位错密度小,或虽有大量位错但被钉扎住,如钢中的位错为间隙原子、杂质原子或第二相质点所钉扎。2)随塑性变形的发生,位错能快速增殖;3)位错运动速率与外加应力之间有强烈依存关系。 金属材料塑性变形的应变速率与位错密度、位错运动速率和柏氏矢量成正比,而位错运 动速率又决定于外加应力的滑移分切应力。(v b ρε=∙,m v '=)(0 ττ) 塑性变形初始阶段,由于可动位错密度少,为了维持高的应变速率,必须增大位错运动速率。而要提高位错运动速率必须要有高的应力,这对应着上屈服点。一旦塑性变形产生,位错大量增殖,位错运动速率下降,相应的应力随之下降,从而产生了屈服现象。 对于bcc 金属及其合金,位错运动速率应力敏感指数m ’低,即位错运动速率变化所需应力变化大,屈服现象明显。而fcc 金属及其合金,其位错运动速率应力敏感指数高,屈服现象不明显。 6、 试述退火低碳钢、中碳钢和高碳钢的屈服现象在拉伸力-伸长曲线图上的区别?为什么? 答:随含碳量的增加,屈服现象越来越不明显。这是由于随含碳量高,其组织中渗碳体含量增多,对基体起强化作用,使得材料屈服强度很高,塑性降低。

先进制造技术(第3版)习题参考答案

思考题 第一章 1.说明制造、制造系统与制造业概念,比较广义制造与狭义制造的区别。 答:制造(manufacturing)是人类按照市场需求,运用主观掌握的知识和技能,借助于手工或可以利用的客观物质工具,采用有效的工艺方法和必要的能源,将原材料转化为最终物质产品并投放市场的全过程。 制造系统是指由制造过程及其所涉及的硬件、软件和人员组成的一个具有特定功能的有机整体。 制造业是指以制造技术为主导技术进行产品制造的行业。 广义制造与狭义制造的区别:狭义的制造,是指生产车间内与物流有关的加工和装配过程;而广义的制造,则包含市场分析、产品设计、工艺设计、生产准备、加工装配、质量保证、生产过程管理、市场营销、售前售后服务,以及报废后的回收处理等整个产品生命周期内一系列相互联系的生产活动。 2.制造业在国民经济中的地位与作用如何? 答:(1)人们的物质消费水平的提高,有赖于制造技术和制造业的发展。 (2)制造业是实现经济增长的物质保证。 (3)提高制造技术是影响发展对外贸易的关键因素。 (4)制造业是加强农业基础地位的物质保障,是支持服务业更快发展的重要条件。 (5)制造业是加快信息产业发展的物质基础。 (6)制造业是加快农业劳动力转移和就业的重要途径。 (7)制造业是加快发展科学技术和教育事业的重要物质支撑,它不仅为科技发展和教育发展提供经费支持,还为研究开发提供许多重要的研究方向与课题及先进的实验装备。 (8)制造业也是实现军事现代化和保障国家基本安全的基本条件。 3.先进制造技术是在什么样的背景之下产生与发展起来的。 答:1.社会经济发展背景 近20多年来,市场环境发生了巨大的变化,一方面表现为消费者需求日趋主题化、个性化和多样化,消费行为更具有选择性,产品的生命周期缩短,产品的质量和性能至关重要;另一方面全球性产业结构调整步伐加快,制造商着眼于全球市场激烈竞争的同时,着力于实力与信誉基础上的合作和协作。 制造业的核心要素是质量、成本和生产率。面对当代社会变化迅速且无法预料的买方市场和多品种变批量成为主导生产方式,上述三个要素的内涵发生了深刻的变化。首先,产品质量观发生了变化,现代质量观主要指全面满足用户的程度,在适当的时间、适当的地点满足用户的功能需求和非功能需求。其次,产品成本不仅仅指制造成本,还应包含用户使用成本、维护成本以及社会环境成本。再次,赢得定单及高速开发产品是企业成败的关键,是非常规意义上的生产率。 2.科学技术发展背景 制造业从20世纪初开始逐步走上科学发展的道路。制造技术已由技艺发展为集机械、材料、电子及信息等多门学科的交叉科学—制造工程学。科学技术和生产发展在推动制造技术进步的同时,以其高新技术成果,尤其是计算机、微电子、信息、自动化等技术的渗透、衍生和应用,极大地促进了制造技术在宏观(制造系统的建立)和微观(精密、超精密加工)两个方向上蓬勃发展,急剧地改变了现代制造业的产品结构、生产方式、生产工艺和设备及生产组织体系,使现代制造业成为发展速度快、技术创新能力强、技术密集甚至知识密集型产业。信息逐渐成为主宰制造业的决定性因素,企业内联网(Intranet)和国际互联网(Internet)

相关文档
相关文档 最新文档