文档库 最新最全的文档下载
当前位置:文档库 › 新型银离子纳米荧光探针研究

新型银离子纳米荧光探针研究

新型银离子纳米荧光探针研究
新型银离子纳米荧光探针研究

常用抗体标记荧光染料的特性及其应用

常用抗体标记荧光染料的特性及其应用 1、FITC:激发波长488nm,最大发射波长525nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)可用于荧光显微镜技术 4)荧光强度易受PH值影响,PH值降低时其荧光强度减弱。 2、Alexa Fluor 488:激发波长488nm,最大发射波长519nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL1通道检测; 3)具有超乎寻常的光稳定性,非常适用于荧光显微镜技术; 4)在较宽的PH值范围内保持稳定(PH4~10)。 3、Cy3:激发波长488nm,最大发射波长570nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)适用于荧光显微镜技术; 4)为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于P E。 4、Cy5:激发波长633/635nm,最大发射波长670nm。 1)其标记的抗体适用于所有配备633nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL4通道检测;

3)适用于荧光显微镜技术; 4)同样为小分子染料,非常适合需小分子染料的流式细胞术,荧光强度低于APC。 5)与单核和粒细胞非特异性结合多,易出现假阳性结果。 5、PE:激发波长488nm,最大发射波长575nm。 1)其标记的抗体适用于所有配备488nm氩离子激光器的流式细胞仪; 2)在流式细胞仪的FL2通道检测; 3)其荧光泯灭性强,不适用于传统的荧光显微镜技术,但适用于激光共聚焦显微镜技术。 6、PE-TR:激发波长488nm,最大发射波长615nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 7、PE-Alexa Fluor 610:激发波长488nm,最大发射波长628nm。 1)在Beckman Coulter流式细胞仪的FL3通道检测; 2)荧光强度高; 3)可适用于小功率激光器的流式细胞仪,也可使用于大功率激光器的大流式细胞仪。 8、PE-Alexa Fluor 647:激发波长488nm,最大发射波长668nm。 1)在Beckman Coulter流式细胞仪的FL4通道检测,BD细胞仪FL3通道检测; 2)不易湮灭;

水溶性荧光纳米银簇的合成与表征

前言 已故物理学家理查德·费曼在1959年所作的一次题为《在底部还有很大空间》的演讲时提出了一个新的想法。从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质做成有用的形态有关。范曼质问道,为什么我们不可以从另外一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求?他说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”这是纳米技术的灵感的来源。 纳米(nanometer),是一种长度单位,一纳米等于十亿分之一米,大约是三四个原子排列起来的宽度。纳米材料又称超微颗粒材料,由纳米粒子组成。纳米粒子一般是指尺寸在1 - 100 nm间的粒子,处在原子簇和宏观物体交界的过渡区域。纳米科学技术(nano - technology),是指用数千个分子或原子制造新型材料或微型器件的科学技术。它以现代科学技术为基础,是现代科学和现代技术相结合的产物。纳米科学技术将使人们迈入了一个奇妙的世界[1]。 纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,随着其制备和改性技术的不断发展,纳米材料在诸多领域将会得到日益广泛的应用,在机械、电子、光学、磁学、化学和生物学领域有关广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。 金属纳米材料是纳米材料的一个重要分支,它以贵金属金、银、铜为代表,其中因为纳米银具有很高的表面活性、表面能催化性能和电导热性能,以及优良的抗菌杀菌活性,在无机抗菌剂、催化剂材料、电子陶瓷材料、低温导热材料、电导涂料等领域有广阔的应用前景而得到最多的关注,如在化纤中加入少量纳米银,可以改善化纤制品的某些性能,并使其具有很强的杀菌能力;在氧化硅薄膜中加加少量的纳米银,可以使得镀这种薄膜的玻璃有一定的光致发性。 纳米银团簇就是将粒径做到纳米级的金属银单质。纳米银粒径大多在25 nm 左右,对大肠杆菌、淋球菌、沙眼衣原体等数十种致病微生物都有强烈的抑制和杀灭作用,而且不会产生耐药性。纳米银杀菌具有广谱抗菌、强效杀菌等一系列特点,能杀灭各种致病微生物,比抗菌素效果更好。10 nm大小的纳米银

