文档库 最新最全的文档下载
当前位置:文档库 › 波谱解析

波谱解析

波谱解析
波谱解析

光谱分析基本定律——Lambert-Beer定律:

电磁波的波粒二象性——Planck方程:

电磁辐射按波长顺序排列称为电磁波谱(光波谱)。分区依次(短→长)为:

γ射线区→X射线区→紫外光区(UV)→可见光区→红外光区(IR)→微波区→射频区(NMR)Franck-Condon原理:①电子跃迁时认为核间距r不变,发生垂直跃迁;②电子能级跃迁时必然同时伴有多种振动能级和转动能级的变化,同理振动能级跃迁时必然同时伴有多种转动能级的变化。

有机波谱的三要素:谱峰的①位臵(定性指标)、②强度(定量指标)和③形状。

【提请注意】对《天然药物化学成分波谱解析》(以下简称“教材”)P.5图1-8不理解的同学,应注意到轨道其中的“+”“-”表示的是波函数的位相,而不是电性!

E总=E0+E平+E转+E振+E电

电子跃迁类型:

①σ→σ*、②n→σ*、③π→π*、④n→π*,其中,后两者对紫外光谱有意义。此外,还包括主要存在于无机物的⑤电荷迁移跃迁和⑥配位场跃迁。

分子和原子与电磁波相互作用,从一个能级跃迁到另一个能级要遵循一定的规律,这些规律称为光谱选律。紫外光谱所遵循的选律包括:①自选旋律和②对称性选律。

影响紫外光谱最大吸收波长(λmax)的主要因素:

①电子跃迁类型;

②发色团(生色团)和助色团;

③π-π共轭、p-π共轭和σ-π超共轭(弱);

④溶剂和介质;

〃规律:溶剂极性增大,n→π*跃迁发生篮移(紫移),π→π*跃迁发生红移。

〃总结:溶剂的选择原则即紫外透明、溶解度好、化学惰性。

〃例子:甲醇、95%乙醇、环己烷、1,4-二氧六环。

【相关概念】等色点:同一化合物在不同pH条件下测得的紫外光谱曲线相交于一点,此即~。

⑤顺反异构、空间位阻和跨环效应。

影响紫外光谱吸收强度(εmax)的主要因素:

εmax=0.87×1020×P(跃迁几率)×α(发色团的靶面积)

【提请注意】严格地说,跃迁的强度最好是用吸收峰下的面积来测量(如果是以ε对ν作图)!

吸收带:跃迁类型相同的吸收峰称为~。包括:①R带(基团型谱带)、②K带(共轭型谱带)、③B带(苯型谱带)、④乙烯型谱带(E1带、E2带)。

【学习交流】不同文献对苯的吸收带命名不甚一致,有时也把E1带、E2带和B带分别叫做180带、200带和256带。为什么?

紫外光谱中计算λmax的四大经验规则:

①Woodward-Fieser规则Ⅰ(适用于共轭二烯、共轭三烯和共轭四烯);

②Fieser-Kuhns规则(适用于共轭多烯);

λmax=114+5M+n(48-1.7n)-16.5R endo-10R exo

③Woodward-Fieser规则Ⅱ(适用于α , β不饱和羰基化合物);

④Scott规则(适用于取代苯酰基化合物,略)。

紫外分光光度计的组成:

光源→分光系统(单色器)→吸收池→检测器→记录仪

【学习交流】在红外光谱中,通常以波数为横坐标,以百分透光率为纵坐标,记录物质分子的吸收曲线,而不是以T对λ作图。为什么?

红外光谱的基本原理——Hooke定律——双原子分子作简谐振动的频率公式(以波数表示):

【学习交流】根据上式,试解释为何νX—H常常出现在IR谱图的高波数区域。思考为何倍频往往不是基频波数的整数倍。

【友情链接】式中,K为化学键力常数。其表达式为:

多原子分子的振动类型:①伸缩振动ν(键长改变,键角不变)、②弯曲振动δ(键角改变,键长不变)。

非线性分子的振动自由度为(3N-6),线性分子的振动自由度为(3N-5)。

导致红外光谱谱带减少的原因:

①在振动过程中,分子偶极矩不发生改变;

②分子结构对称,某些振动频率相同,产生简并;

③强宽峰覆盖频率相近的弱窄峰;

④有些吸收峰不在4 000~400cm-1,超出仪器的测量范围;

⑤仪器的分辨率低,使有的强度很弱的吸收峰不能检出。

红外光谱产生的基本条件:①红外辐射的能量应与振动能级差相匹配,即E光=ΔEν;②红外光与分子之间有偶合作用,即分子振动时其偶极矩必须发生变化,Δμ≠0。

【友情链接】偶极矩μ应为一矢量。μ=q l。

【相关概念】热峰:亦称热带,是指跃迁时的低能级不是基态的吸收峰。

影响红外光谱峰位的主要因素:

〃内因:①电子效应(诱导效应、共轭效应和中介效应);②空间效应(场效应、空间阻碍、环张力和跨环效应);③振动偶合效应(含Fermi共振);④氢键效应;⑤样品的物理状态。

〃外因:①溶剂;②仪器的色散元件。

对于红外光谱解析的复习主要依据:

①[日]岛内武彦的红外九区表(教材P.62表2-6);

②武汉大学化学与分子科学学院分析科学研究中心王长发老师制作的PowerPoint“红外识谱法”;

③本人创作的图(见下图)。

【学习交流】如何理解红外定性分析又被称为“指纹分析”?

不饱和度(Ω)的计算:

红外光谱中的“四先、四后、相关法”:遵循先特征区,后指纹区;先最强峰,后次强峰;先粗查,后细找;先否定,后肯定的顺序,及由一组相关峰确认一个官能团存在的原则。

当I=1/2时,核外电子云呈球形分布于核表面,不具有电四极矩。如1H、13C、15N、19F、29Si、31P等。可以认为,1H、13C分别是1H-NMR、13C-NMR的“发色团”。

自由感应衰减信号(FID)转换为核磁共振图谱(NMR)的可行性及其基本过程:(可行性分析)因为FID信号是一个随时间变化而变化的函数,而NMR信号是一个随频率变化而变化的函数。两者均包含有跃迁核的化学位移及偶合常数等信息,且正好是一组傅里叶变换对,故由测得的FID信号经傅里叶变换过程,即可转换成NMR图谱。(基本过程)计算机在进行傅里叶变换时,先对连续变化的FID信号进行取样,即进行模/数转换,然后进行快速傅里叶计算,得到一些连续的数值结果,再经数/模转换后,即可转换为连续变化的NMR图谱。可简单表示为:

FID信号→滤波→模数(A/D)转换→数字计算机→数模(D/A)转换→NMR图谱核磁共振谱的基本原理:

Δ

产生核磁共振的条件:①自旋核(I≠0);②外磁场(B0);③照射射频能量需等于核磁能级差。

【提请注意】有些教材用“H”表示磁场。在物理学上,B为磁感应强度,而H为磁场强度,均为矢量。二者关系为:

B=μH

请注意区别。本文使用B表示磁场。

化学位移的定义:

样品标准

仪器样品标准

仪器

常用的化学位移参比物质:①四甲基硅烷(TMS)、②4,4-二甲基-4-硅代戊磺酸钠(DSS)、③六甲基二硅醚(HMDS)。

【学习交流】试写出上述参比物质的结构式。

选择TMS 作为内标物质的原因:TMS在化学上是惰性的。它的十二个质子呈球形分布,因此是磁各向同性的。其沸点低,易挥发。它与许多有机溶剂易于混溶。它的吸收信号是一个尖锐的单峰,而且与一般的有机化合物比较,它的质子吸收峰都处在高场的位臵,很容易辨识。

