文档库 最新最全的文档下载
当前位置:文档库 › 矩阵式交_交变换器及其控制

矩阵式交_交变换器及其控制

矩阵式交_交变换器及其控制
矩阵式交_交变换器及其控制

车用新型AC_DC矩阵式变换器汇总

2011年8 月电工技术学报 Vol.26 No. 8 第26卷第8期 TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY Aug. 2011 车用新型AC-DC 矩阵式变换器 徐壮殷冠贤徐殿国 (哈尔滨工业大学电气工程及自动化学院哈尔滨 150001) 摘要针对车用电子系统容量扩大和传统PWM 整流器缺点问题,为实现输入单位功率因数和一级降压整流,去除死区时间引起的谐波带来的影响,本文提出一种新型基于42V PowerNet的车用双向AC-DC 矩阵变换器。在基于三相 - 三相矩阵变换器理论基础上,推演出AC-DC 矩阵 变换器的整流调制策略,并研究了开关序列和换相的方法,采用优化AV 法调制策略来控制整流器。运用四步换流策略解决了开关换相存在的短路、断路风险和死区时间问题,仿真和实验结果验证了车用新型AC-DC 矩阵式整流器的有效性和正确性。 关键词:AC-DC 变换器矩阵变换器功率因数四步换流中图分类号:TM464 A New Bidirectional AC-DC Converter Using

a Matrix Converter Topology Xu Zhuang Yin Guanxian Xu Dianguo (Harbin Institute of Technology Harbin 150001 China) Abstract The expansion of automotive electronic system and the disadvantage of the conventional rectifier should not be ignored. To achieve unity power factor and complete the step-down rectification in single stage, this paper presents a new type of AC-DC matrix converter with 42V for automotives. It removed the impact of harmonics which is caused by the dead time and reduced the cost of the system. In this paper, the modulation strategy of AC-DC matrix converter derived from that of three-phase – three-phase matrix converter and the methods of commutation are studied. The optimized modulation strategy named AV method is used to control the switch-state. The four-step commutation strategy is a solution of the risks for short circuit, open circuit and the dead-time problem. The experimental results based on DSP system and the simulation results demonstrate the validity and effectiveness of the system. Keywords :AC-DC converter, matrix converter, power factor, four-step current commutation 1 引言 随着汽车电子系统容量的扩大,极限功率为3kW 左右的传统14V 供电系统已经逐渐过渡到42V 系统,其中42V 为整流器工作时的直流端电压,蓄电池电压为36V 。而42V 车用整流器在汽车行驶过程中将发电机所发出的变频变幅的交流电变换为42V 直流电。21世纪汽车的发展受到能源、环保和 安全的三大挑战。未来车辆对电能的需求和效率的要求使得设计适合的车用整合起动发电系统(ISA )显得尤为必要。目前的解决方案离真正意义上的ISA 还有一定的距离。考虑到中国和世界巨大的市场,ISA 的研发对中国的汽车产业将带来相当大的益处。ISA 系统(见图1)起动时由电动机带动引擎,当达到预定转速

矩阵变换器研究综述

矩阵变换器研究综述 1 引言 随着电力电子技术的迅速发展,交-交变频器在传动系统中已经得到了广泛的应用,但也存在一些固有的缺陷,因此研究新型的既有优良控制性能和输入电流品质而又成本低、结构紧凑、性能可靠的交-交变频器已成为当前的发展趋势。 矩阵式变换器是一种直接交-交变频器,与传统的自然换流变频器相比,具有以下优点: l 无中间直流环节,结构紧凑,体积小,效率高,便于实现模块化; l 无需较大的滤波电容,动态响应快; l 能够实现能量双向流动, 便于电动机实现四象限运行; l 控制自由度大,输出电压幅值和频率范围连续可调; l 输入功率因数可控,带任何负载时都能使功率因数为1.0; l 输出电压和输入电流的低次谐波含量较小; l 实现功率集成后能够改善变换器内部的电磁兼容性,其输出的pwm电压和输入功率因数可调的特点能够改善电动机、变换器与电源之间的电磁兼容性[1]。 矩阵变换器的原理在80年代被提出,由于具有性能优良的潜在优势,越来越引起人们的重视,有逐步取代交-直-交变频器、周波变流器的趋势[2]。特别是它具有本身不产生谐波污染的同时,能够对电网进行无功补偿的能力,其总体性能高于其它变换器。在日益关注可持续发展问题,大力推行电力环保、绿色电源的今天,研究与开发矩阵式变换器特别具有现实意义。 矩阵变换器的关键技术主要包括:主回路的拓扑结构和工作原理、安全换流技术、调制策略和保护电路设计等,下面就这些关键技术的研究进行一一介绍。

2 主回路拓扑结构和工作原理 矩阵变换器的名称来源于它的矩阵状拓扑结构。一个m相输入、n相输出的矩阵变换器,由m×n个双向开关组成,它们排列成矩阵形状,分单级和双级两种。 图1 单级矩阵变换器拓朴结构 2.1 单级矩阵变换器 常规的矩阵变换器是一种单级交-交变换器(见图1),其结构简单,可控性强,但存在以下缺陷: l 最大电压增益为0.866,并且与控制算法无关; l 主电路的9个双向开关存在控制和保护问题,应采用安全换流技术; l 必须采用复杂的pwm控制和保护策略,同时要求复杂的箝位保护电路。 单级矩阵变换器的理论和控制技术得到了飞速的发展,但仍然停留在实验阶段,而不能在工业中推广应用,原因在于: l 其控制策略复杂,计算量大; l 四步换流法增加了控制的难度, 降低了系统的可靠性; l 开关数量多,系统成本过高[3,4]。