纳米标记材料荧光碳点的制备探析论文

纳米标记材料荧光碳点的制备探析论文 纳米标记材料荧光碳点的制备探析全文如下: 近年来,半导体荧光量子点因其优良的光电性能在生物、医学及光电器件等领域得到了广泛应用.但是用于生物和医学领域最成熟的 量子点,大多是含重金属镉的CdTe,CdSe和CdS等量子点,限制了 其在生物医学领域的应用.因此,降低和消除荧光量子点的毒性,一 直是研究者密切关注的课题.直到2006年,Sun等用激光消融碳靶物,经过一系列酸化及表面钝化处理,得到了发光性能较好的荧光 碳纳米粒子—碳量子点(CQDs). 作为新型荧光碳纳米材料,碳量子点不仅具有优良的光学性能与小尺寸特性,还具有很好的生物相容性、水溶性好、廉价及很低的 细胞毒性,是替代传统重金属量子点的良好选择.水溶性碳量子点因 其表面具有大量的羧基、羟基等水溶性基团,并且可以和多种有机、无机、生物分子相容而引起广泛关注,这些性质决定了碳量子点在 生物成像与生物探针领域有更大的应用前景.ZhuH和王珊珊等将 PEG-200和糖类物质的水溶液进行微波加热处理,得到了具有不同 荧光性能的碳量子点,虽然利用微波合成碳量子点可以合成修饰一 步实现,但是与水热法相比荧光量子的产率并没有显著地提高.目前,该领域的科研工作主要集中在3个方面:碳量子点形成与其性能的机 理特别是光致发光机理、如何简单快速的制备出性能优异的碳量子 点以及碳量子点如何成功高效地应用于实际之中. 本文采用单因素法分析影响荧光碳量子点合成的几种因素,寻求高性能荧光碳量子点的最佳合成条件,并比较微波法和水热法合成 荧光碳量子点的优劣,为制备出高性能荧光纳米标记材料性能提供 一定的实验依据和科学方法. 1实验部分 1.1试剂与仪器

上转换荧光纳米探针的制备及其在染料检测上的应用

上转换荧光纳米探针的制备及其在染料检测上的应用 【摘要】本文通过溶剂热法,成功地制备了Yb3+和Er3+共掺杂的NaGdF4上转换纳米晶。它具有特殊的发光性能,经过表面修饰后,该纳米晶具有良好的生物兼容性,被应用到检测罗丹明B染料上。结果表明,上转换纳米晶和罗丹明B结合,发生共振能量转移,为检测染料提供了一种新的高效途径。 【关键词】上转换纳米晶;制备;染料 0 引言 随着生物物理、生物化学、生命科学和医学的不断发展,依赖成像技术进行初步地诊断病情和科学研究的程度越来 越深[1]。由于X射线等成像技术存在辐射大、仪器昂贵等缺点,这就促使了纳米探针的发展。在纳米探针中,上转换纳米探针是目前国内外研究热点,它所具有的特殊的发光性能。在生物成像和检测领域都有巨大的应用价值。 近些年,有机染料污染对一些水生物来至人类的健康生活构成极大的威胁,因此找到一种快速且高效的检测有机染料的方法十分必要且价值巨大。本文主要应用NaGdF4:Yb,Er上转换纳米晶对有机染料罗丹明B进行检测,并对其形态和结构进一步地进行了研究。

1 实验制备和结构表征 1.1 试剂与仪器 实验中使用的氯化钆(99.9%),氯化镱(99.9%),氯化铒(99.9%),氢氧化钠(≥98%),氟化铵(≥98%),甲醇(99.5%),十八烯(90%),油酸(90%)是从Sigma Aldrich 购买。所有的试剂都直接用于化学反应,未经进一步的提纯处理。 1.2 样品制备 采用热溶剂法制备稀土离子Yb3+和Er3+掺杂的NaGdF4纳米晶:2mL RECl(0.2 M,RE= Lu,Yb and Er)的水溶液被添加3到12ml 十八烯和4ml油酸的混合液中。混合物在加热30min后被加入5ml NH4F (1.5mmol)和NaOH (1mmol)甲醇溶液,随后加热蒸发掉甲醇和水,再加热到310°C 持续加热60min 后冷却。将产物用乙醇清洗3 次后分散在环己烷溶液中保存。 1.3 结构表征 采用H-7650c 型透射电子显微镜来观察纳米颗粒的大小和形貌;采用Hitachi F-2700 荧光光谱仪测试上转化发光性能;测试所用的光源是980nm的红外光、功率可调节的激光器。所有的测试均在室温下进行的。 2 结果与讨论 2.1 光谱特性

几种常见的抗体标记方法-酶标记、荧光素标记、同位素标记、生物素标记

几种常见的抗体标记方法-酶标记、荧光素标记、同位素标记、 生物素标记 抗体标记主要有酶标记、荧光素标记、同位素标记、生物素标记等,还有一些其他的标记方法例如金标记,本文主要讲述了这些抗体标记的基本原理、操作步骤。 一、酶标记 1、辣根过氧化物酶(HRP)标记辣根过氧化物酶(HRP)标记单抗和多克隆抗体的常用方法是过碘酸钠法。其原理是HRP的糖基用过碘酸钠氧化成醛基,加入抗体IgG 后该醛基与IgG氨基结合,形成Schiff氏碱。为了防止HRP 中糖的醛基与其自身蛋白氨基发生偶合,在用过碘酸钠氧化前先用二硝基氟苯阻断氨基。氧化反应末了,用硼氢化钠稳定Schiff氏碱。这里介绍两种程序。 程序一: (1)将5mg HRP溶于0.5ml 0.1mol/L NaHCO3溶液中;加0.5ml 10mmol/L NaIO4溶液,混匀,盖紧瓶塞,室温避光作用2小时。 (2)加0.75ml 0.1mol/L Na2CO3混匀。 (3)加入0.75ml小鼠已处理的腹水,或纯化单抗等 (15mg/ml),混匀。 (4)称取Sephadex