影响核磁共振氢谱化学位移的主要因素:

①诱导效应;

②共轭效应;

③各向异性效应;

④范德华效应;

⑤氢键效应(活动质子效应);

⑥溶剂效应。

n+1规律:当一种1H核有n个相邻近(指不超过三个键)的磁等价的1H核存在时,则此种1H核的吸收峰裂分为

(2nI+1)

重峰。对质子而言I=1/2,所以是(n+1)重峰。峰间距即偶合常数J。裂分峰的相对强度之比符合二项式

(a+1)n

展开式各项系数之比。以上运用n+1规律进行的分析通常称为一级分析或一级谱分析。要求:

Δν/J≥6

①同碳偶合(2J=10~16Hz);

②邻碳偶合(3J=6~8Hz);

Karplus公式:

3J=A+B cosφ+C cos2φ

③远程偶合(J=0~3Hz)。

复杂图谱的简化——核磁共振波谱的辅助方法:

①高磁场核磁共振波谱;

②化学位移试剂;

③多重照射;

④核的Overhauser效应(NOE或nOe);

⑤重氢交换;

⑥溶剂效应。

13C-NMR谱的特点:①灵敏度低;②分辨率高;③图谱复杂;④可以区分碳原子级数;⑤13C核的T

1较长(自旋-晶格弛豫、纵向弛豫的半衰期);⑥谱峰强度不与碳原子数成正比;⑦NOE增益;⑧溶剂峰。

13C-NMR谱的实验技术:

〃①脉冲傅里叶变换技术(PFT-NMR)[早期为CW(连续波)-NMR];

〃异核双共振技术:

②质子宽带去偶(BBD);

③质子偏共振去偶(OFR)——不完全去偶;

④选择质子去偶(SEL)和远程选择质子去偶(LSPD);

⑤门控去偶和反门控去偶——定量碳谱。

影响核磁共振碳谱化学位移的主要因素:

〃内因:①碳原子的轨道杂化(sp3:δ0~100,sp:δ60~130,sp2:δ100~220);②诱导效应;③空间效应(γ-效应);④缺电子效应;⑤共轭效应和超共轭效应;⑥取代基的数目;⑦重原子;⑧分子内氢键。

〃外因:①介质效应(稀释位移、溶剂位移、pH位移);②温度效应;③顺磁离子效应。

各类有机化合物官能团的13C化学位移δ值

类型/化合物δ

类型/化合物δC

C

烷烃不饱和烃

环丙烃0~8 炔75~95

环烷烃5~25 烯100~143

RCH35~25 芳环110~133

R2CH222~45 羰基化合物

R3CH 30~58 RCOOR 160~177

R4C 28~50 RCONHR 158~180

卤代烷RCOOH 160~185 CH3X 5~25 RCHO 185~205

3

胺Ar—X 120~160 CH3NH210~45 Ar—O 130~160 RCH2NH245~55 Ar—N 130~150 R2CHNH250~70 Ar—P 120~130 R3CNH260~75 RCH2S 22~42 醚RCH

P 10~25

2

CH3OR 45~60

RCH2OR 42~70

R2CHOR 65~77

碳原子级数的测定——DEPT(无畸变极化转移增强)法:

①DEPT45谱:除季碳不出峰外,其余的CH3、CH2和CH都出峰,且为正峰;

②DEPT90谱:除CH出正峰外,其余的碳均不出峰;

③DEPT135谱:CH3和CH出正峰,CH2出负峰,季碳不出峰。

【学习交流】思考为何实际应用中只需测DEPT90谱和DEPT135谱即可确定碳原子的级数。二维核磁共振谱(2D-NMR)的分类:

①J分解谱(δ-J谱);

②化学位移相关谱(δ-δ谱)——2D-NMR的核心;

③多量子谱。

2D-NMR的表现形式:①堆积图;②等高线图。

常见的2D-NMR谱:

〃2D J谱:

①同核2D J分解谱(HOMO-2D J);

②异核2D J分解谱(HETERO-2D J);

〃2D相关谱:

③同核2D-NMR相关谱(HOMO-COSY);

④异核2D-NMR相关谱(HETERO-COSY);

荷比大小依次抵达检测器,信号经放大,记录得到质谱。这种形成过程与光谱形成过程有点类似。质谱仪中的离子源、质量分析器和检测器分别类似于光谱仪中的光源、单色器和检测器。而且,质谱能给出分子量,从其裂解方式可以证明所提出结构的正确性,从而与紫外光谱、红外光谱、核磁共振波谱三者起到相互论证、相辅相成的作用。

质谱仪的组成:

〃基本系统:①离子源、②质量分析器(核心)、③离子检测器;

〃辅助系统:④真空系统、⑤进样系统。

质谱仪的性能指标:

①质量测定范围;

②分辨率:

大小

③灵敏度;

④质量稳定性和质量精度(准确度)。

质谱的基本原理——质量色散——质谱基本公式:

【友情链接】离子所受的力称为Lorentz力。你还记得吗?

离子源的电离方式:

最普遍的硬电离——①电子轰击离子化(EI);

常用的软电离:②化学电离(CI);③场电离(FI);④场解吸(FD);⑤快原子轰击(FAB);⑥电喷雾离子化(ESI)。

常见的质量分析器:

①磁分析器;

②飞行时间分析器(TOF);

③四极滤质分析器(QMF);

④离子阱分析器(IT);

⑤傅里叶变换离子回旋共振分析器(FT ICR)。

仪器分析联用技术:①串联质谱(MS-MS);②气相色谱-质谱联用(GC-MS);③液相色谱-质谱联用(LC-MS)。

质谱中离子的类型:

①分子离子(确定分子量);

分子离子的判断:

三个必要(不充分)条件:

〃在质谱图中必须是最高质量的离子(同位素离子、准分子离子除外);

〃必须是一个奇电子离子(OE+〃)(指EI离子源);

〃在高质量区,能合理地丢失中性碎片而产生重要的碎片离子。

此外,还应考虑:

〃分析碎片离子;

〃区别分子离子与[M+1]+和[M-1]-。

不出现分子离子峰的补救方法:

〃降低轰击电子的能量;

〃改用软电离方法;

〃降低样品的汽化温度;

〃制备衍生物。

②同位素离子(确定分子式);

峰强比符合二项式

(a+b)n

展开式各项系数之比。如:

〃分子中含一个Cl,峰强比M:(M+2)=3:1;

〃分子中含两个Cl,峰强比M:(M+2):(M+4)=9:6:1;

〃分子中含三个Cl,峰强比M:(M+2):(M+4):(M+6)=27:27:9:1;

〃分子中含一个Br,峰强比M:(M+2)=1:1;

〃分子中含两个Br,峰强比M:(M+2):(M+4)=1:2:1;

〃分子中含三个Br,峰强比M:(M+2):(M+4):(M+6)=1:3:3:1。

③碎片离子(提示结构单元);

④重排离子(“母子”离子对在质量数的奇偶性上保持不变);

⑤亚稳离子(推断离子间的裂解关系);

⑥准分子离子(辅助判断分子离子):

表观质量

⑦多电荷离子(由非常稳定的分子产生,扩大质谱仪的质量测定范围);

⑧簇离子(略);

⑨负离子(少用)。

裂解反应机制:①自由基、电荷定域理论(McLafferty);②能量稳定理论(Williams)。裂解类型:

①单纯裂解:

〃自由基中心诱导的α裂解,对应于均裂;

〃电荷中心诱导的i裂解,对应于异裂;

〃简单键断裂的σ裂解。

②重排:

〃McLafferty重排(麦氏重排);

〃RDA裂解[Retro(逆)-Diels Alder裂解]

③复杂裂解;

④双重重排。

影响质谱裂解反应方向的主要因素:

①化学键的强度;

