文档库 最新最全的文档下载
当前位置:文档库 › 导数与不等式专题一

导数与不等式专题一

导数与不等式专题一
导数与不等式专题一

导数与不等式专题一

1. (优质试题北京理18倒数第3大题,最值的直接应用) 已知函数。

⑴求的单调区间;

⑵若对于任意的,都有

≤,求的取值范围.

解:⑴,令,

当时,与的情况如下:

所以,的单调递增区间是和:单调递减区间是, 当时,与的情况如下:

所以,的单调递减区间是和:单调递增区间是。 ⑵当时,因为11

(1)k k

f k e

e

++=>,所以不会有

当时,由(Ⅰ)知在上的最大值是,

所以等价于,解 综上:故当时,的取值范围是[,0].

2

()()x k

f x x k e =-()f x (0,)x ∈+∞()f x 1e

k 221()()x

k

f x x k e k

'=-()0,f x x k '==±0k >()f x ()f x '()f x (,)k -∞-(,)k +∞(,)k k -0k <()f x ()f x '()f x (,)k -∞(,)k -+∞(,)k k -0k >1(0,),().x f x e ?∈+∞≤0k <()f x (0,)+∞2

4()k

f k e

-=1(0,),()x f x e ?∈+∞≤24()k f k e

-=

1

e ≤10.2k -≤<1(0,),()x

f x e ?∈+∞≤

k 1

2

-

2. (优质试题天津理20倒数第3大题,最值的直接应用,第3问带有小的处理技巧) 已知函数,其中.

⑴若曲线在点处切线方程为,求函数的解析式; ⑵讨论函数的单调性;

⑶若对于任意的,不等式在上恒成立,求的取值范围. 解:⑴,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. ⑵. 当时,显然(),这时在,上内是增函数. 当时,令,解得

当变化时,,的变化情况如下表:

+ 0 - - 0 +

极大

极小值

∴在,内是增函数,在,内是减函数.

⑶由⑵知,在上的最大值为与的较大者,对于任意的

,()()0≠++=

x b x

a x x f R

b a ∈

,()x f y =()(

)2,2f P 13+=x y ()x f ()x f ??????∈2,21a ()10≤x f ??

?

???1,41b 2()1a

f x x

'=-

(2)3f '=8a =-(2,(2))P f 31y x =+27b -+=9b =()f x 8

()9f x x x

=-+2

()1a

f x x '=-

0a ≤()0f x '>0x ≠()f x (,0)-∞(0,)+∞0a >()0f x '=x =x ()f x '()f x x (,-∞()+∞()f x '()f x ()f x (,-∞)+∞((0,)+∞()f x 1[,1]41()4f (1)f 1

[,2]2

a ∈

不等式在上恒成立,当且仅当,即,对任意的

成立.从而得,所以满足条件的的取值范围是.

3. (转换变量,作差) 已知函数. ⑴若,求的单调区间;

⑵已知是的两个不同的极值点,且,若恒成立,求实数b 的取值范围。

解:⑴,或1 令,解得令,解得,

的增区间为;减区间为,

⑵,即

由题意两根为,,又 且△,.

, 或 0(1)f x ≤1[,1]410(11(4)10)f f ≤≤?????39449a b a

b ≤

-≤-?

????1[,2]2a ∈74b ≤b (7

,]4

-∞2()()x f x x a e =-3a =()f x 12,x x ()f x 1212||||x x x x +≥3

233()32

f a a a a b <+-+23,()(3)x a f x x e =∴=-2()(23)0x f x x x e '=+-=3x ?=-()0f x '>(,3)(1,)x ∈-∞-+∞()0f x '<(3,1)x ∈-()f x ∴(,3),(1,)-∞-+∞(3,1)-2()(2)0x f x x x a e '=+-=220x x a +-=12,x x 12122,x x x x a ∴+=-?=-1212||||x x x x +≥22a ∴-≤≤440a =+>12a ∴-<≤3223

233()3()33()322

a g a f a a a a a a e a a a =--+=---

+2()3(1)(1)0a g a a a e a '=+--=?=

0a =

又,, ,.

恒成立之分离常数

4. (分离常数)

已知函数

(1) 若在处的切线平行于直线,求函数的单调区间; (2) 若,且对时,恒成立,求实数的取值范围.

解: (1) 定义域为,直线的斜率为,

,,.所以 由; 由

所以函数的单调增区间为,减区间为. (0)0g =2(2)68g e =-2

max ()68g a e =-268b e ∴>-()ln 1,.a

f x x a R x

=+-∈()y f x =0(1,)P y 1y x =-+()y f x =0a >(0,2]x e ∈()0f x >a ()ln 1,.a

f x x a R x

=+-∈)(x f ),0(+∞1y x =-+1-x x a x f 1)('2+-

=11)1('-=+-=a f 2=∴a 222

12)('x

x x x x f -=+-=20)('>>x x f 得200)('<<

(0,2)

(2) ,且对时,恒成立

,即(ln 1)a x x >-. 设.

当时, , 当时, ,.

所以当时,函数在上取到最大值,且 所以,所以

所以实数的取值范围为. (法二)讨论法

2

()x a

f x x -'=

,()f x 在(0,)a 上是减函数,在(,)a +∞上是增函数. 当a ≤2e 时,()f x ≥()1ln 10f a a =+->,解得1a >,∴1a <≤2e . 当2a e >时,()(2)ln(2)102a

f x f e e e

>=+->,解得2ln 2a e >,∴2a e >. 综上1a >.