G25干粉0.3g,加入一支下口垫玻璃棉的5ml注射器外筒内;随后将上述交联物移入注射器外套;盖紧,室温作用(避光)3小时或4℃过夜。 (5)用少许PBS将交联物全部洗出,收集洗出液,加 1/20V体积新鲜配制的5mg/ml NaBH4溶液,混匀,室温作用30分钟;再加入3/20V NaBH4溶液,混匀,室温作用1小时(或4℃过夜)。 (6)将交联物过Sephadex g200或Sepharose 6B(2.6×50cm)层析纯化,分管收集第一峰。 (7)酶结合物质量鉴定: 克分子比值测定 酶量(mg/ml)=OD403×0.4 IgG量(mg/ml)=(OD280-OD403×0.3)×0.62 克分子比值(E/P)=酶量×4/IgG量,一般在1-2之间。酶结合率=酶量×体积/抗体,标记率一般为0.3-0.6,即1-2个HRP分子结合在一个抗体分子上,标记率可大于0.6,0.8,0.9;OD403/OD280等于0.4时,E/P约为1。 标记率=OD403/OD280 酶活性和抗体活性的测定可应用ELISA法、免疫扩散、DAB-H2O2显色反应测定酶结合物的酶活性,抗体活性及效

几种碳纳米材料的制备及其应用研究

几种碳纳米材料的制备及其应用研究 碳基纳米材料是指分散相至少有一维小于100 nm的碳材料。分散相可以由碳原子组成,也可以由其它原子(非碳原子)组成。 到目前为止,发现的碳基纳米材料有富勒烯、碳纳米管、石墨烯、荧光碳点及其复合材料。碳基纳米材料在硬度、耐热性、光学特性、耐辐射特性、电绝缘性、导电性、耐化学药品特性、表面与界面特性等方面都比其它材料优异,可以说碳基纳米材料几乎包括了地球上所有物质所具有的特性,如最硬—最软,全吸光—全透光,绝缘体—半导体—良导体,绝热—良导热等,因此具有广泛的用途。 发展制备这些材料的新方法、新技术,研究这些材料不同的纳米结构对性质的影响,不仅有重要的理论价值,而且对能源和生命分析领域的快速发展也具有重要的实际意义。在本论文工作中,以碳基纳米材料为主体,以微波水热、溶剂热等液相合成策略为手段,从探索纳米材料的结构、表面性质与其性能的关系出发,构建功能化碳基纳米材料,以满足在能源和生命分析应用中的要求。 本论文研究工作主要包括以下几方面的内容:1.微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物及其在超级电容器中的应用本工作中我们报道了一个新颖的微波辅助原位合成石墨烯/聚3,4-乙烯二氧噻吩复合物的新方法。首先,石墨烯氧化物(GO)和3,4-乙烯二氧噻吩单体(EDOT)通过两者间的吸附作用形成GO/EDOT复合物。 然后,在微波加热条件下,GO表面吸附的EDOT单体被GO氧化聚合为聚3,4-乙烯二氧噻吩,同时GO转化为石墨烯,进而形成石墨烯/聚3,4-乙烯二氧噻吩(G/PEDOT)复合物。产物中不含过量的EDOT或GO,从而保证了复合物的纯度。 本研究还对该复合物的结构进行了表征,利用循环伏安和恒电流充放电技术

荧光纳米探针在生命科学中的应用

摘要:纳米荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点。 关键字:纳米荧光探针、生物检测和识别、无机发光量子点 Abstract:Nano fluorescence probe is widely used in chemical sensing, optical materials and biological detection and identification field , and to realize the above functions as a primary technology. But in a traditional fluorescent primarily organic fluorescent probes in the application of some are difficult to overcome defects. Recently, inorganic light quantum dots, fluorescence polymer microspheres, nano composite fluorescence silica nanoparticles and fluorescence nanoprober have appeared in a certain extent, g served the defects of conventional organic fluorescence reagent, biological analysis to provide the new development area, become the focus of research in recent years. Key words: Nano fluorescence probe, Biological detection and recognition, Inorganic glowing dots 1、Classification of fluorescent nano probe 荧光纳米粒子是指与蛋白质或其他大分子结构非共价相互作用而使一种或几种荧光性质发生改变的小分子物质。可用于研究大分子物质的性质和行为。可以发荧光的半导体纳米微晶体(量子点)或将荧光团通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。 1.1Quantum dots 通常是一种由n一Vl族或m一V族元素组成的纳米颗粒,直径在1一100nm之间,能够接受激发光产生荧光的半导体纳米颗粒。量子点在生物标记、太阳能电池和发光器件等领域具有广泛的应用前景。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。 1.2 Application of quantum dots in life science