明瑞MR-208A控制器调试基本步骤

明瑞MR-208A控制器调试基本步骤 1使用标准网线(568B,568A直通线)连接pc网卡与明瑞控制器的网口(LINK A/B均可,自适应,建议A进B出,这样性能更好!) 2设置电脑的固定ip地址:设置为192.168.0.xxx 或者192.168.1.xxx,只能是这两个号段! xxx为0---255任意,建议避免冲突第4段设置100以下! 3安装MRPlaye软件,在安装前关闭电脑上安装的所有防火墙!(比如瑞星,360,以及windows自带的防火墙),因为我们的系统可以侦测到系统的连接状态,系统会向电脑反馈数据,防火墙会认为是对电脑攻击进行屏蔽导致系统连接有误! 4LED屏参数以及硬件参数设置: 4.1启动MR Player软件,点击“设置”—“LED屏设置”,进入“设置LED屏”设置界 面! 4.2设置屏体的宽度和高度(实际项目的宽度和高度,如果是异型屏幕以最大的宽度和 高度为准),我们举例设置10台控制器,宽度512,高度80,然后进入“硬件设 置“如下图!硬件设置的密码是大小写均可的“mr”

4.3在“硬件设置”中选择“网络设置”卡片,将“本机IP地址”通过单击右侧下三 角,选择刚才已经设置好的192.168.0.60,然后点击应用。 4.4点击“布线设置”卡片,选择“新建布线” 4.5在“工程设置”界面设置相应的参数,如本例想做每个口带512点,灯具颜色为 RGB规则排布,使用10台控制器,设置好后点击“确认”如下: 4.6进入LLayout布线模块后,在“控制器列表框”中依次点击,“1号控制器”----“输

出口_1”-----点击鼠标右键-----点击“布线”----“自动布线”如下: 4.7进入“自动排列”界面后,依次设置端口“选项”的“宽度””高度”以及排线风格 等选项,然后点击确认如下: 4.8经过4.6操作后,鼠标在LLayout软件中间黑色布线区域移动时,会有一个横向的 灯串随着鼠标移动,这个时候通过移动鼠标和滚动鼠标滑轮(以鼠标为中心放大和缩小,也可以通过点击键盘的PgUp,PgDn放大缩小),然后在最左上角(坐标1,1)点击鼠标左键把灯串放下去,其他灯具灯具就会自动布线到布线区,然后注意看布线区和左侧的控制器列表,每个控制器每个口布上多少点都会显示出来:如下:

矩阵变换器的研究现状分析

矩阵变换器的研究现状分析 1引言 随着电力电子技术的迅速发展,交-直-交电压型变频调速装置已经广泛地应用于交流调速系统中,且结构愈来愈紧凑。但由于装置中应用了二极管桥式整流器,所以输入电流波形失真度大、功率因数低。随着电网负载中电力电子设备的增加,畸变电流对电网品质的污染已成为不可忽视的问题,因此研究新型的既有优良控制性能和优良输入电流品质而又成本低、结构紧凑可靠的变换器已成为当前的发展趋势。交-交型矩阵式变换器可以克服上述缺点,它是一种单级电源变换器,除了应用一个体积不大的交流滤波器外不需贮能环节。它与交-直-交型变换器相比具有如下优点: (1)控制自由度大,输出电压可调,输出频率不受输入频率的限制; (2)输入功率因数可调,可以滞后、超前或为1不受负载限制; (3)输入电流正弦,对电网无谐波污染; (4)能量可以双向流动,尤其适合于电机四象限运行; (5)无任何中间直流环节,结构紧凑,体积小,效率高,易于实现集成化和模块化,特别适合实现电机与变频器一体化。 由于矩阵变换器包含开关较多,数学模型复杂,使得调制方法和换流控制都很繁琐,导致了稳定性和可靠性仍不够理想;因此提出了新型的电路拓扑—多电平矩阵变换器和双级矩阵变换器。多电平矩阵变换器可以用电压等级较低的器件完成高压电能的变换,使得电力电子技术可以应用在高压、大功率的场合,且突破了电压传输比小于或等于0.866的限制,既可以降压也可以实现升压;可实现多电平操作,进一步改善了输出电压波形;开关损耗小。双级矩阵变换器不仅能够实现交-交矩阵变换器的所有功能,并且具有功率开关器件相对较少、箝位电路大大简化、换流简单可靠、控制算法的复杂性降低等优点。但这两种新型变换器研究的时间不长,自身还有许多问题要解决,不如单级矩阵变换器成熟。 交-交型矩阵变换器经过近30年的发展,基本趋于成熟,近年来有以下的一些应用。如矩阵式变换器驱动的交流电动机调速系统已被应用于电梯、起重机、风力发电等需要能量双向流通的场合。另外,还应用于一些安装空间有限、对变频装置体积和重量要求很严格的场合,如铁道机车、电动车辆、飞机等独立电源系统中。可以预料,矩阵变换器将有广阔的发展前景。三相-三相矩阵变换器的拓扑结构如图1所示。 图1三相-三相矩阵变换器的简化拓扑 2控制策略 由于矩阵变换器包含开关较多,数学模型复杂,控制繁琐,因此在其实际应用中,采用