5. (优质试题长春一模,恒成立,分离常数,二阶导数)

已知函数,(其中R ,为自然对数的底数).

(1)当时,求曲线在处的切线方程;

(2)当≥1时,若关于的不等式≥0恒成立,求实数的取值范围.

解:(1)当时,,,,

切线方程为.

0a >(0,2]x e ∈()0f x >ln 10(0,2]a

x x e x

+->∈在恒成立]2,0(,ln )ln 1()(e x x x x x x x g ∈-=-=]2,0(,ln 1ln 1)('e x x x x g ∈-=--=10<x g 为增函数)(x g e x 20≤<0)('

)(2

---=ax x e x f x

∈a e 0=a )(x f y =))0(,0(f x x )(x f a 0=a 12

)(2

--=x e x f x

x e x f x -=∴)('1)0(',0)0(==∴f f ∴x y =

(2)[方法一]

≥1,≥≤,

设,则, 设,则,

在上为增函数,≥,

,在上为增函数, ≥,≤.

[方法二], ,

设,,

≥0,≥0,在上为增函数,

≥.

又≥0恒成立,≥0,≤, ≥,,

在上为增函数, 此时≥≥0恒成立,

≤. 6. (两边取对数的技巧)设函数且)

x 12

)1()(2

+--=x e x x x

?0)1()('>-=x e x x ?)(x ?∴),1[+∞)(x ?∴02

1

)1(>=

?012)1()('2

2>+--=∴x x e x x g x

x x e x g x

12)(2--=

∴)

,1[+∞)(x g ∴2

3)1(-

=e g a ∴23

-e 12

)(2

---=ax x e x f x

a x e x f x --=∴)('a x e x h x --=)(1)('-=x e x h x 1)('-=∴x e x h a x e x h x --=∴)(),1[+∞)(x h ∴a e h --=1)1(12

)(2

---=ax x e x f x

23)1(--=∴a e f a ∴23-e )(x h ∴01)1(>--=a e h 0)('>--=∴a x e x f x 12

)(2

---=ax x e x f x

),1[+∞)(x f 23)1(--=a e f a ∴2

3

-

e 1

()(1(1)ln(1)

f x x x x =

>-++0x ≠2

2 1 2 ) 1 ( ) ( ' x x e

x x g x + - - = x x e x g x

1 2

) ( 2 - -

=

x

x e x 1 2

2 - - a ? 0 1 2

) ( 2 - - - = ∴ ax x e x f x

(1)求的单调区间; (2)求的取值范围; (3)已知对任意恒成立,求实数的取值范围。

解:(1)

,

当时,即.

当时,即或. 故函数的单调递增区间是. 函数的单调递减区间是. (2)由时,即,

由(1)可知在上递增, 在递减,所以在区间(-1,0)上, 当时,取得极大值,即最大值为1(1)f e e --=-. 在区间上,.

函数的取值范围为.分

(3),两边取自然对数得

7. (分离常数) 已知函数

. ()f x ()f x 1

1

2(1)m x x +>+(1,0)x ∈-m 22ln(1)1'()(1)ln (1)

x f x x x ++=-

++∴'()0f x >1ln(1)10,11x x e -++<-<<-'()0f x >11e ->-0x >()f x 1(1,1)e ---()f x 1(1,0),(0,)e --+∞'()0f x =1ln(1)10,1x x e -++==-()f x 1(1,1)e ---1(1,0)e --11x e -=-()f x (0,)+∞()0f x >∴()f x (,)(0,)e -∞-+∞1

12(1)0,(1,0)m x x x +>+>∈-1

ln 2ln(1)1

m x x >++1ln ()x

f x x

+=

(Ⅰ)若函数在区间

其中a >0,上存在极值,求实数a 的取值范围; (Ⅱ)如果当时,不等式恒成立,求实数k 的取值范围;

解:(Ⅰ)因为, x >0,则,

当时,;当时,.

所以在(0,1)上单调递增;在上单调递减, 所以函数在处取得极大值. 因为函数在区间(其中)上存在极值,

所以 解得. (Ⅱ)不等式即为 记 所以 令,则,

, 在上单调递增,

,从而,

故在上也单调递增, 所以,所以 .

8. (优质试题湖南,分离常数,构造函数)

已知函数 对任意的恒有. ⑴证明:当

⑵若对满足题设条件的任意b 、c ,不等式恒成立,求M 的最小值。

1(,)2

a a +1x ≥()1

k

f x x ≥+1ln ()x f x x +=2ln ()x

f x x

'=-01x <<()0f x '>1x >()0f x '<()f x (1,)+∞()f x 1x =()f x 1

(,)2

a a +0a >1,

1

1,2

a a

?+>??112a <<(),1k f x x ≥

+(1)(1ln ),x x k x ++≥(1)(1ln )(),x x g x x

++=[]2

(1)(1ln )(1)(1ln )()x x x x x g x x '++-++'=

2

ln x x x -=()ln h x x x =-1

()1h x x

'=-1x ≥()0,h x '∴≥()h x ∴[1,)+∞[]min ()(1)10h x h ∴==>()0g x '>()g x [1,)+∞[]min ()(1)2g x g ==2k ≤2()(,),f x x bx c b c =++∈R ,x ∈R ()()f x f x '≤20()();x f x x c +≥时,≤22()()()f c f b M c b --≤