荧光材料基本知识

1.把各种能量转换为光能的过程主要有两种: 其一是热辐射,其二是发光。 2. 按照激发能的不同可以把发光分类为光致发光(紫外波段发光或真空紫外波段发光激发)、阴极射线发光(电子束流激发)、电离辐射发光(X射线、γ射线及高能离子激发)、电致发光(直流或交流电场激发)、化学发光(由化学反应能激发)、生物发光(由生物能激发)、摩擦发光(由机械应力激发)等。 3. 发光材料是由作为材料主体的化合物(基质)和选定掺入的少量以至微量的杂质离子(激活剂)所组成,有时还掺入另一种杂质离子作为敏化剂。 4. 荧光,又作“萤光”,是指一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。在日常生活中,人们通常广义地把各种微弱的光亮都称为荧光,而不去仔细追究和区分其发光原理。 5. 荧光淬灭(fluorescence quenching)又称荧光熄灭或萃灭:是指导致特定物质的荧光强度和寿命减少的所有现象。 6.荧光熄灭剂:引起荧光熄灭的物质称为荧光熄灭剂。如,卤素离子、重金属离子、氧分子以及硝基化合物、重氮化合物、羧基和羰基化合物均为常见的荧光熄灭剂。

7.荧光淬灭的原因很多,机理也很复杂,主要包括:①因荧光物质的分子和熄灭剂分子碰撞而损失能量;②荧光物质的分子与熄灭剂分子作用生成了本身不发光的的配位化合物;③溶解氧的存在,使得荧光物质氧化,或是由于氧分子的顺磁性,促进了体系间跨越,使得激发单重态的荧光分子生在荧光物质分子与猝灭剂分子之间 8.静态猝灭:当基态荧光分子与猝灭剂之间通过弱的结合生成复合物,且该复合物使荧光猝灭的现象称为静态猝灭。 动态猝灭:如果激发态荧光分子与猝灭剂碰撞使其荧光猝灭则称为动态猝灭。 动态猝灭:温度增高,猝灭增强; 静态猝灭:温度增高,猝灭降低。转变至三重态;④当荧光物质浓度过大时,会产生自淬灭现象。 9. 量子效率也称量子收率, 是指荧光物体分子发射的光量子数与吸收的光量子数之比。其大小是由分子结构决定的, 而与激发光源的能量无关。 10.拉曼散射光谱是指分子对入射光所产生使其频率发生较大改变的一种光散射现象。激光拉曼光谱主要的一些特点: (l)每种物质(分子)都有自己完全独立的特征谱线,因此每种物质的特征谱线可以表征这一物质。(2)拉曼谱线的线宽大多数较窄,并且往往都是成对出现的,也就是具有完全相同大小的正负频差。这两条谱线在短波一边的叫做反斯托克斯谱线,在长波一边的叫做斯托

[荧光,纳米,标记]纳米标记材料荧光碳点的制备探析

纳米标记材料荧光碳点的制备探析 近年来,半导体荧光量子点因其优良的光电性能在生物、医学及光电器件等领域得到了广泛应用. 但是用于生物和医学领域最成熟的量子点,大多是含重金属镉的CdTe,CdSe 和CdS 等量子点,限制了其在生物医学领域的应用. 因此,降低和消除荧光量子点的毒性,一直是研究者密切关注的课题. 直到2006 年,Sun 等用激光消融碳靶物,经过一系列酸化及表面钝化处理,得到了发光性能较好的荧光碳纳米粒子碳量子点( CQDs) . 作为新型荧光碳纳米材料,碳量子点不仅具有优良的光学性能与小尺寸特性,还具有很好的生物相容性、水溶性好、廉价及很低的细胞毒性,是替代传统重金属量子点的良好选择. 水溶性碳量子点因其表面具有大量的羧基、羟基等水溶性基团,并且可以和多种有机、无机、生物分子相容而引起广泛关注,这些性质决定了碳量子点在生物成像与生物探针领域有更大的应用前景. Zhu H和王珊珊等将PEG - 200 和糖类物质的水溶液进行微波加热处理,得到了具有不同荧光性能的碳量子点,虽然利用微波合成碳量子点可以合成修饰一步实现,但是与水热法相比荧光量子的产率并没有显著地提高. 目前,该领域的科研工作主要集中在3 个方面: 碳量子点形成与其性能的机理特别是光致发光机理、如何简单快速的制备出性能优异的碳量子点以及碳量子点如何成功高效地应用于实际之中. 本文采用单因素法分析影响荧光碳量子点合成的几种因素,寻求高性能荧光碳量子点的最佳合成条件,并比较微波法和水热法合成荧光碳量子点的优劣,为制备出高性能荧光纳米标记材料性能提供一定的实验依据和科学方法. 1 实验部分 1. 1 试剂与仪器 葡萄糖( AR,中国医药集团上海化学试剂公司) 、聚乙二醇( PEG - 200,AR,中国医药集团上海化学试剂公司) 、硫代乙醇酸( TGA,AR,国药集团化学试剂有限公司) 、CS( 大连鑫蝶) 、牛血清蛋白( BSA 99%,德国默克公司) 购自武汉凌飞生物科技公司) ; 盐酸( HCl,AR,信阳市化学试剂厂) ; 十二水合磷酸氢二钠( Na2HPO412H2O,AR,国药集团化学试剂有限公司) ; 二水合磷酸二氢钠( NaH2PO42H2O,AR,国药集团化学试剂有限公司) ; 氢氧化钠( NaOH,AR,国药集团化学试剂有限公司) . 荧光分光光度计( LS55 型,PerkinElmer,American) ; 紫外- 可见吸收光谱仪( U - 3010 型,Hitachi,Japan) ; 纯水仪( UP 型,上海优普实业有限公司) ; 台式电热恒温干燥箱( 202 - 00A 型,天津市泰斯特仪器有限公司) ; 傅立叶红外变换光谱仪( VERTEX70 型,德国BRUKER 公司) ; 透射电子显微镜( JEM -2100UHR STEM/EDS 型,日本) ; 微波反应器( Milestone, Italy) ; 电子天平( METTER - TOLEDO,梅特勒- 托利多仪器( 上海) 有限公司) ; 电动搅拌器( DJIC - 40,金坛市大地自动化仪器厂) ; 智能恒温电热套( ZNHW 型,武汉科尔仪器设备有限公司) ; 数显恒温水浴锅( HH - S2s,金坛市大地自动化仪器厂) ; 紫外灯. 所有光谱分析均在室温下进行. 实验中所用水为电阻率大于18 Mcm 的高纯水. 紫外- 可见吸光光度计设置为: 夹缝2 nm,扫描速度600 nm/min,扫描范围200 ~ 600 nm; 荧光分光光度计设置为: 激发波长为350 nm,扫描范围为350 ~ 650 nm,扫描速度600 nm/min.