③偶电子规则;

④【友情链接】Stevenson规则:OE+〃裂解时电离能较低的碎片离子有较高的形成概率。

分子式的确定——①同位素丰度法:

对于C w H x N y O z,有

【提请注意】上式表明,若分子中含有n个碳原子,其M+1峰的强度约为M峰的n×1.1%。

亦可以检索Beynon表。

分子式的确定——②高分辨质谱法:

检索Lederberg表。

辅助性物理化学性质(参数):①物态、②熔点、③沸点、④旋光性、⑤折射率、⑥溶解度、⑦极性、⑧灰分……

经典元素分析法——钠熔法

波谱综合解析的方法论:任何一种有机波谱分析方法都不能单独提供有机化合物的完整结构,而只能从各自的侧面反映分子骨架和部分结构(基团或原子团)的信息,所以为了确认(验证化合物结构是否与预想的一致)或剖析(推断未知化合物结构)有机分子结构,必须将四大谱和其他分析方法获得的信息和数据在彼此相互补充和印证的基础上进行综合解析。综合解析不一定要求四大谱谱图齐备,重要的是在结构分析的每一阶段工作中必须明确已解决和遗留的问题,而后根据分析方法的特点和它所能提供信息的性质,选用合适的手段去解决剩余结构问题。虽然从某一种有机波谱图中反映出的结构信息即可确定某种官能团的存在,但在实际解析过程中,分子中某个官能团的存在应该在各种谱图中(有时在多数谱图中)都有所反映,至少和每个谱图不应有矛盾。也就是说某个官能团的存在可在多个谱图中找到证据,并且各种谱图可以互相论证。一般复杂化合物的结构分析可首先用质谱或元素分析数据来确定分子式;然后根据红外光谱推断所存在的官能团;接着根据核磁共振谱推断分子骨架;再根据紫外光谱判断有没有共轭体系、属何种共轭体系;综合质谱、红外、核磁和紫外所得的信息推断出结构式;最后再根据质谱的碎片离子判断结构式是否合理。

波谱综合解析的一般步骤(原则):

①了解样品信息;

②初步观察各种谱图并得出一些明显的结论;

③分子式的确定和不饱和度的计算;

〃元素分析法确定分子式;

〃质谱同位素丰度比确定分子式;

〃高分辨质谱确定分子式;

〃核磁共振谱确定分子式。

④推断结构单元和工作结构;

〃通过谱图解析确定分子中存在的官能团和结构单元;

〃确定结构单元连接方式并组成工作结构。

⑤确定正确结构;

⑥验证结构。

【学习交流】在你看来,结构的验证应该包括哪几个方面?与同学交流一下。

【提请注意】综合解析中,MW指分子量(即molecular weight)。

不难推出,此化合物为:

Ph—CO—CO—Ph

有机波谱分析知识点

有机波谱分析知识点

名词解析 发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。 助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。 红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。 蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。 增色效应(hyperchromic effect):使吸收强度增加的作用。 减色效应(hypochromic effect):使吸收强度减弱的作用。 吸收带:跃迁类型相同的吸收峰。 指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。但该区中各种官能团的特征频率不具有鲜明的特征性。 共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。 诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。 核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。 化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。 弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。 分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。 基峰:质谱图中表现为最高丰度离子的峰。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 麦氏重排(McLafferty rearrangement):具有不饱和官能团 C=X(X为O、S、N、C等)及其γ-H原子结构的化合物,γ-H原子可以通过六元环空间排列的过渡态,向缺电子(C=X+ )的部位转移,发生γ-H的断裂,同时伴随 C=X的β键断裂,这种断裂称为麦氏重排。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 自旋裂分:因自旋偶合而引起的谱线增多现象称为自旋裂分。 1.紫外光谱的应用 (1).主要用于判断结构中的共轭系统、结构骨架(如香豆素、黄酮等) (2).确定未知化合物是否含有与某一已知化合物相同的共轭体系。 (3).可以确定未知结构中的共轭结构单元。 (4).确定构型或构象 (5).测定互变异构现象 2.分析紫外光谱的几个经验规律 (1).在200~800nm区间无吸收峰,结构无共轭双键。

波谱解析名词解释

紫外吸收光谱 1. 紫外吸收光谱系分子吸收紫外光能、发生价电子能级跃迁而产生的吸收光谱,亦称电子光谱。 2. 曲折或肩峰:当吸收曲线在下降或上长升处有停顿或吸收稍有增加的现象。这种现象常由主峰内藏有其它吸收峰造成。 3. 末端吸收:是指紫外吸收曲线的短波末端处吸收增强,但未成峰形。 4. 电子跃迁选律:P9 5. 紫外吸收光谱的有关术语:P12-13 6. Woodward-fieser规则: P21 7. Fieser-kuhns规则:P23 红外吸收光谱 1. 振动偶合:分子内有近似相同振动频率且位于相邻部位(两个振动共用一个原子,或振动基团间有一个公用键)的振动基团,常常彼此相互作用,产生二种以上基团参加的混合振动,称之为振动偶合。 2. 基频峰:本征跃迁产生的吸收带称为本征吸收带,又称基频峰。 3. 倍频峰:由于真实分子的振动公是近似的简谐振动,不严格遵守⊿V=±1的选律,也可产生⊿V=±2或±3等跃迁,在红外光谱中产生波数为基频峰二倍或三倍处的吸收峰(不严格等于基频峰的整数倍,略小)称为倍频峰。 4. 结合频峰:基频峰间的相互作用,形成频率等于两个基频峰之和或之差的峰,叫结合频峰。 5. 泛频峰:倍频峰和结合频峰统称为泛频峰。 6. 热峰:跃迁发生在激发态之间,这种跃迁产生的吸收峰称为热峰。 7. 红外非活性振动:不产生红外吸收的振动称红外非活性振动。 核磁共振光谱 1. 磁偶极子:任何带电物体的旋转运动都会产生磁场,因此可把自旋核看作一个小磁棒,称为磁偶极子。 2. 核磁距:核磁偶极的大小用核磁矩表示。核磁矩与核的自旋角动量(P)和e/2M的乘积成正比。 3. 进动:具有磁矩的原子核在外磁场中一方面自旋一方面以一定角度(θ)绕磁场做回旋运动,这种现象叫做进动。 4. 核磁共振:当射频磁场的能量()等于核自旋跃迁能时(),即旋转磁场角频率()与核磁矩进动角频率()相等时,自旋核将吸收射频场能量,由α自旋态(低能态)跃迁至β自旋态(高能态)。即,核磁矩对的取向发生倒转,这种现象称之为核磁共振。 5. 饱和:在外加磁场中,低能级核吸收射频能量被激发至高能级产生核磁共振信号,结果使低能级核起来越少,结果是低高能级的核数目相等,体系净能量吸收为0,共振信号消失。 6.弛豫:高能态的核须通过其它适当的途径将其获得的能量释放到周围环境中去,使其回到低能态,这一过程称为弛豫。 7. 纵向弛豫:是高能态核释放能量(平动能、转动能)转移给周围分子骨架中的其它核回到平衡状态的过程。(气体和低黏度的液体中) 8. 横向弛豫:高能级核与低能级核相互通过自旋状态的交换而实现能量转移,每种自旋状态的总数并未改变,但使某些高能级核的寿命减短。(固体和高黏度液中) 9. 核磁共振波谱仪的组成:磁铁磁场扫描发生器---平行安放的线圈,用于有一个小范围内

波谱解析

光谱分析基本定律——Lambert-Beer定律: 电磁波的波粒二象性——Planck方程: 电磁辐射按波长顺序排列称为电磁波谱(光波谱)。分区依次(短→长)为: γ射线区→X射线区→紫外光区(UV)→可见光区→红外光区(IR)→微波区→射频区(NMR)Franck-Condon原理:①电子跃迁时认为核间距r不变,发生垂直跃迁;②电子能级跃迁时必然同时伴有多种振动能级和转动能级的变化,同理振动能级跃迁时必然同时伴有多种转动能级的变化。 有机波谱的三要素:谱峰的①位臵(定性指标)、②强度(定量指标)和③形状。 【提请注意】对《天然药物化学成分波谱解析》(以下简称“教材”)P.5图1-8不理解的同学,应注意到轨道其中的“+”“-”表示的是波函数的位相,而不是电性!