9. (第3问不常见,有特点,由特殊到一般,先猜后证)已知函数

(Ⅰ)求函数f (x )的定义域

(Ⅱ)确定函数f (x )在定义域上的单调性,并证明你的结论. (Ⅲ)若x >0时

恒成立,求正整数k 的最大值. 解:(1)定义域 (2)单调递减。

当,令,

故在(-1,0)上是减函数,即, 故此时 x

x n x f )

1(11)(++=1

)(+>

x k

x f ),0()0,1(+∞?-,0)]1ln(1

1

[1)(2

时当>+++-=

'x x x x x f 0)(<'x f )0,1(-∈x 0

)1(11)1(1)()1ln(1

1

)(2

2<+=+++-

='+++=

x x

x x x g x x x g 0)1(11)1(1)()1ln(1

1

)(2

2<+=+++-

='+++=

x x

x x x g x x x g )(x g 01)0()(>=>g x g )]1ln(1

1[1)(2+++-

='x x x x f

在(-1,0)和(0,+)上都是减函数 (3)当x >0时,恒成立,令 又k 为正整数,∴k 的最大值不大于3 下面证明当k=3时,恒成立 当x >0时 恒成立

令,则

,,当

∴当取得最小值

当x >0时, 恒成立,因此正整数k 的最大值为3

10. (恒成立,分离常数,涉及整数、较难的处理) 已知函数 (Ⅰ)试判断函数上单调性并证明你的结论; (Ⅱ)若恒成立,求整数k 的最大值;(较难的处理) (Ⅲ)求证:(1+1×2)(1+2×3)…[1+n (n +1)]>e 2n -3. 解:(I ) 上递减. (II ) ∞1

)(+>

x k

x f ]2ln 1[21+<=k x 有)0( 1

)(>+>

x x k

x f 021)1ln()1(>-+++x x x x x x x g 21)1ln()1()(-+++=时当1 ,1)1ln()(->-+='e x x x g 时当1 ,1)1ln()(->-+='e x x x g 0

)(>'x g 0)( ,10<'

-<-=-e e g 021)1ln()1(>-+++x x x ).0()

1ln(1)(>++=

x x

x x f ),0()(+∞在x f 1

)(+>

x k

x f )]1ln(1

1

[1)]1ln(11[1)(22+++-=+--+=

'x x x x x x x x f .0)(,0)1ln(,01

1

,

0,02<'∴>+>+>∴>x f x x x x ),0()(∞∴在x f .)]1ln(1)[1()(,1)(恒成立即恒成立k x

x x x h x k x f >+++=+>

).0)(1ln(1)(,)

1ln(1)(>+--=+--=

'x x x x g x

x x x h 记

则上单调递增, 又

存在唯一实根a ,且满足

当 ∴

故正整数k 的最大值是3 .

(Ⅲ)由(Ⅱ)知

∴ 令,则 ∴ln(1+1×2)+ln(1+2×3)+…+ln[1+n(n+1)]

∴(1+1×2)(1+2×3)…[1+n (n+1)]>e

2n -3

11. (分离常数,双参,较难)已知函数,. (1)若函数依次在处取到极值. ①求的取值范围;②若,求的值.

),0()(,01

)(+∞∴>+=

'在x g x x

x g .02ln 22)3(,03ln 1)2(>-=<-=g g 0)(=∴x g ).1ln(1),3,2(++=∈a a a .0)(,0)(00)(,0)(<'<<<>'>>x h x g a x x h x g a x 时,,当时,)4,3(1)1()]1ln(1)[1()()(min ∈+=+=+++=

=a a

a

a a a a a h x h )0(1

3

)1ln(1>+>++x x x x x

x x x x 3

2132113)1ln(->+-=-+>

+*))(1(N n n n x ∈+=)

1(3

2)]1(1ln[+-

>++n n n n 3

213

32)111(32])

1(1

323211[32])

1(32[)3132()2132(->++-=+--=+++?+?-=+-++?-+?-

>n n n n n n n n n n 32()(63)x f x x x x t e =-++t R ∈()y f x =,,()x a x b x c a b c ===<

(2)若存在实数,使对任意的,不等式 恒成立.求正整数的最大值.

解:(1)①

. (2)不等式 ,即,即.

转化为存在实数,使对任意,不等式恒成立,即不等式在上恒成立。 即不等式在上恒成立。 设,则。

设,则,因为,有。 故在区间上是减函数。

又 故存在,使得。

当时,有,当时,有。 从而在区间上递增,在区间上递减。

[]0,2t ∈[]1,x m ∈()f x x ≤m 23232()(3123)(63)(393)x x x f x x x e x x x t e x x x t e '=-++-++=--++32()3,39303,,.f x x x x t a b c ∴--++=有个极值点有个根322()393,'()3693(1)(3)g x x x x t g x x x x x =--++=--=+-令()(-,-1),(3,+)(-1,3)g x ∞∞在上递增,上递减.()3824.(3)0

g x t g ?∴∴-<0有个零点,,()a b c f x 是的三个极值点3232393(x-a)(x-b)(x-c)=x ()()x x x t a b c x ab bc ac x abc ∴--++=-+++++-3

93a b c ab ac bc t abc

++=??