荧光纳米粒子的介绍及应用

荧光纳米粒子的介绍及应用 写在前面的话: 荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点,在此我想作一简单介绍,希望能起到抛砖引玉的作用,如果大家觉得我有什么地方说错的话,欢迎批评指正!让我也从中受益! 1、荧光纳米粒子的分类 荧光纳米粒子是指可以发荧光的半导体纳米微晶体(量子点)或将荧光团(Fluorophore)通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。 1.1.量子点 量子点(quantum dot, QD)又可称为半导体纳米微晶体,是由数百到数千个原子组成的无机纳米粒子,是一种由 II-VI 族或者 III-V 族元素组成的纳米颗粒。目前研究较多的主要是CdX(X = S、Se、Te)。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。由于量子点潜在的应用前景,研究者在量子点的制备方面展开了一系列的研究。 目前,量子点的制备方法根据其所用材料的不同,有以下两种方法:一、在有机体系中采用胶体化学方法以金属有机化合物为前体制备量子点,二、在水溶液中直接合成。在有机体系采用胶体化学方法制备量子点的研究中,Bawendi等将金属有机化合物注射入热的有机溶剂中,在高温下制备出具有单分散性的CdSe量子点。后来,人们使用无机物来钝化颗粒表面,发展了核壳结构的量子点。peng等人以CdO或Cd(Ac)2为原料,在一定条件下与S、

荧光纳米粒子的介绍及应用

【专题】荧光纳米粒子的介绍及应用 荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点,在此我想作一简单介绍,希望能起到抛砖引玉的作用,如果大家觉得我有什么地方说错的话,欢迎批评指正!让我也从中受益! 1、荧光纳米粒子的分类 荧光纳米粒子是指可以发荧光的半导体纳米微晶体(量子点)或将荧光团(Fluorophore)通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。 1.1.量子点 量子点(quantum dot, QD)又可称为半导体纳米微晶体,是由数百到数千个原子组成的无机纳米粒子,是一种由II-VI 族或者III-V 族元素组成的纳米颗粒。目前研究较多的主要是CdX(X = S、Se、Te)。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。由于量子点潜在的应用前景,研究者在量子点的制备方面展开了一系列的研究。 目前,量子点的制备方法根据其所用材料的不同,有以下两种方法:一、在有机体系中采用胶体化学方法以金属有机化合物为前体制备量子点,二、在水溶液中直接合成。在有机体系采用胶体化学方法制备量子点的研究中,Bawendi等将金属有机化合物注射入热的有机溶剂中,在高温下制备出具有单分散性的CdSe量子点。后来,人们使用无机物来钝化颗粒表面,发展了核壳结构的量子点。peng等人以CdO或Cd(Ac)2为原料,在一定条件下与S、Se、Te的储备液混合,一步合成了性能良好的CdS、CdSe、CdTe量子点。Nie等以此法合成了CdSeTe量子点,其荧光发射最大的波长为850 nm,量子产率高达60%。该法不但克服了先前合成方法中需要采用(CH3)2Cd作为原料的缺点,而且所合成的量子点荧光量子产率高、尺寸分布窄、波长覆盖范围广。此外,Reiss等人在Peng的基础上以CdO为前体在HDA-TOPO混合体系中合成CdSe,然后以硬脂酸锌为锌源,在CdSe的表面包覆一层ZnSe,首次合成了CdSe/ZnSe核壳结构的量子点,荧光量子产率高达85%。另外,也有研究者采用在水溶液中进行量子点的合成,Weller等人以六偏磷酸钠及巯基乙酸、巯基乙胺等巯基化