E总=E0+E平+E转+E振+E电 电子跃迁类型: ①σ→σ*、②n→σ*、③π→π*、④n→π*,其中,后两者对紫外光谱有意义。此外,还包括主要存在于无机物的⑤电荷迁移跃迁和⑥配位场跃迁。 分子和原子与电磁波相互作用,从一个能级跃迁到另一个能级要遵循一定的规律,这些规律称为光谱选律。紫外光谱所遵循的选律包括:①自选旋律和②对称性选律。 影响紫外光谱最大吸收波长(λmax)的主要因素: ①电子跃迁类型; ②发色团(生色团)和助色团; ③π-π共轭、p-π共轭和σ-π超共轭(弱); ④溶剂和介质; 〃规律:溶剂极性增大,n→π*跃迁发生篮移(紫移),π→π*跃迁发生红移。 〃总结:溶剂的选择原则即紫外透明、溶解度好、化学惰性。 〃例子:甲醇、95%乙醇、环己烷、1,4-二氧六环。 【相关概念】等色点:同一化合物在不同pH条件下测得的紫外光谱曲线相交于一点,此即~。 ⑤顺反异构、空间位阻和跨环效应。 影响紫外光谱吸收强度(εmax)的主要因素: εmax=0.87×1020×P(跃迁几率)×α(发色团的靶面积) 【提请注意】严格地说,跃迁的强度最好是用吸收峰下的面积来测量(如果是以ε对ν作图)! 吸收带:跃迁类型相同的吸收峰称为~。包括:①R带(基团型谱带)、②K带(共轭型谱带)、③B带(苯型谱带)、④乙烯型谱带(E1带、E2带)。 【学习交流】不同文献对苯的吸收带命名不甚一致,有时也把E1带、E2带和B带分别叫做180带、200带和256带。为什么? 紫外光谱中计算λmax的四大经验规则: 基 ①Woodward-Fieser规则Ⅰ(适用于共轭二烯、共轭三烯和共轭四烯); ②Fieser-Kuhns规则(适用于共轭多烯); λmax=114+5M+n(48-1.7n)-16.5R endo-10R exo ③Woodward-Fieser规则Ⅱ(适用于α , β不饱和羰基化合物);

波谱原理及解析 常建华版(第二版)习题答案

《波谱原理及解析》(二版)习题参考答案 第2章 UV (1)有机分子常见的有σ→σ* 、n →σ*、 π→π*、n →π* 跃迁、还有电荷转移跃迁和配位体场微扰 的d →d *跃迁等。得到紫外-可见吸收光谱的主要是π→π*、n →π* 跃迁;含原子半径较大的杂原子的n→σ*跃迁造成;还有电荷转移跃迁和配位体场微扰的d →d *跃迁。 (2)a. 227; b.242; c.274; d.286; e.242; f.268; g.242; h.353; i.298; j.268。 (3)(1)可以,232,242;(2)可以,237,249;(3)可以257,222;(4)可以,259, 242。 (4)上式:蓝移,ε变小,参见书; 下式:蓝移,ε变小,参见书。 (5)2.65?104 (6)258nm (11000)为对硝基苯甲酸;255nm (3470)为邻硝基苯甲酸。后者有位阻,共轭差。 (7)乙酰乙酸乙酯有烯醇式和酮式,烯醇式有共轭体系,其π→π*在240nm 附近。可见溶剂极性小,烯 醇式多,ε大。 (8). (9).为B ,254nm (10).H 2C 3 CH 3 (11).样品在水中不溶,丙酮和苯的透明下限太大,水、丙酮和苯不能用。乙醇、环己烷、甲醇可用,乙 醇最好,无毒、便宜,且测定后与文献值对照不用做溶剂校正。 (12).A 大,因A 中的NH 2上的未共用电子对与苯环形成共轭,而B 上的NH 2上的未共用电子对与苯环不 形成共轭。 第3章 IR (1).不一定,只有有偶极距变化的振动产生红外吸收。 (2)υC=O 的大小:RCOOR ’>RCOR ’>RCONHR ’ (3)A 的υC=O 大,B 有二甲氨基给电子共轭效应。 (4)(a )p-CH 3-Ph-COOH 与Ph-COOCH 3不同,前者有COOH 、对二取代;后者有酯基及单取代 苯。所以,在3200~2500、900~650cm -1处不一样。另外,后者有1330~1230 cm -1最强峰,无955~915 cm -1宽峰;前者有3200~2500特征峰、955~915 cm -1宽峰,最强峰为υC=O 。 (b )苯酚有单取代苯环,3100~3000、1625~1450、900~650的相关吸收;环己醇在 3000~2800、~1465有相关吸收。δOH 和υC-O 的吸收位置也不一样。 (5)A 是环状酸酐,有两个υC=O ;B 是内酯,有1个υC=O 。 (6)为前者。 (7)Ph-COCH 3 ; (8)p-NO 2-Ph-CHO; (9)1-辛烯, (10)(a )1738 cm -1、1650 cm -1、1717 cm -1 分别B 、C 、A 的υC=O ;(b) 当溶剂极性减小时烯醇式 增多,故C 增强,A 、B 减弱;(c) 此强吸收对应着烯醇式中αβ不饱和酯的UV 光谱,溶剂由乙醇 33C CH 3CH 23333 (242nm)

波谱解析汇报考精彩试题库

实用文档 波谱解析考试题库 一、紫外部分 1. C H 3 H 2 S O 4 C -O H B C H 3 B C 9 H 1 4 ,λ m ax 24 2 n m , B. 其可能的结构为: 解:其基本结构为异环二烯烃,基值为 217nm:所以,左边: 母体:217 取代烷基:+3×5 λmax=217+3×5=232 右边:母 体:217 取代烷基:+4×5 环外双键:1×5 λmax=217+4×5+1×5=242 故右式即为 B。 2. 某化合物有两种异构体: CH3-C(CH3)=CH-CO-CH3 CH2=C(CH3)-CH-CO-CH3 一个在 235nm 有最大吸收,ε=1.2×104。另一个超过 220nm 没有明显的吸收。试鉴定这两种异构体。 解:CH3-C(CH3)=CH-CO-CH3 有共轭结构,CH2=C(CH3)-CH-CO-CH3 无共轭结构。前者在 235nm 有最大吸收,ε=1.2×104。后者超过 220nm 没有明显的吸收。1. 3. 紫外题

实用文档 1 标

解:(1)符合朗伯比尔定律 (2)ε==1.4*103 (3)A=cεl c= = =2.67*10-4mol/l C=2.67*10-4*100=1.67*10-2 mol/l 4. 从防风草中分离得一化合物,其紫外光谱λmax=241nm,根据文献及其它光谱测定显示可能为松香酸(A)或左旋海松酸(B)。试问分得的化合物为何? A、B结构式如下: COOH COOH (A)(B) 解: A:基值217nm B:基值217nm 烷基(5×4)+20nm 同环二烯+36nm 环外双键+5nm 烷基(5×4)+20nm λmax=242nm λmax=273nm 由以上计算可知:结构(A)松香酸的计算值(λ =242nm)与分得的化合 max =241nm)最相近,故分得的化合物可能为松香酸。 物实测值(λ max 5. 若分别在环己烷及水中测定丙酮的紫外吸收光谱,这两张紫外光谱的n→π*吸收带会有什么区别? 解析:丙酮在环己烷中测定的n→π*吸收带为λ =279nm(κ=22)。而在水 max 中测定时,吸收峰会向短波方向移动,跃迁概率也将减小。 2