∴++=-??+=-?

31(b (-1,3))2b ∴=-∈或

11

81a b t c ?=-?

∴=∴=??

=+?()f x x ≤32(63)x x x x t e x -++≤3263x t xe x x x -≤-+-[]0,2t ∈[]1,x m ∈3263x t xe x x x -≤-+-32063x xe x x x -≤-+-[]1,x m ∈2063x e x x -≤-+-[]1,x m ∈2()63x x e x x ?-=-+-()26x x e x ?-'=--+()()26x r x x e x ?-'==--+()2x r x e -'=-1x m ≤≤()0r x '<()r x []1,m 123(1)40,(2)20,(3)0r e r e r e ---=->=->=-<0(2,3)x ∈00()()0r x x ?'==01x x ≤<()0x ?'>0x x >()0x ?'<()y x ?=[]01,x [)0,x +∞

所以当时,恒有;当时,恒有; 故使命题成立的正整数的最大值为5.

12. (优质试题湖南理22,分离常数,复合的超范围)

已知函数 ⑴求函数的单调区间;

⑵若不等式对任意的都成立(其中e 是自然对数的底数),求a 的

最大值.(分离常数)

解: ⑴函数的定义域是,

设则 令则 当时, 在(-1,0)上为增函数, 当x >0时,在上为减函数.

所以h (x )在x =0处取得极大值,而h (0)=0,所以, 函数g (x )在上为减函数.

于是当时,当x >0时, 所以,当时,在(-1,0)上为增函数. 当x >0时,在上为减函数.

123(1)40,(2)5>0,(3)6>0,e e e ???---=+>=+=+456(4)5>0,(5)20,(6)30.e e e ???---=+=+>=-<15x ≤≤()0x ?>6x ≥()0x ?

2

()ln (1).1x f x x x

=+-+()f x 1

(1)n a

e n

++≤N*n ∈()f x (1,)-+∞2222

2ln(1)22(1)ln(1)2().1(1)(1)

x x x x x x x

f x x x x ++++--'=-=+++2()2(1)ln(1)2,

g x x x x x =++--()2ln(1)2.g x x x '=+-()2ln(1)2,

h x x x =+-22()2.11x

h x x x

-'=

-=++10x -<<()0,h x '>()h x ()0,h x '<()h x (0,)+∞()0(0)g x x '<≠(1,)-+∞10x -<<()(0)0,g x g >=()(0)0.g x g <=10x -<<()0,f x '>()f x ()0,f x '<()f x (0,)+∞

故函数的单调递增区间为(-1,0),单调递减区间为.

⑵不等式等价于不等式

由知,>0,∴上式变形得 设,则则

由⑴结论知,(≤)即 所以于是G (x )在上为减函数. 故函数在上的最小值为 所以a 的最大值为

13. (变形,分离常数)

已知函数(a 为实常数).

(1)若,求证:函数在(1,+∞)上是增函数; (2)求函数在[1,e ]上的最小值及相应的值;

(3)若存在,使得成立,求实数a 的取值范围. 解:⑴当时,,当,

故函数在上是增函数.

⑵,当,. ()f x (0,)+∞1(1)n a

e n ++≤1()ln(1) 1.n a n

++≤111n +>1

ln(1)n

+1

.1ln(1)a n n

-+≤1x n

=(]11

(),0,1,ln(1)G x x x x =-∈+22

2222

11(1)ln (1)().(1)ln (1)(1)ln (1)

x x x G x x x x x x x ++-'=-+=++++2

2

ln (1)0,1x x x

+-≤+()f x (0)0f =22(1)ln (1)0.x x x ++-≤()0,G x '<(]0,1,x ∈(]0,1()G x (]0,11

(1) 1.ln 2

G =-1

1.ln 2

-x a x x f ln )(2+=2-=a )(x f )(x f x ],1[e x ∈x a x f )2()(+≤2-=a x x

x f ln 2)(2

-=),1(+∞∈x 0)

1(2)(2>-='x

x x f )(x f ),1(+∞)0(2)(2>+=

'x x

a

x x f ],1[e x ∈]2,2[222e a a a x ++∈+

若,在上非负(仅当,x=1时,),故函数在上是增函数,此时.

若,当时,;当时,,此时

是减函数;当时,,此时是增函数. 故. 若,在上非正(仅当,x=e 时,),故函数 在

上是减函数,此时.

⑶不等式,可化为.

∵, ∴且等号不能同时取,所以,即,

因而()

令(),又,

当时,,,

从而(仅当x=1时取等号),所以在上为增函数, 故的最小值为,所以a 的取值范围是.

14. (分离常数,转换变量,有技巧) 设函数.