荧光素FITC标记抗体的方法

荧光素FITC标记抗体的方法 当FITC在碱性溶液中与抗体蛋白反应时,主要是蛋白质上赖氨酸的r氨基与荧光素的硫碳胺键(thiocarbmide)结合,形成FITC-蛋白质结合物,即荧光抗体或荧光结合物。一个IgG分子中有86个赖氨酸残基,一般最多能结合15~20个,一个IgG分子可结合2~8个分子的FITC,其反应式如下 FITC-N=C=S + N-H2-蛋白质→ FITC-NS-C-N-H2-蛋白质 常用Marsshall(1958)法标记荧光抗体,也可以根据条件采用Chadwick等标记法或Clark等(1963)的透析标记法。 1.Marsshall法 (1)材料抗体球蛋白溶液、0.5mol/L(pH9.0)碳酸盐缓冲液、无菌生理盐水、异硫氰酸荧光 素、1%硫柳汞水溶液、50ml小烧杯、4℃冰箱、电磁搅拌器、透析袋、玻棒、pH7.2或 3.0的0.01mol/LPBS等。 (2)方法及步骤①抗体的准备取适量已知浓度的球蛋白溶液于烧杯中,再加人生理盐水及碳酸盐缓冲液,使最后免疫球蛋白浓度为

20mg/ml,碳酸盐缓冲液容量为总量的1/10,混匀,将烧瓴置电磁搅拌器上(速度适当以不起泡沫为宜)5~10min。 ②荧光素的准备根据欲标记的蛋白质总量,按每毫克免疫球蛋白加0.01mg荧光色素,用分析天平准确称取所需的异硫氰酸荧光素粉末。也可用下述公式计算出免疫球蛋白、荧光素的量,还可以算出需加缓冲液的量。 a.蛋白溶液:含量Amg/m1;容积Bml。 b.总蛋白量(AXB)=Crag。 c.C/20~C/10=Dmg(如蛋白含量低于20mg/ml,用C/10;如高于20mg/ml,用C/20)。 d.荧光素FITC的量:(1/50~2/100)XC=Emg。 e.巳0.5mol/L(pH9.5)碳酸盐缓冲液D/10=Fml。 f.PBS量D-(B+F)=Gml。 注:A为蛋白含量,mg/ml;B为蛋白质溶液的容积;C为蛋白总量,mg;D为常数,mg;正为荧光素的量,mg;F为碳酸盐缓冲液的容积,ml;G为PBS的容积,ml。 ③结合(或标记) 边搅拌边将称取的荧光色素渐渐加入球蛋白溶液中,避免将荧光素粘于烧瓶壁(大约在5—10min内加完),加完后,

微波合成碳纳米粒子的荧光特性和电化学发光特性

微波合成的碳纳米粒子的荧光特性和电化学特性朱慧王晓蕾李雅丽王中军杨帆和杨荣秀 2009年4月20日收到(英国剑桥大学),2009年6月22日被录用,与2009年7月被第一次作为先见性的文章发布在网上。DOI: 10.1039/b907612c 我们报告的是一个温和而又经济的通过微波热解的途径合成具有电化学发光特性的荧光碳纳米粒子。 荧光纳米半导体(例如硒化镉,碲化镉和碲化铅等等)由于它们唯一的光学和生物化学特征给予了大量的关注。然而,在传统的半导体中重金属是基本元素,而使用重金属就要担心它们的毒性、稳定性和对环境的污染。因此,探索发现良性的具有类似的光学特性的纳米晶体变成一个紧迫的任务。 近来,一种新型的而且又是唯一的明显替代品碳被大家所提倡。这种环境友好型的碳纳米晶体用激光消融石墨、电解氧化石墨或多壁纳米管、化学氧化弧光放电的单壁碳纳米管或蜡烛烟灰、和质子光放射纳米晶的方法来制备。在某些方面,我们可以把这些方法归类为自顶向下的途径来制备碳纳米粒子。同时它们也是时下最先进的水平,这些方法通常用着很复杂的过程,和或者需要很昂贵的材料和非常严格的合成条件,使得它不可能被广泛的应用到将来。作为一种选择,自底向上的化学合成荧光碳纳米粒子的的方法更让我们期待。一篇发布的非常重要的化学文献涉及到化学合成碳纳米粒子。不幸的是,这些碳纳米粒子的尺寸太大而不表现出有效的发射。最近,发现了一种一步热解方法。它是一种有效的合成高品质碳纳米粒子的途径,但是

问题仍然存在,是否这种强有效地方法能不能被实现在更广大的验证上面。此外,在在这种途径中氮分子前体是不可缺少的。于此我们报告一种在几分钟内用温和的微波热解合成荧光碳纳米粒子的途径。如我们图表一中所示,首先,将不同量的聚乙烯醇(聚乙烯醇—200)和糖(葡萄糖,果糖等等)一起放入烧杯中用蒸馏水溶解成透明溶液。然后溶液用500W微波微波2—10分钟。由于时间不同,溶液颜色从浅黄色(样品A)和到最后的深棕色(样品B),意味着形成了不同的碳纳米粒子。 图表一微波热解合成碳纳米粒子 图1分别是上面两个样品的紫外可见吸收和光致发光峰。两个样品在280nm有一个50nm窄的半宽度的吸收带。样品A在330nm激发,光致发光峰在425nm有个最高峰,从第一个吸收峰有145nm的红移(图1A)。图1B显示样品B在380nm激发下光致发光峰集中在485nm,。光子寿命同样也被测出来(图S1,ESIw)在8.70±0.05ns。寿命这样短揭示了放射性再结合自然的激发。另外,两种样品的荧光发射峰在逐渐增大的激发波长下有很大的移动。这不仅反映出了粒子不同的尺寸而且还反映出在每个碳纳米粒子上集中分布的发射阱。样品的量子产率从6.3%到3.1%(表S1,S2,ESIw)也表现不同的性能。这些在先前的报告中有比较。在一组平行控制实验中,如果不加