波谱分析

一、概述 元素分析:C.H.N.X.S.P ℅含量,经典分析:m.p ,b.p ,折光率 官能团特征反应:生成衍生物 缺点:繁琐,费时,不准确,有干扰 现代有机分析的两大支柱 1.色谱分析:GC, HPLC, TLC 裂解色谱成分分析2.波谱分析:UV,IR,NMR,MS (有机)结构分析 色谱分析:具有高效分离能力可以把复杂有机混合物分离成单一的纯组分。为有机结构分析服务 波谱分析:纯样品进行结构分析 微量化 测量快 结果准确 重复性好 除MS 之外,可回收样品 1.灵敏度:MS >UV >IR >1HNMR >13CNMR MS:微克级 UV: ppb 级 IR :毫克级(可微克级,FTIR )( 1HNMR :0.5mg 13CNMR : 0.5mg )可回收 质谱(MS )—分子量及部分结构信息、红外光谱(IR )—官能团种类、紫外—可见光谱(UV / Vis )—共轭结构、核磁共振谱(NMR )—C-H 骨架及所处化学环境 第二章 紫外-可见吸收光谱 有机化合物的UV 吸收位于200-400nm 之间(近紫外),V 吸收位于400-800nm 之间(可见),真空(远)U V :< 200 n m σ→ σ*跃迁吸收,石英器皿应用范围 :2 0 0 – 3 0 0 n m 、玻璃器皿应用范围 :> 3 0 0 n m 郎伯-比耳(Beer-Lambert)定理 A = l o g I 0 / I = l o g 1 / T = εc L 四种主要跃迁所需能量ΔΕ大小顺序:n →π*<π→π*< n →σ*< σ→σ* π→π* K 带(跃迁允许)ε 10 4~5 n →σ* R 带(跃迁禁阻) ε≯2 0 0 0 溶剂效应 溶剂极性增大,π—π*跃迁向红移,ΔE = h ν=h/λ、n —π*跃迁向蓝移,精细结构消失 有机化合物的电子吸收光谱:饱和烃 仅有σ→σ* 跃迁 吸收光谱 λ<200nm 含杂原子饱和烃 含O 、S 、 N 和卤素等的 饱和烃衍生物则有σ→σ* 及n →σ* 跃迁需能量大。 150~250nm 发(生)色团:能吸收紫外或可见光而跃迁的基团,主要为含有π键的不饱和基团。如-C=C-、-C=O 、-NO 2、—N =N —、乙炔基、腈基等。 增(助)色团: 含杂原子的饱和基团。如-OH 、-OR 、-NH 2、-NHR 、-X 、-SH,本身无增色功能,不能吸收λ>200nm 光,但当它们与发色团相连时, 会发生n-π*共轭,E π→π*降低,使发色团的吸收波长移向长波,吸收强度(ε)增加 不饱和烃:有σ→σ*, π→π* 跃迁 单个双键,λ在远紫外,含两个双键,但不共轭,则与单个双键类似 共轭双键,λ红移,共轭体系越大红移越明显。当双键与杂原子相联则π→π* 红移,吸收增强 当双键上含杂原子又与杂原子相联,则 n →π* 蓝移 醛、酮、羧酸、酯有σ→σ*,n →π*,λmax =270~300nm,ε10~20, R 带,醛酮的特征 n →σ*, λmax ~180nm,ε10~20, π→π* , λmax ~150nm,ε10~20 Woodward-Fieser 经验规律:(π-π* K 带) 5.α,β—不饱和醛、酮 C C C C C O αβγδ δC C C O αββ

波谱解析名词解释

《波谱解析名词解释》 1.助学团:某些饱和的原子团本身在近紫外区无吸收的,并不“发色”,但其与发色团相连或共轭时,能使发色团的吸收峰长波方向移动,强度增强,这些基团称为助色团。常用的助色团有—OH,—OR,—NR2,—SR,—Cl,—Br,—I等。 2.发色团:有机化合物分子结构中有能吸收紫外光或可见光的基团,此类基团称为发色团。 3红移:由于化学环境的变化而导致吸收峰长波方向移动的现象叫做红移。 4蓝移:导致吸收峰向短波方向移动的现象叫做蓝移。 5.增色效应:使紫外吸收强度增加的作用。 6.减色效应:使紫外吸收强度降低的作用。第二章红外光谱 1费米(Fermi)共振:由频率相近的倍频峰和基频峰相互作用产生,结果使倍频峰的强度增大或发生裂分。 2伸缩振动:沿键轴方向发生周期性变化的振动称为伸缩振动。 3弯曲振动:沿键角发生周期性变化的振动称为弯曲振动。 4基频峰:从基态跃迁到第一激发态时将产生一个强的吸收峰,即基频峰。 5倍频峰:从基态跃迁到第二激发态,第三激发时将产生相应弱的吸收峰,即倍频峰。6振动自由度:将多原子分子的复杂振动分解成若干个简单的基本振动,这些基本振动的数目称为分子的振动自由度。 7指纹区:在红外光谱中,波数在1330~667cm-1范围内称为指纹区 8振动偶合效应:当两个相同的基团在分子中靠得很近时,其相应的特征峰常发生分裂,形成两个峰,这种现象叫作振动偶合。 9诱导效应:在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。 10共轭效应:共轭体系中电子离域现象称为共轭效应。 第三章 1化学位移:是指将待测氢核共振峰所在位置与某基准物质氢核所在的位置进行比较,

有机波谱综合谱图解析

综合谱图解析 1.某未知物分子式为C5H12O,它的质谱、红外光谱以及核磁共振谱如图,它的紫外吸收光谱在200 nm以上没有吸收,试确定该化合物结构。并解释质谱中m/z 57和31的来源。

2?待鉴定的化合物(I )和(II )它们的分子式均为C 8H 12O 4。它们的质谱、红外 光谱和核磁共振谱见图。也测定了它们的紫外吸收光谱数据:(I )入max 223nm , S 4100; (II )入max 219nm 2300,试确定这两个化合物。 未之物(I )的谱图 127 100-1 - 10 10 曲 凹 M 亠亲) ? 册 -J P 科 J S W

未之物(II)的谱图

3、某未知物的分子式为C 9H 10O 2,紫外光谱数据表明:该物入max 在26 4、262 I? 257、252nm (&maxIOI 、158、147、194、153);红外、核磁数据如图所示,试 0 LOtMio. sopoiggg 翌g 嚴效 却31卿]卿丄电00 uyo iw mo 推断其结构,并说明理 由。 ! \ \ 「 1 CCh 1 I J —' 1 1 _■ ____ __ _ ,B . _ ,- T J.亠」亠亠」亠 | * --------------- U 5>0 4. 0 d/ppm

4.某未知物C ii H i6的UV 、IR 、中NMR 、MS 谱图及13C NMR 数据如下,推导 未知物结构。 序号 S c ( ppm ) 碳原子个数 序号 S c ( ppm ) 碳原子个数 1 143.0 1 6 32.0 1 2 128.5 2 7 31.5 1 3 128.0 2 8 22.5 1 4 125.5 1 9 10.0 1 5 36.0 1 MS(E[] 100 so 30D A/tnn 350 血 >0624*68<)2 4 內 OS n 2 2 98765^43211 0SU 'H bMRfCDCI^