⑴若函数在处与直线相切:

①求实数的值;②求函数在上的最大值;

2-≥a )(x f '],1[e 2-=a 0)(='x f )(x f ],1[e =min )]([x f 1)1(=f 222-<<-a e 2

a

x -=0)(='x f 2

1a x -<

≤0)(<'x f )(x f e x a

≤<-2

0)(>'x f )(x f =min

)]([x f )2

(

a

f -2)2ln(2a a a --=22e a -≤)(x f '],1[e 2e 2-=a 0)(='x f )(x f ],1[e ==)()]([min e f x f 2e a +x a x f )2()(+≤x x x x a 2)ln (2-≥-],1[e x ∈x x ≤≤1ln x x -x x x x x

x a ln 22--≥],1[e x ∈x

x x

x x g ln 2)(2--=

],1[e x ∈2

)ln ()

ln 22)(1()(x x x x x x g --+-=

'],1[e x ∈1ln ,01≤≥-x x 0ln 22>-+x x 0)(≥'x g )(x g ],1[e )(x g 1)1(-=g ),1[+∞-2()ln f x a x bx =-()f x 1x =1

2

y =-,a b ()f x 1[,]e e

导数综合大题分类

导数的综合应用是历年高考必考的热点,试题难度较大,多以压轴题形式出现,命题的热点主要有利用导数研究函数的单调性、极值、最值;利用导数研究不等式;利用导数研究方程的根(或函数的零点);利用导数研究恒成立问题等.体现了分类讨论、数形结合、函数与方程、转化与化归等数学思想的运用. 题型一 利用导数研究函数的单调性、极值与最值 题型概览:函数单调性和极值、最值综合问题的突破难点是分类讨论. (1)单调性讨论策略:单调性的讨论是以导数等于零的点为分界点,把函数定义域分段,在各段上讨论导数的符号,在不能确定导数等于零的点的相对位置时,还需要对导数等于零的点的位置关系进行讨论. (2)极值讨论策略:极值的讨论是以单调性的讨论为基础,根据函数的单调性确定函数的极值点. (3)最值讨论策略:图象连续的函数在闭区间上最值的讨论,是以函数在该区间上的极值和区间端点的函数值进行比较为标准进行的,在极值和区间端点函数值中最大的为最大值,最小的为最小值. 已知函数f (x )=x -1 x ,g (x )=a ln x (a ∈R ). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间; (2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ?????0,12,求h (x 1)-h (x 2)的最小 值. [审题程序] 第一步:在定义域,依据F ′(x )=0根的情况对F ′(x )的符号讨论; 第二步:整合讨论结果,确定单调区间; 第三步:建立x 1、x 2及a 间的关系及取值围; 第四步:通过代换转化为关于x 1(或x 2)的函数,求出最小值. [规解答] (1)由题意得F (x )=x -1 x -a ln x , 其定义域为(0,+∞),则F ′(x )=x 2-ax +1 x 2 ,

2021年高考数学复习《导数---泰勒不等式专题》

导数——泰勒不等式专题 一、泰勒公式: 泰勒公式,也称泰勒展开式,主要是用于求某一个复杂函数在某点的函数值。如果一个函数足够平滑,即若函数)(x f 在包含0x 的某个闭区间],[b a 具有n 各阶导数,且在开区间),(b a 上存在1+n 阶导数,则对],[b a 上任意一点x ,有 ).()(! )()(!2)()(!1)(!0)()(00)(200000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= 其中)(x R n 为泰勒展开式的余项,泰勒展开式也叫泰勒级数. 我们更多的是用泰勒公式在00=x 的特殊形式: )(!) 0(!2) 0( !1)0(!0)0()(2 2x R x n f x f f f x f n n +++''+'+= .以下列举一些常见函数的泰勒公式: ++++=32!31 !21 !11 1x x x e x ① +-+-=+4324 1 3121 )1ln(x x x x x ② +-+-=753!71!51!31sin x x x x x ③ -+-=4 2!41!211cos x x x ④ ++++=-32111x x x x ⑤从中截取片段,就构成了高考数学考察导数的常见不等式: x e x +≥1①; 1ln -≤x x ②; 212 x x e x ++≥③对0≥x 恒成立; x x x x ≤+≤+)1ln(1④对0≥x 恒成立; x x x x ≤≤-sin 63 ⑤对0≥x 恒成立; 2421cos 214 22x x x x +-≤≤-⑥对0≥x 恒成立

(no.1)2013年高中数学教学论文 利用导数处理与不等式有关的问题 新人教版

本文为自本人珍藏版权所有仅供参考 利用导数处理与不等式有关的问题 关键词:导数,不等式,单调性,最值。 导数是研究函数性质的一种重要工具。例如求函数的单调区间、求最大(小)值、求函数的值域等等。而在处理与不等式有关的综合性问题时往往需要利用函数的性质;因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题。下面具体讨论导数在解决与不等式有关的问题时的作用。 一、利用导数证明不等式 (一)、利用导数得出函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。即把证明不等式转化为证明函数的单调性。具体有如下几种形式: 1、直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减) 区间,自变量越大,函数值越大(小),来证明不等式成立。 例1:x>0时,求证;x 2x 2 --ln(1+x)<0 证明:设f(x)= x 2x 2 --ln(1+x) (x>0), 则f'(x)= 2x 1x - + ∵x>0,∴f ' (x)<0,故f(x)在(0,+∞)上递减, 所以x>0时,f(x)a>e, 求证:a b>b a, (e为自然对数的底) 证:要证a b>b a只需证lna b>lnb a 即证:blna-aln b>0 设f(x)=xlna-alnx (x>a>e);则f ' (x)=lna- a x , ∵a>e,x>a ∴lna>1,a x <1,∴f ' (x)>0,因而f(x)在(e, +∞)上递增 ∵b>a,∴f(b)>f(a);故blna-alnb>alna-alna=0;即blna>alnb 所以a b>b a成立。 (注意,此题若以a为自变量构造函数f(x)=blnx-xlnb (e0时 b x,f'(x)0 ln b <<时 b x ln b >,故f(x)在区间(e, b)上 的增减性要由 b e ln b 与的大小而定,当然由题可以推测 b e ln b >