荧光探针

荧光探针(fluorescent probe)在化学传感、光学材料及生物检测和识别等领域得到了广泛的应用,并成为实现上述功能的一种主要的技术手段。但以传统的有机荧光染料为主的荧光探针在应用中也存在一些难以克服的缺陷。最近,无机发光量子点、荧光聚合物纳米微球、复合荧光二氧化硅纳米粒子等荧光纳米探针的相继出现,在一定程度上克服了传统有机荧光试剂的缺陷,为生物分析提供了新的发展领域,成为了近年来研究的热点,在此我想作一简单介绍,希望能起到抛砖引玉的作用,如果大家觉得我有什么地方说错的话,欢迎批评指正!让我也从中受益! 1、荧光纳米粒子的分类 荧光纳米粒子是指可以发荧光的半导体纳米微晶体(量子点)或将荧光团(Fluorophore)通过包埋、共价键连接以及超分子组装等方式引入有机或无机纳米粒子中,并让纳米粒子承担有机小分子荧光染料的检测、标记等功能。与传统的荧光染料相比,荧光纳米粒子具有更高的亮度和光稳定性,也能更加容易地实现水分散性和生物相容性。另外,随着纳米制备技术的进一步提高,对纳米粒子的尺度的精确控制及对粒子功能化手段的日臻完善,这在很大程度上使荧光纳米粒子满足了化学传感器、生物探针等领域的要求。目前荧光纳米粒子主要有无机发光量子点、荧光高分子纳米微球、复合荧光二氧化硅纳米粒子三大类。 1.1.量子点 量子点(quantum dot, QD)又可称为半导体纳米微晶体,是由数百到数千个原子组成的无机纳米粒子,是一种由II-VI 族或者III-V 族元素组成的纳米颗粒。目前研究较多的主要是CdX(X = S、Se、Te)。量子点粒径很小,它们的电子和空穴被量子限域,连续能带变成具有分子特性的分立能级结构,因此光学行为与一些大分子很相似,可以发射荧光。量子点的体积大小严格控制着它的光谱特征。量子点的晶体颗粒越小,比表面积越大,分布于表面的原子就越多,而表面的光激发的正电子或负电子受钝化表面的束缚作用就越大,其表面束缚能就越高,吸收的光能也越高,即存在量子尺寸效应,从而使其吸收带蓝移,荧光发射峰也相应蓝移。可见,相对于其他传统的荧光染料而言,量子点由于其量子尺寸效应,粒径不同或组成材料不同即可发射不同颜色的荧光。由于量子点潜在的应用前景,研究者在量子点的制备方面展开了一系列的研究。 目前,量子点的制备方法根据其所用材料的不同,有以下两种方法:一、在有机体系中采用胶体化学方法以金属有机化合物为前体制备量子点,二、在水溶液中直接合成。在有机体系采用胶体化学方法制备量子点的研究中,Bawendi等将金属有机化合物注射入热的有机溶剂中,在高温下制备出具有单分散性的CdSe量子点。后来,人们使用无机物来钝化颗粒表面,发展了核壳结构的量子点。peng等人以CdO或Cd(Ac)2为原料,在一定条件下与S、Se、Te的储备液混合,一步合成了性能良好的CdS、CdSe、CdTe量子点。Nie等以此法合成了CdSeTe量子点,其荧光发射最大的波长为850 nm,量子产率高达60%。该法不但克服了先前合成方法中需要采用(CH3)2Cd作为原料的缺点,而且所合成的量子点荧光量子产率高、尺寸分布窄、波长覆盖范围广。此外,Reiss等人在Peng的基础上以CdO为前体在HDA-TOPO混合体系中合成CdSe,然后以硬脂酸锌为锌源,在CdSe的表面包覆一层ZnSe,首次合成了CdSe/ZnSe核壳结构的量子点,荧光量子产率高达85%。另外,也有研究者采用在水溶液中进行量子点的合成,Weller等人以六偏磷酸钠及巯基乙酸、巯基乙胺等巯基化合物为稳定剂,以Cd(ClO4)2?6H2O为镉源合成了水溶性的CdS、CdSe、CdTe量子点。该法操作简单、可制备的量子点种类多、所用材料价格低、毒性小,且量子点表面修饰有可直接与生物分子偶连的羧基或氨基等官能团。然而,采用在水溶液中合成量子点的方法存在着量子产率不高、尺寸分布较宽等缺点。所以,目前人们仍较多的采用在有机体系中进行量子