有机波谱分析知识点

名词解析 发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。 助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。 红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。 蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。 增色效应(hyperchromic effect):使吸收强度增加的作用。 减色效应(hypochromic effect):使吸收强度减弱的作用。 吸收带:跃迁类型相同的吸收峰。 指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。这种情况就像人的指纹一样,因此称为指纹区。指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。但该区中各种官能团的特征频率不具有鲜明的特征性。 共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。 诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。 核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。 化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。 弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。 分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。 基峰:质谱图中表现为最高丰度离子的峰。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 麦氏重排(McLafferty rearrangement):具有不饱和官能团 C=X(X为O、S、N、C 等)及其γ-H原子结构的化合物,γ-H原子可以通过六元环空间排列的过渡态,向缺电子(C=X+ )的部位转移,发生γ-H的断裂,同时伴随 C=X的β键断裂,这种断裂称为麦氏重排。 自旋偶合:是磁性核与邻近磁性核之间的相互作用。是成键电子间接传递的,不影响磁性核的化学位移。 自旋裂分:因自旋偶合而引起的谱线增多现象称为自旋裂分。 1.紫外光谱的应用 (1).主要用于判断结构中的共轭系统、结构骨架(如香豆素、黄酮等) (2).确定未知化合物是否含有与某一已知化合物相同的共轭体系。 (3).可以确定未知结构中的共轭结构单元。 (4).确定构型或构象 (5).测定互变异构现象 2.分析紫外光谱的几个经验规律 (1).在200~800nm区间无吸收峰,结构无共轭双键。 (2).220~250nm,强吸收(εmax在104~2?104之间),有共轭不饱和键(共轭二烯,α,β-不饱和醛、酮)

波谱分析知识全书总结

波谱分析(spectra analysis) 波谱分析的内涵与外延: 定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等) 特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等 化合物:一般为纯的有机化合物 分子结构:分子中原子的连接顺序、位置;构象,空间结构 仪器分析(定量),波谱分析(定性) 综合性、交叉科学(化学、物理、数学、自动化、计算机) 作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。 课程要求:本课将在学生学习有机化学、分析化学、物理化学等课程的基础上,系统讲授紫外光谱(UV)、红外光谱(IR)、核磁共振光谱(NMR)和质谱(MS)这四大光谱的基本原理、特征、规律及图谱解析技术,并且介绍这四大光谱解析技术的综合运用,培养学生掌握解析简单有机化合物波谱图的能力。为学习中药化学有效成分的结构鉴定打下基础。 第一章紫外光谱(ultraviolet spectra,UV) 一、电磁波的基本性质和分类 1、波粒二象性 光的三要素:波长(λ),速度(c),频率(v) 电磁波的波动性 光速c:c=3.0 x 1010 cm/s 波长λ :电磁波相邻波峰间的距离。用nm,μm,cm,m 等表示 频率v:v=c/ λ,用Hz 表示。 电磁波的粒子性 光子具有能量,其能量大小由下式决定: E = hν = hc/λ(式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s ) 电磁波的分类

波谱分析习题解析

核磁共振波谱分析法习题 二、选择题 1.自旋核7Li、11B、75As, 它们有相同的自旋量子数Ι=3/2, 磁矩μ单位为核磁子,μLi=3.2560, μB=2.6880, μAs =1.4349 相同频率射频照射,所需的磁场强度H大小顺序为 ( ) A B Li>B B>B As B B As>B B>B Li C B B>B Li>B As D B Li>B As>B Li 2.在 O-H 体系中,质子受氧核自旋-自旋偶合产生多少个峰 ? ( ) A 2 B 1 C 4 D 3 3.下列化合物的1H NMR谱,各组峰全是单峰的是 ( ) A CH3-OOC-CH2CH3 B (CH3)2CH-O-CH(CH3)2 C CH3-OOC-CH2-COO-CH3 D CH3CH2-OOC-CH2CH2-COO-CH2CH3 4.一种纯净的硝基甲苯的NMR图谱中出现了3组峰, 其中一个是单峰, 一组是二重峰,一组是三重峰。该化合物是下列结构中的 ( ) 5.自旋核7Li、11B、75As, 它们有相同的自旋量子数Ι=3/2, 磁矩μ单位为核磁子,μLi=3.2560, μB=2.6880, μAs =1.4349 相同频率射频照射, 所需的磁场强度H大小顺序为( )

A B Li>B B>B As B B As>B B>B Li C B B>B Li>B As D B Li>B As>B Li 6.化合物CH3COCH2COOCH2CH3的1H NMR谱的特点是 ( ) A 4个单峰 B 3个单峰,1个三重峰 C 2个单峰 D 2个单峰,1个三重峰和1 个四重峰 7.核磁共振波谱法中乙烯、乙炔、苯分子中质子化学位移值序是 ( ) A 苯 > 乙烯 > 乙炔 B 乙炔 > 乙烯 > 苯 C 乙烯 > 苯 > 乙炔 D 三者相等 8.在下列因素中,不会使NMR谱线变宽的因素是 ( ) A 磁场不均匀 B 增大射频辐射的功率 C 试样的粘度增大 D 种种原因使自旋-自旋弛豫(横向弛豫)的速率显著增大 9.将(其自旋量子数I=3/2)放在外磁场中,它有几个能态 ( ) A 2 B 4 C 6 D 8 10.在下面四个结构式中 哪个画有圈的质子有最大的屏蔽常 数?() 11.下图四种分子中,带圈质子受的屏蔽作用最大的是( )

波谱分析教学大纲

教学大纲 课程名称现代波谱分析课程负责人刘博静 开课系部化学与化工学院教研室第一基础教研室 二0一五年九月一日

《现代波谱分析》教学大纲 一、课程基本信息 课程编号: 中文名称:现代波谱分析 英文名称:Modern Spectrum Analysis 适用专业:应用化学专业 课程性质:专业方向选修课 总学时:36 (其中理论教学28学时,实验教学8学时) 总学分:2 二、课程简介 《现代波谱分析》是应用本科专业学生在掌握《无机化学》、《分析化学》和仪器分析》等课程知识后开设的一门专业选修课,该课程内容主要包括:有机质谱、核磁共振氢谱、核磁共振碳谱、红外和拉曼光谱、紫外和荧光光谱的基本原理、仪器简介与实验技术、基本规律与影响因素、谱图解析的基本程序与应用,以及谱图的综合解析。通过本课程的学习使学生了解波谱分析法的概念、作用以及各波谱之间的互相联系;掌握各分析法的基本原理和谱图特征;掌握应用四大波谱进行结构解析的基本程序;了解有关的实验技术;培养并提高学生的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生后续课程学习、毕业论文(设计)和研发工作奠定良好的理论基础。 三、相关课程的衔接 已修课程:有机化学、仪器分析、分析化学 并修课程:工业分析食品分析 四、教学的目的、要求与方法 (一)教学目的 本课程的教学环节包括课题讲授,学生自学,习题讲解和期末考试,通过以上学习,要求学生掌握和了解四大谱图的基本理论及分析方法,培养并提高学生

的识谱能力、综合运用所学波谱知识解决有机化合物结构表征问题的能力,为学生今后毕业论文和工作奠定良好的理论基础。 (二)教学要求 通过本课程的学习,使学生了解有机化合物结构鉴定的现代波谱分析手段、方法;掌握结构解析的原理、规律和过程;掌握波谱的特征数据和化合物结构的关系以及在有机化合物结构鉴定中的应用;培养学生单独或综合利用波谱学技术解决实际问题的能力。 (三)教学方法 以讲授式为主,其它教学方法为辅。 五、教学内容(实验内容)及学时分配 第一章紫外光谱(4学时) 教学内容: 1、紫外光谱基本原理 2、紫外光谱仪 3、各类化合物紫外吸收光谱 4、紫外光谱的应用 本章重点:紫外光谱在结构解析中的应用 本章难点:紫外吸收与分子结构的关系、影响因素;紫外光谱在结构解析中的应用 第二章红外光谱(6学时) 教学内容: 1、红外光谱的基本原理 2、影响红外吸收频率的因素 3、红外光谱仪及样品制备技术 4、各类化合物的红外特征光谱 5、红外图谱解析 6、拉曼光谱简介 7、红外光谱技术的进期及应用 本章重点:利用红外光谱判断常见简单化合物的官能团及结构。