590控制器调试说明

控制器:,由程序计数器PC地址寄存器AR 指令寄存器IR指令译码器ID定时控制电路CU 数据存储器的地址寄存器DPTR等组成 590P的参数快速设置: 通电后按M键直到出现DIAGNOSTS(诊断)后按向上的键,找到CONFIGURE DRIVE(配置调速器),按M键进入菜单,找到CONFIGURE ENABLE(组态有效),按M键进入菜单,将DISBALE(不允许)改成ENABLE(允许),此时面板灯闪烁,按E键退出;按向下的键,找到NOM MOTOR VOLTS(电枢电压),按M键进入菜单,输入额定电枢电压,按E键退出;按向下的键找到ARMATURE CURRENT (电枢电流),按M键进入菜单,输入额定电枢电流,按E键退出;按向下的键找到FIELD CURRENT(励磁电流),按M键进入菜单,输入额定励磁电流,按E键退出;找到FLD.CTRL MODE(励磁控制方式),按M键进入菜单,把VOLTAGE CONTROL(电压控制)改成CURRENT CONTROL(电流控制),按E 键退出;按向下的键找到SPEED FBK SELECT(速度反馈选择),按M进入菜单,按向上或向下键选择ARM VOLTS(电枢电压反馈)、ANALOG TACH(测速反馈)或ENCODER(编码反馈),选择反馈方式是根据所选的配件板及实际电机使用的反馈方式,然后按E退出;按向上键找到CONFIGURE ENABLE (组态有效),按M键进入,把ENABLE(允许)改成DISABLE(不允许),此时面板不再闪烁。按E一直退到底。 参数保存:按M键直到出现DIAGNOSTS(诊断)后,按向上的键找到PARAMETER SAVE,按M 进入,然后按向上的键,参数自动保存。按E键一直退到底。 *自动调节步骤(此过程一定不能少):手动去掉电机的励磁,为电机做一次自动调节,夹紧电机的轴,然后在CURRENT LOOP(电流环)中,找到AUTOTUNE菜单,将OFF改为ON,然后在10秒内启动调速器,调速器的RUN灯将闪烁,在这个过程中请不要给停止,完成自动调节后调速器会自动释放接触器线圈,然后保存参数。接好电机的励磁,启动调速器。注意:自整定时在CURRENT LOOP中找AUTOTUN E菜单,将OFF改为ON,然后再找CURRENT LOOP中的PROP.GAIN菜单进入观察百分比,同时要拆掉A4端子上的线,即取掉给定电压信号,然后按启动按钮。启动后等待自动停止,则看到到PROP.GAIN 的参数会发变化然后保存参数。 调试注意事项:调试过程中要注意电源不能有短路或缺相,调速器的控制端子为直流低压,一定要注意不能让高压进入,设好参数启动后,测量励磁电压是否正确,然后再升降速。在升速的过程中注意观测电机的励磁电压和电枢电压是否正常。如励磁电压电流都于设定值相差太大也就是说:如设励磁电流为15.6A 电压为180V。启动后测量电流才10A励磁电压才100V那就要看控制器面板显示的设定型号是否相对应,检查所有外围电路和控制器内部如没有问题。那应该是型号设置错误。出现前面现象那就要同时按“▲ E PROG”三键了(尾页有三键设定方法) 调速器参数复位:按住面板上面的上下键,然后送上控制电源,参数会自动复位。 590C直流调速器参数快速设置说明 开机后按M键出现DIAGNOSTIS后按向下键找到SET UP PARAMETERS(设定参数),按M键进入菜单,按向下键找到FIELD CONTROL(励磁控制),按M键进入,找到FLD.CTRL MODE(励磁控制方式),按M键进入菜单,把VOLTAGE CONTROL(电压控制)改成CURRENT CONTROL(电流控制),按两次E键退出;按向下键找到SPEED LOOP(速度环),按M键进入,按向下键找到SPEED FBK SELECT (速度反馈选择),按M键进入菜单,按向上或向下键选择ARM VOLTS(电枢电压反馈)、ANALOG TACH (测速反馈)或ENCODER(编码反馈),选择反馈方式是根据所选的配件板及实际电机使用的反馈方式;按E键退出。 参数保存:按M键直到出现DIAGNOSTS(诊断)后,按向上的键找到PARAMETER SAVE,按M进入,然后按向上的键,参数自动保存。按E键一直退到底。 *自动调节步骤(此过程一定不能少):手动去掉电机的励磁,为电机做一次自动调节,夹紧电机的轴,然后在CURRENT LOOP(电流环)中,找到AUTOTUNE菜单,将OFF改为ON,然后在10秒内启动调速器,调速器的RUN灯将闪烁,在这个过程中请不要给停止,完成自动调节后调速器会自动释放接触器