利用导数证明不等式的常见题型及解题技巧

利用导数证明不等式的常见题型及解题技巧 趣题引入 已知函数x x x g ln )(= 设b a <<0, 证明:2ln )()2 ( 2)()(0a b b a b g a g -<+-+< 分析:主要考查利用导数证明不等式的能力。 证明:1ln )(+='x x g ,设)2 (2)()()(x a g x g a g x F +-+= 2 ln ln )2()(21)2(2)()(''''x a x x a g x g x a g x g x F +-=+-=?+-=' 当a x <<0时 0)(<'x F ,当a x >时 0)(>'x F , 即)(x F 在),0(a x ∈上为减函数,在),(+∞∈a x 上为增函数 ∴0)()(min ==a F x F ,又a b > ∴0)()(=>a F b F , 即0)2 ( 2)()(>+-+b a g b g a g 设2ln )()2 (2)()()(a x x a g x g a g x G --+-+= )ln(ln 2ln 2ln ln )(x a x x a x x G +-=-+-='∴ 当0>x 时,0)(' ∴0)()(=

利用导数解决不等式恒成立中的参数问题学案

利用导数解决不等式恒成立中的参数问题 一、单参数放在不等式上型: 【例题1】(07全国Ⅰ理)设函数()x x f x e e -=-.若对所有0x ≥都有()f x ax ≥,求a 的取值范围. 解:令()()g x f x ax =-,则()()x x g x f x a e e a -''=-=+-, (1)若2a ≤,当0x >时,()20x x g x e e a a -'=+->-≥,故()g x 在(0,)+∞上为增函数, ∴0x ≥时,()(0)g x g ≥,即()f x ax ≥. (2)若2a >,方程()0g x '=的正根为1x = 此时,若1(0,)x x ∈,则()0g x '<,故()g x 在该区间为减函数. ∴1(0,)x x ∈时,()(0)0g x g <=,即()f x ax <,与题设()f x ax ≥相矛盾. 综上,满足条件的a 的取值范围是(,2]-∞. 说明:上述方法是不等式放缩法. 【针对练习1】(10课标理)设函数2 ()1x f x e x ax =---,当0x ≥时,()0f x ≥,求a 的取值范围. 解: 【例题2】(07全国Ⅰ文)设函数32()2338f x x ax bx c =+++在1x =及2x =时取得极值. (1)求a 、b 的值;(2)若对于任意的[0,3]x ∈,都有2()f x c <成立,求c 的取值范围. 解:(1)2()663f x x ax b '=++, ∵函数()f x 在1x =及2x =取得极值,则有(1)0f '=,(2)0f '=. 即6630241230a b a b ++=?? ++=? ,解得3a =-,4b =. (2)由(1)可知,32()29128f x x x x c =-++,2()618126(1)(2)f x x x x x '=-+=--. 当(0,1)x ∈时,()0f x '>;当(1,2)x ∈时,()0f x '<;当(2,3)x ∈时,()0f x '>. ∴当1x =时,()f x 取得极大值(1)58f c =+,又(0)8f c =,(3)98f c =+. 则当[0,3]x ∈时,()f x 的最大值为(3)98f c =+. ∵对于任意的[0,3]x ∈,有2()f x c <恒成立,∴298c c +<,解得1c <-或9c >, 因此c 的取值范围为(,1)(9,)-∞-+∞. 最值法总结:区间给定情况下,转化为求函数在给定区间上的最值. 【针对练习2】(07重庆理)已知函数44 ()ln (0)f x ax x bx c x =+->在1x =处取得极值3c --,其中 a 、b 、c 为常数. (1)试确定a 、b 的值;(2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2()2f x c ≥-恒成立,求c 的取值范围.

利用导数研究不等式问题

1.已知函数f (x )=x 2-ax -a ln x (a ∈R ). (1)若函数f (x )在x =1处取得极值,求a 的值; (2)在(1)的条件下,求证:f (x )≥-x 33+5x 22-4x +116 . 2.(优质试题·烟台模拟)已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ). (1)若函数y =h (x )的单调减区间是????12,1,求实数a 的值; (2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围.

3.(优质试题·山西四校联考)已知f (x )=ln x -x +a +1. (1)若存在x ∈(0,+∞),使得f (x )≥0成立,求a 的取值范围; (2)求证:在(1)的条件下,当x >1时,12x 2+ax -a >x ln x +12 成立. 4.已知函数f (x )=(2-a )ln x +1x +2ax . (1)当a <0时,讨论f (x )的单调性; (2)若对任意的a ∈(-3,-2),x 1,x 2∈[1,3],恒有(m +ln 3)a -2ln 3>|f (x 1)-f (x 2)|成立,求实数m 的取值范围. 5.(优质试题·福州质检)设函数f (x )=e x -ax -1. (1)当a >0时,设函数f (x )的最小值为g (a ),求证:g (a )≤0; (2)求证:对任意的正整数n ,都有1n +1+2n +1+3n +1+…+n n +1<(n +1)n +1.