波谱解析4标准答案

波谱解析试题1 一、名词解释: 1.发色团 2. 化学位移 二、简答题: 1.红外光谱在结构研究中有何用途? 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 三、化合物可能是A或B,它的紫外吸收λmax 为314nm (lgε=4.2),指出这个化合物是属于哪一种结构。 (A)(B) 四、下面为化合物A、B的红外光谱图,可根据哪些振动吸收峰推断化合物A、B中分别存在哪些官能团? A: B:

五、归属下列化合物碳谱中的碳信号。(15) 六、某化合物的分子式为C 14H 14 S,其氢谱如下图所示,试推断该化合物的结构式, 并写出推导过程。(15分)

七、某化合物分子式为C3H7ON, 结合下面给出的图谱,试推断其结构,并写出简单的推导过程。

波谱解析试题1答案 一、名词解释: 1.发色团:从广义上讲, 分子中能吸收紫外光和(或)可见光的结构系统叫做发色团。因常用的紫外光谱仪的测定范围是200~40Onm 的近紫外区, 故在紫外分析中,只有π-π* 和(或) n-π* 跃迁才有意义。故从狭义上讲,凡具有π键电子的基团称为发色团 2. 化学位移:不同类型氢核因所处化学环境不同, 共振峰将分别出现在磁 场的不同区域。实际工作中多将待测氢核共振峰所在位置 ( 以磁场强度或相 应的共振频率表示 ) 与某基准物氢核共振峰所在位置进行比较, 求其相对距离, 称之为化学位移。 二、简答题: 1.红外光谱在结构研究中有何用途? (1)鉴定是否为某已知成分 (2)鉴定未知结构的官能团 (3)其他方面的应用:几何构型的区别;立体构象的确定;分子互变异构与同分异构的确定。 2.偏共振去偶碳谱在结构研究中具有什么样的意义? 当照射1H 核用的电磁辐射偏离所有l H 核的共振频率一定距离时, 测得的13C-NMR(OFR) 谱中将不能完全消除直接相连的氢的偶合影响。此时,13C 的信号将分别表现为q (CH3), t (CH2),d(CH),s(C)。据此,可以判断谈的类型。 三、 A: 217(基值)+30(共轭双烯)+5×2(环外双键)+5×4(烷基)=277(nm)B: 217(基值)+30(共轭双烯)+36(同环二烯)+5×1(环外双键)+5×5 (烷基)=313(nm) 其中,化合物B的计算值与给出的紫外吸收λmax (314nm)接近,因此,该化合物为B。 四、 A:约3520 cm-1 为酚羟基(或酚OH)的伸缩振动,表明有酚羟基(或酚OH);约1600,1580,1500,1450 cm-1 为苯环的骨架振动,表明有苯环。 B:约1750 cm-1 为酯羰基的振动吸收峰,表明有酯羰基。 五、 δ39.6(C-1),δ110.8(C-2),δ124.8(C-3),δ131.5(C-4),δ154.0(C-5),δ189.5(C-6) 六、 解析:C14H14S Ω=14+1-(14/2) =8

波谱解析-解谱步骤

波谱解析 (一)紫外光谱 解析UV应用时顾及吸收带的位置,强度和形状三个方面。从吸收带(K带)位置可估计产生该吸收共轭体系的大小;从吸收带的强度有助于K带,B带和R 带的识别;从吸收带的形状可帮助判断产生紫外吸收的基团,如某些芳香化合物,在峰形上可显示一定程度的精细结构。一般紫外吸收光谱都比较简单,大多数化合物只有一、两个吸收带,因此解析较为容易。可粗略归纳为以下几点: ①如果化合物在220~800nm区间无吸收,表明该化合物是脂肪烃、脂环烃或它们的简单衍生物。 ②如果在220~250nm间显示强吸收(ε近10000或更大),表明有R带吸收,即分子结构存在共轭双烯或α,β—不饱和醛、酮。 ③如果在250~290nm间显示中等强度(ε为200~1000)的吸收带,且常显示不同程度精细结构,表明结构中有苯环或某些杂芳环的存在。 ④如果在290nm附近有弱吸收带(ε<100),则表明分子结构中非共轭羰基。 ⑤如果在300nm上有***度吸收,说明该化合物有较大的共轭体系;若***度吸收具有明显的精细结构,说明为稠环芳、稠环杂芳烃或其衍生物。 (二)红外光谱 1. 解析红外光谱的三要素(位置、强度和峰形) 在解析红外光谱时,要同时注意红外吸收峰的位置,强度和峰形。吸收位置是红外吸收最重要的特点,但在鉴定化合物分子结构时,应将吸收峰的位置辅以吸收峰强度和峰形综合分析。每种有机化合物均显示若干吸收峰,对大量红外图谱中各吸收峰强度相互比较,归纳出各种官能团红外吸收强度的变化范围。只有熟悉各官能团红外吸收的位置和强度处于一定范围时,才能准确推断出官能团的存在2 .确定官能团的方法 对于任何有机化合物的红外光谱,均存在红外吸收的伸缩振动和多种弯曲振动。因此,每一个化合物的官能团的红外光谱图在不同区域显示一组相关吸收峰。只有当几处相关吸收峰得到确认时,才能确定该官能团的存在。例1. 甲基(CH3):2960cm-1和2870cm-1为伸缩振动,1460cm-1和1380cm-1为其弯曲振动。 例2. 亚甲基(CH2):2920cm-1和2850cm-1为其伸缩振动,1470cm-1和720cm-1

波谱解析试题及答案

波普解析试题 一、名词解释(5*4分=20分) 1.波谱学 2.屏蔽效应 3.电池辐射区域 4.重排反应 5.驰骋过程 二、选择题。(10*2分=20分) 1. 化合物中只有一个羰基,却在17731和17361处出现两 个吸收峰这是因为:() A、诱导效应 B、共轭效应 C、费米共振 D、空间位阻 2. 一种能作为色散型红外光谱仪的色散元件材料为:() A、玻璃 B、石英 C、红宝石 D、卤化物晶体 3. 预测H2S分子的基频峰数为:() A、4 B、3 C、2 D、1 4. 若外加磁场的强度H0逐渐加大时,则使原子核自旋能级的低能态跃迁到高能态所需的能量是如何变化的:()

A、不变 B、逐渐变大 C、逐渐变小 D、随原核而变 5. 下列哪种核不适宜核磁共振测定:() A、12C B、15N C、19F D、31P 6.在丁酮质谱中,质荷比质为29的碎片离子是发生了() A、α-裂解 B、裂解 C、重排裂解 D、γ迁移 7. 在四谱综合解析过程中,确定苯环取代基的位置,最有效的方法是() A、紫外和核磁 B、质谱和红外 C、红外和核磁 D、质谱和核磁 8. 下列化合物按1H化学位移值从大到小排列 ( ) 22 b. CH CH d. A、a、b、c、d B、a、c、b、d C、c、d、a、b D、d、 c、b、a 9.在碱性条件下,苯酚的最大吸波长将发生何种变化? ( ) A.红移 B. 蓝移 C. 不变 D. 不能确定 10. 芳烃(134), 质谱图上于91处显一强峰,试问其可能的结构是:( ) A. B. C. D. 三、问答题(5*5分=25分)