关于矩阵式变换器现状和发展的思考

关于矩阵式变换器现状和发展的思考 矩阵式变换器(MC)是一种基于双向开关并采用脉宽调制得到期望输出电压的电力变换装置,因具有不需要中间直流储能环节,对任意负载均可实现单位输入侧功率因数等优势而成为电力电子技术研究的热点之一。论文主要分析了矩阵式变换器的研究背景、国内外发展现状和存在的问题以及矩形变换器的当前研究热点,并根据分析提出了具有原创性的新研究方法。 【Abstract】Matrix converter (MC)is a kind of power conversion device based on bidirectional switch and pulse width modulation to obtain the desired output voltage,because it does not need the intermediate DC energy storage link. The power factor of unit input side can be realized for any load,which has become one of the hot research topics in power electronics technology. This paper mainly analyzes the research background of matrix converter,development of domestic and foreign and existing problems,as well as the current research focus of rectangular converter. Based on the analysis,a new research method with originality is proposed. 标签:矩形变换器;新研究方法;编译原理 1 矩阵式变换器的研究背景 随着工业电气自动化的不断进步发展,以及对节能和环保要求的提高,传统的变频装置已无法满足工作要求。当前,尽管已有成熟的高性能交-直-交型变频装置在市场上出现,但是仍有许多方面存在不足:输入侧功率因数较低,对电网谐波污染严重;含有大电容或大电感作为直流储能环节,体积重量大;在电动机制动运行时,能量一般消耗在制动电阻上,从而在化工厂、酒精厂等生产危险品的工业场所,其中大容量制动电阻可能引起火灾,引发安全事故。 传统的交-交型变频电路缺点是:功率晶闸管多、接线复杂、输出频率范围窄(只能是电网频率的1/3~1/2)、采用相控整流,功率因数低,只能用于大容量低速重载调速场合。 矩陣式变换器作为现有交-直-交型PWM变频器和传统交-交变频电路的一种补充和替代技术,已成为电力电子技术研究的热点之一,并在军事和工程上有着广泛的应用前景。其优于传统交流电力变换装置的特性:输入与输出电流品质好;电能的直接双向流通;对任意负载均可实现输入侧功率因数为1;不需要作为直流储能环节的电感或电容,电路结构紧凑,体积小。 矩阵式变换器(MC)是一种基于双向开关并采用脉宽调制得到期望输出电压的电力变换装置,可以产生交流和直流电压。 2 矩阵变换器的研究现状

矩阵式变换器四步换流的仿真研究

矩阵式变换器四步换流的仿真研究 郭有贵,朱建林 (湘潭大学信息工程学院 湖南湘潭 411105) 摘 要:利用SIM U L IN K 对矩阵变换器的四步换流进行了仿真,验证了理论的正确性。关键词:矩阵变换器;四步换流;SIM U LI NK 仿真;电流 中图分类号:T P 337 文献标识码:A 文章编号:1004373X (2003)0706202 A Simulation Study on Four step Commutation for Matrix C onverters GU O Y oug ui,ZHU Jianlin (Colleg e of Info rmatio n Engineering ,Xi a ng tan University ,Xiangta n,411105,China) Abstract :Simula tes t he fo ur st ep comm ut atio n fo r mat rix conv erter s by means o f SIM U L IN K .It ver ifies the cor rectness o f four step commutat ion theo ry. Keywords :mat rix co nv ert er s;fo ur st ep co mmutatio n;SIM U LI NK simulatio n;cur rent 收稿日期:200301 02 矩阵式变换器的安全换流非常重要,否则,将导致开关管的损坏。换流是指将负载电流从一个双向开关管换到另一个双向开关管。在调制过程中,矩阵式变换器开关管通断状态不断改变,从而使换流始终存在于矩阵式变换器的运行过程中,因此,安全换流是矩阵式变换器控制策略中一项至关重要的问题。 同一输出相的双向开关的换流方法主要有3种:(1)插入死区延时法。他不能工作在电流连续的情况下,且开关损耗大,但控制方法简单。 (2)N.Burany 提出的一种四步换流策略,可实现半软开关换流。被认为是最有前途的方法。 (3)台湾学者潘晴财教授提出的一种基于电流滞环调制的谐振式软开关换流策略。这仅限于电流滞环调制的矩阵式变换器换流。1 四步换流 1.1 2个双向开关之间的换流 如图1所示,1和2是同一输出相的2个双向开关,1c 和2c 是开关1和2的正向开关,1nc 和2nc 是反向开关。假定电流方向为正向,现在要关断开关1,开通开关2,要保证电流连续,又不能出现短路情况,共要经过4步才能完成: 1关断开关1的反向开关1nc,由于电流是正向流动,这一步不会带来开关损耗。 o开通开关2的正向开关2c ,打开2c 后,如果开关2所连接的电压高于开关1所连接的电压,那么电流将自动换流到2c 中。 ?关断开关1的正向开关1c,由于电流有一半的可能已经换流到2c 中了,所以1c 的关断有50%的可能性为零电流关断。 ?开通开关2的反向开关2nc 。 图1 四步换流法 这样的四步换流策略,既禁止了电源发生短路的开关组合,又保证了在任意时刻给负载电流提供了至少一条流通路径,且换流过程中有一半的可能性实现软开关中的零电流关断,所以被称为四步半软开关换流法。 如果电流是反相流动的,仍采用原来的换流顺序,将导致不安全后果。电流为反向时要按以下顺序进行:第1步,关断1c;第2步,开通2nc;第3步,关断1nc;第4步,开通2c 。 1.2 3个双向开关之间的换流 在矩阵式变换器中,每一输出相通过3个双向开 62 郭有贵等:矩阵式变换器四步换流的仿真研究

矩阵控制器的调试方法.