荧光标记二抗的选择

荧光标记二抗的选择 来源: 生物耗材网发布日期: 2012-2-28 一般来讲,耦联到二抗上的探针主要有酶(辣根过氧化酶HRP和碱性磷酸酶AP或其衍生物APAAP,PAP),荧光基团(FITC, RRX, TR, PE, Rhodamine)和生物素。选用哪种探针的二抗主要取决于具体的实验。对于Western Blot和ELISA,最常用的二抗是酶标二抗;而细胞或组织标记实验(细胞免疫化学,组织免疫化学,流式细胞术)中通常使用荧光标记的二抗。如果想要更大程度的放大检测信号,可以使用Biotin/Avidin检测系统。其中荧光素是具有光致荧光特性的染料,荧光染料种类很多,目前常用于荧光标记二抗有以下几种: 【异硫氰酸荧光素-Fluorescein Isothiocyanate (FITC)荧光标记二抗】FITC 纯品为黄色或橙黄色结晶粉末,易溶于水和酒精溶剂。FITC分子量为389.4,最大吸收光波长为490~495nm,最大发射光波长为520~530nm,呈现明亮的黄绿色荧光。FITC在冷暗干燥处可保存多年,是目前应用最广泛的荧光素。由于FITC是小分子化合物,每一个抗体可标记几个FITC分子,IgM通常用小分子的荧光素标记,如FITC、Cy3/5、Texas Red等。FITC荧光二抗主要优点是人眼对黄绿色较为敏感,通常切片标本中的绿色荧光少于红色。然而FITC 的最大缺点是淬灭快,因此要和抗淬灭剂一起使用。 【四甲基异硫氰酸罗丹明-Tetramethyl Rhodamin Isothiocyanate(TRITC),Rhodamine Red-X(RRX), Texas Red(TR)荧光标记二抗】 这些罗丹明的衍生物耦联基团具有不同的吸收波长(550, 570, 596nm)和最大发射波长(570, 590, 620nm)。尽管TRITC经常和FITC一起在双标记实验中使用,使用RRX和TR可以得到更好的颜色区分。在使用装有氪氩灯的激光共聚焦扫描显微镜作三标记的实验时,RRX尤其有用,可以和Cy2(或者FITC)和Cy5一起使用,因为RRX的发射波长在Cy2和Cy5中间,而且和这两者覆盖都很少。氪氩灯激发光为488nm,598nm和647nm,分别是Cy2(FITC), RRX和Cy5的理想激发波长。因为FITC和PE可以被氩灯的488nm波长激发, 在流式细胞仪中用FITC作双标,另一种用藻红蛋白(PE)耦联基团要比罗丹明好。TRITC 为罗丹明的衍生物,呈紫红色粉末,较稳定。最大吸收光波长为550nm,最大发射光波长为620nm,呈现橙红色荧光,与FITC的绿色荧光对比鲜明,可配合用于双重标记或对比染色。因其荧光淬灭慢,也可用于单独标记染色。 【菁类染料-Cyanine dyes(Cy2, Cy3, Cy5)】 Cy2 耦联基团激发波长为492nm,发光为波长510nm的绿色可见光。Cy2和

第5章 常见免疫学检测技术-荧光、化学发光

第五章 常见免疫学检测技术

第二节 荧光免疫检测
l
用荧光素标记抗体或抗原,与相应的抗原或抗 体反应后,测定复合物中的荧光素,这种免疫 技术,称为荧光免疫技术
l
包括荧光抗体技术和荧光抗原技术,但在实际 工作中荧光抗原技术很少应用 荧光显微镜技术 常见技术 荧光免疫测定技术

一、荧光的基础知识
(一)荧光 (fluorescence)
?
某些物质能吸收外界能量进入激发状态,使处 于基态的电子被激发至激发态,当其再回到稳 定基态时,多余的能量会以电磁辐射的形式释 放,即发出荧光,这类物质被称为荧光素

?
由光激发所引起的荧光,为光致荧光 ------荧光免疫技术 由化学反应所引起的荧光,为化学荧光 ------化学发光技术
?
?
荧光免疫技术的标记物一般为光致荧光物质, 当受一定波长光激发后,在极短时间内发出长 于激发光波长的荧光,一旦停止供能,荧光即 消失(约持续10-7~10-8s)

?
荧光效率:指荧光物质分子将光能转变成荧光 的百分率 荧光效率= 发射荧光的光量子数/吸收光的光 量子数
?
?
发射光谱:是指固定激发波长,在不同波长下 记录的样品发射荧光的强度 激发光谱:是指固定检测发射波长,用不同波 长的激发光激发样品记录的相应的荧光强度
?

?
荧光寿命:指荧光物质被激发后所产生的荧光 衰减到一定程度时所用的时间 各种荧光物质的荧光寿命不同
?
?
荧光猝灭:荧光物质在某些理化因素作用下, 发射荧光减弱甚至消退称为荧光猝灭 荧光猝灭物质如亚甲基蓝、碱性复红、伊文思 蓝、碘溶液等
?

相关文档