答案精析 1.(1)解 f ′(x )=2x -a -a x ,由题意可得f ′(1)=0,解得a =1.经检验,a =1时f (x )在x =1处取得极值,所以a =1. (2)证明 由(1)知,f (x )=x 2-x -ln x , 令g (x )=f (x )-????-x 33+5x 22 -4x +116 =x 33-3x 22+3x -ln x -116 , 由g ′(x )=x 2 -3x +3-1x =x 3-1x -3(x -1)=(x -1)3x (x >0),可知g (x )在(0,1)上是减函数, 在(1,+∞)上是增函数,所以g (x )≥g (1)=0,所以f (x )≥-x 33+5x 22-4x +116 成立. 2.解 (1)由题意可知,h (x )=x 2-ax +ln x (x >0), 由h ′(x )=2x 2-ax +1x (x >0), 若h (x )的单调减区间是????12,1, 由h ′(1)=h ′????12=0,解得a =3, 而当a =3时,h ′(x )=2x 2-3x +1x =(2x -1)(x -1)x (x >0). 由h ′(x )<0,解得x ∈????12,1, 即h (x )的单调减区间是????12,1, ∴a =3. (2)由题意知x 2-ax ≥ln x (x >0), ∴a ≤x -ln x x (x >0). 令φ(x )=x -ln x x (x >0),

导数在处理不等式的恒成立问题(一轮复习教案)

学习过程 一、复习预习 考纲要求: 1.理解导数和切线方程的概念。 2.能在具体的数学环境中,会求导,会求切线方程。 3.特别是没有具体点处的切线方程,如何去设点,如何利用点线式建立直线方程。4.灵活应用建立切线方程与其它数学知识之间的内在联系。

5. 灵活应用导数研究函数的单调性问题 二、知识讲解 1.导数的计算公式和运算法则 几种常见函数的导数:0'=C (C 为常数);1 )'(-=n n nx x (Q n ∈); x x cos )'(sin =; x x sin )'(cos -=;1(ln )x x '= ; 1(log )log a a x e x '=, ()x x e e '= ; ()ln x x a a a '= 求导法则:法则1 [()()]()()u x v x u x v x ±'='±'.

法则2 [()()]()()()()u x v x u x v x u x v x '='+', [()]'()Cu x Cu x '= 法则3: ' 2 '' (0)u u v uv v v v -??=≠ ??? 复合函数的导数:设函数()u x ?=在点x 处有导数()x u x ?'=',函数()y f u =在点x 的对应点u 处有导 数()u y f u '=',则复合函数(())y f x ?=在点x 处也有导数,且x u x u y y '''?= 或(())()()x f x f u x ??'='?' 2.求直线斜率的方法(高中范围内三种) (1) tan k α=(α为倾斜角); (2) 1212 ()() f x f x k x x -= -,两点1122(,()),(,())x f x x f x ; (3)0()k f x '= (在0x x =处的切线的斜率); 3.求切线的方程的步骤:(三步走) (1)求函数()f x 的导函数()f x '; (2)0()k f x '= (在0x x =处的切线的斜率); (3)点斜式求切线方程00()()y f x k x x -=-; 4.用导数求函数的单调性: (1)求函数()f x 的导函数()f x '; (2)()0f x '>,求单调递增区间; (3)()0f x '<,求单调递减区间; (4)()0f x '=,是极值点。 考点一 函数的在区间上的最值 【例题1】:求曲线29623-+-=x x x y 在)5,2(上的最值 。 【答案】:最大值为18,最小值为-2. 【解析】:∵根据题意09123'2=+-=x x y ,∴3,121==x x ,由函数的单调性,当11=x ,2=y , 取得极大值;当32=x ,2-=y ,取得极小值;当5=x ,18=y 。所以最大值为18,最小值为-2.

导数及不等式综合题集锦

导数及不等式综合题集锦 1.已知函数()ln ,f x x a x =+其中a 为常数,且1a ≤-. (Ⅰ)当1a =-时,求()f x 在2[e,e ](e=2.718 28…)上的值域; (Ⅱ)若()e 1f x ≤-对任意2[e,e ]x ∈恒成立,求实数a 的取值范围. 2. 已知函数.,1ln )(R ∈-=a x x a x f (I )若曲线)(x f y =在点))1(,1(f 处的切线与直线02=+y x 垂直,求a 的值; (II )求函数)(x f 的单调区间; (III )当a=1,且2≥x 时,证明:.52)1(-≤-x x f 3. 已知322()69f x x ax a x =-+(a ∈R ). (Ⅰ)求函数()f x 的单调递减区间; (Ⅱ)当0a >时,若对[]0,3x ?∈有()4f x ≤恒成立,求实数a 的取值范围. 4.已知函数).,()1(3 1)(223R ∈+-+-=b a b x a ax x x f (I )若x=1为)(x f 的极值点,求a 的值; (II )若)(x f y =的图象在点(1,)1(f )处的切线方程为03=-+y x , (i )求)(x f 在区间[-2,4]上的最大值; (ii )求函数)(])2()('[)(R ∈+++=-m e m x m x f x G x 的单调区间