16入8出矩阵控制器的调试方法 1、矩阵控制器的接口认识 VIDEO-IN 视频信号输入 VIDEO-OUT 视频信号输出 VIDEO-IR 环路输出(相当于视频分支器) AUDIO-IN 音频输入 ARM 报警模块,本系统报警模块有16路报警输入合2路报警联动输出2、控制数据线的连接 CODE1:主要用于连接键盘、报警主机、多媒体控制器等设备 CODE2:主要用于连接解码器、智能高速球、码分配器、码转换器等设备 CODE3:主要用于连接网络矩阵 CODE4:主要用于连接计算机、DVR等设备 3、矩阵控制器的功能 A、视频切换控制 矩阵系统的中央处理模块控制所有摄像机输入和监视器输出的视频切换。切换可通过键盘的操作、或执行系统切换队列、或报警的自动响应功能等来控制; B、系统切换(自由切换、程序切换、群组切换、报警切换); C、报警响应(当接收到报警信号时,切换摄像机输入到指定监视器上面去); D、屏幕显示 在监视器屏幕上显示摄像机标题、日期、状态和标识,硬盘录象机本身提供了该功能,但矩阵控制器上的图象通常没有经过硬盘录象机,必须通过矩阵控制器进行字符叠加; E、摄像机控制 F、优先级别权限(大型矩阵系统当中会有多个键盘,可以设定每个键盘的权限,允许响应高级别的用户去控制摄像机而不响应低级别用户) G、系统分区 键盘对监视器的分区、监视器对摄像机的分区、键盘对摄像机的分区、键盘对报警点控制的分区 H、菜单设置

由菜单提供了系统设置和编程功能。菜单直接显示在第一好监视器上; I、数据保存(编程数据可保存10年以上) 4、矩阵系统的操作 4.1 键盘密码登陆LOCK+0000+OFF 4.2 键盘密码锁定LOCK+0000+ON 4.3 修改键盘密码(置键盘开关至PROG,输入4位密码,按键盘上LOCK,再按键盘上ACK,置键盘开关到OFF) 4.4 指定监视器数字+MON 4.5 在指定监视器上显示指定图象数字+CAM 4.6 云台的控制直接通过摇杆转动,摇杆在中间位置时,云台不转动,云台自动巡航键盘输入0+AUX+ON 云台停止巡航0+AUX+OFF 4.7 镜头的控制键盘上CLOSE/OPEN,控制光圈,NEAR/FAR 控制变倍,WIDE/TELE 控制聚焦 4.8 高速球预置位设置键盘开关调整到PROG 调整到需要设置的预置位角度图象,输入该预置点序号,按键盘上SHOT+ON,转动PROG到OFF状态 4.9 关闭某个预置位调整键盘开关到PROG 输入预置位序号+SHOT+OFF,调整键盘开关到OFF 4.10 调用预置位输入预置位序号+SHOT+ACK 4.11 设置巡视队列键盘输入PATRN+ON+预置位序号+SHOT+预置位序号+SHOT+SHOT+预置位序号+SHOT+预置位序号+SHOT+预置位序号+OFF 4.12 运行巡航队列巡航队列号+PATRN+ACK 5、切换方式选择 5.1 系统自由切换经过适当的编程,按键盘0+RUN,可在监视器上显示一组指定的视频输入,每个视频输入显示一段设定的时间(不常用)键盘输入数字+TIME,设置每个画面停留的时间,输入指定的摄像机序号+ON+摄像机序号+ON+OFF 5.2 系统程序切换通过菜单编程,能在监视器上自动地按照顺序显示一列指定的视频输入,每个视频停留一段时间;调用方式——程序切换序号+RUN 5.3 同步切换通过菜单编程,将一组摄像机图象顺序地切换到一组设定的监视

间接式矩阵变换器的调制策略

第2章 间接式矩阵变换器的调制策略 间接式矩阵变换器是一种新型矩阵变换器,除了保留了直接式矩阵变换器无大体积储能电容、输入输出电流为正弦波、可实现单位输入功率因数、能量可双向流动等优点外,由于具有相对独立的整流侧和逆变侧,因此可以用成熟的整流和逆变控制策略分别对其整流侧和逆变侧进行调制。在本文中,对间接式矩阵变换器的整流侧采用PWM 调制,对逆变侧采用SVPWM 调制。 2.1 整流侧的PWM 调制 设间接式矩阵变换器的三相输入相电压为 ()()()()()()i a a b im b im i c c i cos cos cos cos 120cos cos 120t u u U U t u t ωθθωθω??????????????===-??????????????+???? i u (2-1) 整流侧要求使中间直流电压dc 0U >。为了充分提高电压传输比,按照如图2-1 所示的方法,在每个输入周期内将输入电压a u ,b u ,c u 平均划分为编号为1到6的6等份,每等份占/3π电角度,每一等份称为一个扇区。 1234561 a u b u c u 图2-1 输入电压扇区划分 如果按照图示的划分方法,则在每个扇区中,三相输入相电压都会有如下特点:一相电压的绝对值最大,另外两相电压与之反向。例如,在第1扇区,a u 的绝对值最大,且为正值,b u 和c u 都为负值;在第2扇区,c u 的绝对值最大,且为负值,a u 和c u 都为正值。 假设在某个周期内,(),,k k a b c =相输入电压绝对值最大,l 和m 为与k 反向的另外两相电压,如果k 为正值,则在一个PWM 周期内,对照绪论中图1-4,整流侧双向开关kp S 始终导通,ln S 和mn S 轮流导通;如果k 为负值,则整流侧双向开关kn S 始终导通,lp S 和mp S 轮流导通。例如在第6扇区,b U 的绝对值最大且为负值,则双向开关bn S 始终导通,ap S 和cp S 轮流导通。当bn S 和ap S 导通时,输出