分析(2)波谱解析-答案讲课稿

分析(2)波谱解析-答 案

第十三章红外分光光度法 一.填空题 1. △μ≠0,υ=ΔV?υ振动 2. 分子由基态跃迁至第一振动激发态所产生的吸收峰,简并,红外非活性 振动 3. 基频峰,倍频峰 4. 硅碳棒,真空热电偶 KBr压片法 5. 简并,3N-6 6. 1250-200 cm-1,4000-1250 cm-1 7. 不能吸收红外线而发生能级跃迁的振动 二.选择(修订:11题选项B为:19F、12C) B B C B B A D 三、解谱题 1、C 6H 5 -CH 2 -CH 2 -OH(苯乙醇) 2、HCO-C 6H 4 -CH(CH 3 ) 2 (对位取代) 3、C 6H 5 -CO-CH 3 (苯乙酮) 4、C 6H 5 -COOH(苯甲酸) 5、C 6H 5 -CH(CH 3 ) 2 6、2-丁醇(仲醇)或1-丁醇(伯醇) 7、CN-C 6H 4 -CH 3 (对位取代) 8、(酰胺类,不要求) 第十四章核磁共振波谱法 一、填空题 1、ν 照 = ν进△m= + 1 2、一级;高级;△ν/J > 10 3、化学位移,偶合常数

4、局部抗磁屏蔽 ; 磁各相异性 5、自旋-自旋偶合; 偶合常数 6、2 7、3 8、无线电波、核自旋能级分裂、1/2 9、7.17 10、中心位置, 峰裂距 11、屏蔽效应,各向异性效应,氢键 12、2 13、氢分布; 质子类型; 核间关系 二、选择题 ACCCD DBCBC D 三、简答题 1、所谓磁全同质子是指这些质子化学位移、与组外任何一核的偶合强弱相同,它们在核磁共振谱上不产生分裂 ,例如: 2、烯烃处于C=C 双链的负屏蔽区,δ增大。炔烃处于C ≡C 地正屏蔽区,δ减小 3、(1) 12个氢处于完全相同的化学环境,只产生一个尖峰; (2)屏蔽强烈,共振频率最小,吸收峰在磁场强度高场,与有机化合物中的质子峰不重迭; (3)化学惰性;易溶于有机溶剂;沸点低,易回收。 C C C H H H H O (1)(2)(3)(4)(5)(6)

波谱分析期末重点

波谱解析重中重 1.UV产生原理?电子跃迁类型(σ→σ*,n→σ*,π→π*,n→π*)、能级大小和相对应的吸收波段P6? 2.什么叫发色团(生色)(π→π*,n→π*)和助色团(n→σ*)P8? 3.什么是K带(π→π*,210-250,ε=104)R带(n→π*,250-500,ε小于100)P9? 3.什么是特征区、指纹区和相关峰和其波数范围?IR谱的9个重要区段? 4. 不饱和度的计算: = 1+1/2N数+C数-1/2H数? 5.氢谱影响化学位移的因素(诱导效应、化学键的各向异性、活泼氢核交换、氢键)P123? 6.偶合常数大小(J aaˊ8-12、J aeˊ2-4、J eeˊ1-3 ,双键顺式偶合常数(8-12)、反式偶合常数(12-18)、同碳(2),苯环邻H偶合常数(6-10)、间H(1-3)、对H(0-1)偶合常数)? 7. 什么是NOE效应和NOE差谱P148?什么是去偶试验? 8.DEPT和OFR谱如何区别碳的级数?氢核磁不等价情况(6点)?P134-135 9.13C的化学位移及其三个重要区段(0-55,55-100,70-90,90-160,160-190, 大于200)?C的裂分数与级数关系(s,d,t,q)? 10.记住一些见常H-NMR基团化学位移数据基础值:甲基(0.8)、亚甲基(1.25)、 次甲基H(1.5)的基础值?羰甲基、甲氧基H-NMR值(2.1,3.8),双键H 基础值(5.25)、苯环H基础值(7.25)。 11.EI-MS谱判断分子离子峰的原则P205?含一个Cl和和一个Br的M+2峰的比 例? 12.什么是α、I、RDA裂解、麦氏重排P220? 13. 各类化合物质谱特点(烷系:29、43、57、71、85….芳系:39、51、65、77、91、92、93。氧系:31、45、59、73(醚、酮)。氮系:30、44、58。)? 15.常见的碎片离子?(P206) 一、单项选择题(每小题4个备选答案中只有一个最佳答案,每小题1分,共20小题,共计20分)二、填空题(每空1分,共20空,共计20分)三、名词解释(每小题4分,5小题,共计20分)四、简答题(每小题5分,4小题,共计20分)五、谱图解析(每小题5分,共4小题,共计20分)

波谱分析试题(B)知识讲解

波谱分析试题(B)

波谱分析试题(B) 一、判断题正确填‘R’,错误的填‘F’(每小题2分,共12分) 1. 紫外吸收光谱、红外吸收光谱、核磁共振波谱和质谱是有机结构分析的四种主要的有机光谱分析方法,合称四大谱。( R ) 2. 电磁辐射的波长越长,能量越大。( F )越小 3. 根据N规律,由C,H,O,N组成的有机化合物,N为奇数,M一定是奇数;N为偶数,M也为偶数。( R ) 4. 核磁共振波谱法与红外光谱法一样,都是基于吸收电磁辐射的分析法。( R ) 5. 当分子受到红外激发,其振动能级发生跃迁时,化学键越强吸收的光子数目越多。( F )M折相近或者组成原子相同,k越大,吸收越强 6.(CH3)4Si 分子中1H核共振频率处于高场,比所有有机化合物中的1H 核都高。( F )是大部分 二、选择题(每小题2分,共30分). 1. 光或电磁辐射的二象性是指( D )波粒二象性 A电磁辐射是由电矢量和磁矢量组成。 B电磁辐射具有波动性和电磁性C电磁辐射具有微粒性和光电效应 D 电磁辐射具有波动性和微粒性 2. 光量子的能量与电磁辐射的的哪一个物理量成正比( A ) A 频率 B 波长 C 周期 D 强度 3. 可见光区、紫外光区、红外光区和无线电波四个电磁波区域中,能量最大和最小的区域分别为( A )紫外光区>可见光区>红外光区>微波区A紫外光区和无线电波 B紫外光区和红外光区

C可见光区和无线电波 D可见光区和红外光区 4. 在质谱图中,CH2Cl2中M:(M+2):(M+4)的比值约为:( C ) A 1:2:1 B 1:3:1 C 9:6:1 D 1:1:1 5. 下列化合物中,分子离子峰的质核比为偶数的是( A ) A C8H10N2O B C8H12N3 C C9H12NO D C4H4N 6. CI-MS表示(A) A电子轰击质谱EI B化学电离质谱CI C 电喷雾质谱ESI D 激光解析质谱 7. 红外光可引起物质的能级跃迁是( C ) A 分子的电子能级的跃迁,振动能级的跃迁,转动能级的跃迁 B 分子内层电子能级的跃迁UV C 分子振动能级及转动能级的跃迁 D 分子转动能级的跃迁 8. 红外光谱解析分子结构的主要参数是( B ) A 质核比 B 波数 C 偶合常数 D 保留值 9. 某化合物在1500~2800cm-1无吸收,该化合物可能是( A ) A 烷烃 B 烯烃 C 芳烃 D炔烃 10. 在偏共振去偶谱中,RCHO的偏共振多重性为(C ) A 四重峰 B 三重峰 C 二重峰 D 单峰 11. 化合物CH3-CH=CH-CH=O的紫外光谱中,λmax=320nm(εmax=30)的一个吸收带是(B ) A K带 B R带 C B带 D E2带

相关文档