ZAPI(萨牌)控制器ACE2 重要参数以及调试步骤

ACE2 重要参数翻译 8.7 交流控制器作为牵引的设置顺序 当钥匙开关打开,如果没有报警或者错误提示,编程器会显示标准的ZAPI开机画面显示。 那控制器没有满足你的配置要求而配置,可以根据9.2章节的细节,,当改变任何控制器的配置以后,记得要反复开关钥匙开关(上电生效)。可以根据下面的细节内容进行配置。 1、选择需要修改的选项,看8.4.1章节 2、选择并设置电池电压,看8.4.1章节。 3、用手持编程器的TESTER 功能,来测试导线保证所有电线连接正确。 4、用手持编程器的加速器信号修正功能(PROGRAM V ACC)。来采集加速器信号。操作 步骤细节在9.4章节。 5、设置MAXIMUM CURRENT 最大电流值,使用表格在8.5.1章节 6、根据车辆设置加速延时,并从两个方向对次参数进行测试。 ACCELER DELAY 加速延迟、DECELER SELAY 减速延迟 7、设置FREQUENCY CREEP,从0.3HZ开始设置,加速器微动开关开始闭合,车辆应能 刚好启动,据此相应的增加爬行频率的大小HZ。 8、设置速度降低(SPEED REDUCTIONS)。调整CUTBACK SPEED ,通过加速器踏板完全踩到底,检查性能。如果是叉车,核对负载和无负载情况下检查加速器的性能。 9、释放制动(RELEASE BRAKING),将车辆开到全速,释放加速器踏板,调整参数到满 足制动要求,如果设备是叉车,核对负载和无负载情况下的性能表现。 10、反接制动(INVERSION BRAKING),将车辆设备开到全速的25%,同时接反向开关,设置制动软水平,检查这时制动强度是否符合要求,若符合将车辆开到全速再调。无负载全速的条件下的测试,应该是非常具有代表性的。 11、踏板制动(DECELERATION BRAKING ),操作设备到全速,再释放加速器到50%,幅度达到,调整参数到你的要求, 12、PEDAL BRAKING ,,操作设备到全速,释放加速器,踩下制动踏板,根据性能需求设置刹车参数, 13、SPEED LIMIT BRAKING,操作设备到全速,关闭减速开关。调整该参数。 14、设置MAX SPEED FORW (正向)

明瑞MR-208A控制器调试基本步骤v1.2

明瑞MR-208A控制器调试基本步骤v1.2 1使用标准网线(568B,568A直通线)连接pc网卡与明瑞控制器的网口(LINK A/B均可,自适应,建议A进B出,这样性能更好!) 2设置电脑的固定ip地址:设置为192.168.0.xxx 或者192.168.1.xxx,只能是这两个号段! xxx为0---255任意,建议避免冲突第4段设置100以下! 3安装MRPlaye软件,在安装前关闭电脑上安装的所有防火墙!(比如瑞星,360,以及windows自带的防火墙),因为我们的系统可以侦测到系统的连接状态,系统会向电脑反馈数据,防火墙会认为是对电脑攻击进行屏蔽导致系统连接有误! 4LED屏参数以及硬件参数设置: 4.1启动MR Player软件,点击“设置”—“LED屏设置”,进入“设置LED屏”设置 界面! 4.2设置屏体的宽度和高度(实际项目的宽度和高度,如果是异型屏幕以最大的宽度 和高度为准),我们举例设置10台控制器,宽度512,高度80,然后进入“硬件 设置“如下图!硬件设置的密码是大小写均可的“mr”

4.3在“硬件设置”中选择“网络设置”卡片,将“本机IP地址”通过单击右侧下 三角,选择刚才已经设置好的192.168.0.60,然后点击应用。 4.4点击“布线设置”卡片,选择“新建布线” 4.5在“工程设置”界面设置相应的参数,如本例想做每个口带512点,灯具颜色为 RGB规则排布,使用10台控制器,设置好后点击“确认”如下: 4.6进入LLayout布线模块后,在“控制器列表框”中依次点击,“1号控制器”----

“输出口_1”-----点击鼠标右键-----点击“布线”----“自动布线”如下: 4.7进入“自动排列”界面后,依次设置端口“选项”的“宽度””高度”以及排线风 格等选项,然后点击确认如下: 4.8经过4.6操作后,鼠标在LLayout软件中间黑色布线区域移动时,会有一个横向 的灯串随着鼠标移动,这个时候通过移动鼠标和滚动鼠标滑轮(以鼠标为中心放大和缩小,也可以通过点击键盘的PgUp,PgDn放大缩小),然后在最左上角(坐标1,1)点击鼠标左键把灯串放下去,其他灯具灯具就会自动布线到布线区,然后注意看布线区和左侧的控制器列表,每个控制器每个口布上多少点都会显示出来:如下:

矩阵式变换器

矩阵式交流/交流变频器 1、引言 随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGB T(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。 与传统的交—直—交变频器和交—交变频器相比,矩阵式变频器有如下几方面的显著特点: (1)输出电压幅值和频率可独立控制,输出频率可以高于、低于输入频率,理论上可以达到任意值; (2)在某些控制规律下,输入功率因数角能够灵活调节达到0.99以上,并可自由调节,可超前、滞后或调至接近于单位功率因数角; (3)采用四象限开关,可以实现能量双向流动; (4)没有中间储能环节,结构紧凑,效率高; (5)输入电流波形好,无低次谐波; (6)具有较强的可控性。 矩阵变换器的控制策略包括开关函数S的确定、实现和安全换流,开关函数的确定方法有直接变换法、空间矢量调制法[1]和滞环电流跟踪法,目前空间矢量调制法研究的比较成熟。在换流方法的研究上有四步法、三步法、两步法、软开关换流。 2、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini 和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Burany提出了一种四步换流策略,可实现半软开关换流。 2.1 拓扑结构 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通

矩阵式变换技术

矩阵式变换技术 1、引言 随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGBT(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。 与传统的交—直—交变频器和交—交变频器相比,矩阵式变频器有如下几方面的显著特点: (1)输出电压幅值和频率可独立控制,输出频率可以高于、低于输入频率,理论上可以达到任意值; (2)在某些控制规律下,输入功率因数角能够灵活调节达到0.99以上,并可自由调节,可超前、滞后或调至接近于单位功率因数角; (3)采用四象限开关,可以实现能量双向流动; (4)没有中间储能环节,结构紧凑,效率高; (5)输入电流波形好,无低次谐波; (6)具有较强的可控性。 矩阵变换器的控制策略包括开关函数S的确定、实现和安全换流,开关函数的确定方法有直接变换法、空间矢量调制法[1]和滞环电流跟踪法,目前空间矢量调制法研究的比较成熟。在换流方法的研究上有四步法、三步法、两步法、软开关换流。 2、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Bu rany提出了一种四步换流策略,可实现半软开关换流。 2.1 拓扑结构 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通用变换器。根据M、N取值的不同及输入输出端电源性质的不同,人们提出了许多拓扑结构 (1)由三相交流变换到两组直流,或者一组可变换极性的直流; (2)从三相交流变换到单相交流; (3)从单一直流变换到三相交流,也就是通常所说的逆变器; (4)由交流三相变换到交流三相,它的输入输出端之间采用双向开关互相连接,即9开关矩阵变换器,它是研究得最多的一种拓扑; (5)由交流三相变换到交流三相,但输入输出端之间采用3个全控桥进行连接,称为电压源型矩阵变换器。它的结构比9开关矩阵变换器复杂,但性能更优。 三相输入、三相输出的交—交矩阵变换器电路拓扑结构如图1所示。

矩阵控制键盘操作说明

矩阵控制键盘操作说明 键盘概述 控制器是智能电视监控系统中的控制键盘,也是个监控系统中人机对话的主要设备。可作为主控键盘,也可作为分控键盘使用。对整个监控系统中的每个单机进行控制。 键盘功能 1.中文/英文液晶屏显示 2.比例操纵杆(二维、三维可选)可全方位控制云台,三维比例操纵杆可控制摄像机的变倍 3.摄像机可控制光圈开光、聚集远近、变倍大小 4.室外云台的防护罩可除尘和除霜 5.控制矩阵的切换、序切、群组切换、菜单操作等 6.控制高速球的各种功能,如预置点参数、巡视组、看守卫设置、菜单操作等 7.对报警设备进行布/撤防及报警联动控制 8.控制各种协议的云台、解码器、辅助开头设置、自动扫描、 自动面扫及角度设定 9.在菜单中设置各项功能 10.键盘锁定可避免各种误操作,安全性高 11.内置蜂鸣器桌面上直接听到声音,可判断操作是否有效 技术参数 1.控制模式主控、分控 2.可接入分控数16个 3.可接入报警模块数239个 4.最大报警器地址1024个 5.最大可控制摄像机数量1024个 6.最大可控制监视器数量 64个 7.最大可控制解码器数量 1024个 8.电源 AC/DC9V(最低500mA的电源) 9.功率 5W 10.通讯协议Matri、PEL-D、PEL-P、VinPD 11.通讯波特率1200 Bit/S,2400 Bit/S,4800 Bit/S ,9600Bit/S, Start bit1,Data bit8,Stop bit1

键盘按键说明 Focus Far 聚焦远 Focus Near 聚焦近 Zoom Tele 变倍大 Zoom Wide 变倍小 DVR 设备操作 DVR 功能键 Shift 用户登入 Login 退出键 Exit 报警记录查询 List 进入键盘主菜单 MENU 启动功能 F1/ON 关闭功能 F2/OFF 液晶显示区

03020门机控制器简易调试步骤

HTD03020门机控制器简易调试步骤 1.输入信号的确认 【条件】 P08=”1或2”(1为面板控制,2为外部端子控制),P09=“4或5”(磁开关方式,4为单次运行,5为往复运行), P09=”1或2”(编码器方式,1为单次运行,2为往复运行) 【步骤】 ◎n16(输入信号状态)的显示的确认。 1. 手动移动DOOR到開/閉到達信号、開/閉变速信号处进行确认, 到达时信号接点闭合,此信号即为常开接点,为正逻辑信号,如果到达时信号接点断开,此信号即为常闭接点,为负逻辑信号。(利用N16号参数可监控输入信号是否正确) N16:输入信号模拟 亮灯:输入端子为闭状态 消灯:输入端子为开状态 2.A/B相输入信号的闪烁确认。(编码器A B相的信号确认) ◎n11(ENCODER 検出状态)的显示确认。(编码器A B相的接线是否与控制器上相对应,此时P09=1) 1).手动向开方向移动DOOR、确认是否显示”F**”。 2).手动向关方向移动DOOR、确认是否显示”r**”。 注意:在双稳态磁开关方式下,试运行时请确认双稳态磁开关的输入逻辑是否正确? 变频器的逻辑设定参数为P43号参数,默认输入逻辑为正逻辑(即常开接点)时,P43号参数为0,若输入信号为负逻辑(即常闭信号)时,则根据所处信号的位置设定相应的值给P43号参数,具体设定方法如下图: 举例:当关门变速信号和开门变速信号为常闭时,只要将他们的合计值相加,即:16+ 8=24,把P43设定为24就可以正常运行,依此类推。 信号名 (不設定) 关- 变速 开- 变速 安全 感应器 关- 到达 开- 到达 端子No. 7 6 5 4 3 BIT 5-15 4 3 2 1 0 設定値 0 0/1 0/1 0/1 0/1 0/1 合计値 0 16 8 4 2 1 No. 信号名 No. 信号名 ① 开指令信号 ⑥ 开变速信号 ② 关指令信号 ⑦ 关变速信号 ③ 开到达信号 ⑧ A相信号(编码器) ④ 关到达信号 ⑨ B相信号(编码器) ⑤ 安全感应器输入信号

矩阵式变频电路及变频器

矩阵式交---交变频器 姓名 摘要:本文介绍了矩阵式变频电路及变频器的工作原理和调制策略,文中遵循理论和实际相结合的原则,对变频器的工作原理和调制策略作了详细的分析。 关键词:变频、工作原理、调制策略 引言:随着电力电子技术的发展,电力电子器件从20世纪60年代的SCR(晶闸管)发展到HVIGBT(耐高压绝缘栅双极型晶体管)。继VVVF变频之后出现了矢量控制变频、直接转矩控制变频,其共同缺点是输入功率因数低,直流回路需要耐高压大容量的储能电容,再生能量不能回馈电网。矩阵式交—交变频能克服以上不足,近年来越来越受到人们的广泛关注。矩阵式变频器是一种交-交直接变频器,由九个直接接于三相输入和输出之间的开关阵组成。矩阵变换器没有中间直流环节,输出由三个电平组成,谐波含量比较小;其功率电路简单、紧凑,并可输出频率、幅值及相位可控的正弦负载电压;矩阵变换器的输入功率因数可控,可在四象限工作。 一、拓扑结构的发展 矩阵变换器的电路拓扑形式在1976年由L.Gyllglli提出。直到1979年,M.Venturini和A.Alesina[7]首先提出了由9个功率开关组成的矩阵式交—交变换器结构,并指出矩阵式变换器的输入功率因素角是可以任意调节的,但后来发现这种变换器存在固有极限,最大电压增益为0.866,并且与控制算法无关。由于矩阵式变换器的主回路采用9个双向开关,还存在着双向开关的实现与保护问题,其难点在于开关换流时,既不能有死区又不能有交叠,否则,任何一种情况都将导致开关管的损坏。为了实现安全换流,N.Burany提出了一种四步换流策略,可实现半软开关换流。 矩阵变换器最初提出时指的是M相输入变换到N相输出的一般化结构,因此曾被称为通用变换器。根据M、N取值的不同及输入输出端电源性质的不同,人们提出了许多拓扑结构 (1)由三相交流变换到两组直流,或者一组可变换极性的直流; (2)从三相交流变换到单相交流; (3)从单一直流变换到三相交流,也就是通常所说的逆变器; (4)由交流三相变换到交流三相,它的输入输出端之间采用双向开关互相连接,即9开关矩阵变换器,它是研究得最多的一种拓扑; (5)由交流三相变换到交流三相,但输入输出端之间采用3个全控桥进行连接,称为电压源型矩阵变换器。它的结构比9开关矩阵变换器复杂,但性能更优。 二、矩阵式变频电路的基本工作原理 (1)利用单相输入 u为 对单相交流电压us进行斩波控制,即进行PWM控制时,输出电压 o

相关文档