5.已知函数.ln )(x a x x f += (I )当a<0时,求函数)(x f 的单调区间; (II )若函数f (x )在[1,e]上的最小值是,2 3求a 的值. 6.已知函数∈-++=b a m x b ax mx x f ,,,)1(3 )(223 R (1)求函数)(x f 的导函数)(x f '; (2)当1=m 时,若函数)(x f 是R 上的增函数,求b a z +=的最小值; (3)当2,1==b a 时,函数)(x f 在(2,+∞)上存在单调递增区间,求m 的取值范围. 7.已知函数()2ln .p f x px x x =-- (1)若2p =,求曲线()(1,(1))f x f 在点处的切线; (2)若函数()f x 在其定义域内为增函数,求正实数p 的取值范围; (3)设函数2(),[1,]e g x e x = 若在上至少存在一点0x ,使得00()()f x g x >成立,求实数p 的取值范围。 8.设函数21()()2ln ,().f x p x x g x x x =--= (I )若直线l 与函数)(),(x g x f 的图象都相切,且与函数)(x f 的图象相切于点(1,0),求实数 p 的值; (II )若)(x f 在其定义域内为单调函数,求实数p 的取值范围。

专题09导数与不等式的解题技巧

专题09导数与不等式的解 题技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

专题导数与不等式的解题技巧 一.知识点 基本初等函数的导数公式 ()常用函数的导数 ①()′=(为常数); ②()′=; ③()′=;④′=; ⑤()′=. ()初等函数的导数公式 ①()′=;②( )′=; ③( )′=;④()′=; ⑤()′=;⑥( )′=; ⑦()′=. .导数的运算法则 ()[()±()]′=; ()[()·()]′=; ()′=. .复合函数的导数 ()对于两个函数=()和=(),如果通过变量,可以表示成的函数,那么称这两个函数(函数=()和=())的复合函数为=(()). ()复合函数=(())的导数和函数=(),=()的导数间的关系为,即对的导数等于对的导数与对的导数的乘积. 二.题型分析 (一)函数单调性与不等式 例.【一轮复习】已知函数()=+,∈(-,),则满足(-)+(-)>的的取值范围是( ).(,) .(,) .(,) .(,) 【答案】 【分析】在区间(﹣,)上,由(﹣)=﹣(),且′()>可知函数()是奇函数且单调递增,由此可求出的取值范围.

【点睛】本题考查了判断函数的奇偶性和单调性的问题,综合运用了函数的奇偶性和单调性解不等式进行合理的转化,属于中档题. 练习.对任意,不等式恒成立,则下列不等式错误的是().. .. 【答案】 【分析】构造函数,对其求导后利用已知条件得到的单调性,将选项中的角代入函数中,利用单调性化简,并判断正误,由此得出选项. 【解读】构造函数,则,∵,∴ ,即在上为增函数,则,即 ,即,即,又,即, 即,故错误的是.故选:. 【点睛】本小题考查构造函数法,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法.构造函数法主要应用于题目所给已知条件中含有,也含有其导数的不等式,根据不等式的结构,构造出相应的函数.如已知是,可构造,可得 . (二)函数最值与不等式

构造函数解导数综合题

构造辅助函数求解导数问题 对于证明与函数有关的不等式,或已知不等式在某个范围内恒成立求参数取值范围、讨论一些方程解的个数等类型问题时,常常需要构造辅助函数,并求导研究其单调性或寻求其几何意义来解决;题目本身特点不同,所构造的函数可有多种形式,解题的繁简程度也因此而不同,这里是几种常用的构造技巧. 技法一:“比较法”构造函数 [典例] (2017·广州模拟)已知函数f(x)=e x-ax(e为自然对数的底数,a为常数)的图象在点(0,1)处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<e x. [解] (1)由f(x)=e x-ax,得f′(x)=e x-a. 因为f′(0)=1-a=-1,所以a=2, 所以f(x)=e x-2x,f′(x)=e x-2, 令f′(x)=0,得x=ln 2, 当x<ln 2时,f′(x)<0,f(x)单调递减; 当x>ln 2时,f′(x)>0,f(x)单调递增. 所以当x=ln 2时,f(x)取得极小值,且极小值为f(ln 2)=e ln 2-2ln 2=2-ln 4,f(x)无极大值. (2)证明:令g(x)=e x-x2,则g′(x)=e x-2x. 由(1)得g′(x)=f(x)≥f(ln 2)>0, 故g(x)在R上单调递增. 所以当x>0时,g(x)>g(0)=1>0,即x2<e x. [方法点拨] 在本例第(2)问中,发现“x2,e x”具有基本初等函数的基因,故可选择对要证明的“x2<e x”构造函数,得到“g(x)=e x-x2”,并利用(1)的

结论求解. [对点演练] 已知函数f (x )=x e x ,直线y =g (x )为函数f (x )的图象在x =x 0(x 0<1) 处的切线,求证:f (x )≤g (x ). 证明:函数f (x )的图象在x =x 0处的切线方程为y =g (x )=f ′(x 0)(x -x 0)+f (x 0). 令h (x )=f (x )-g (x )=f (x )-f ′(x 0)(x -x 0)-f (x 0), 则h ′(x )=f ′(x )-f ′(x 0)= 1-x e x - 1-x 0 e 0 x = ?1-x ?e 0 x -?1-x 0?e x e 0 +x x . 设φ(x )=(1-x )e 0 x -(1-x 0)e x , 则φ′(x )=-e 0 x -(1-x 0)e x , ∵x 0<1,∴φ′(x )<0, ∴φ(x )在R 上单调递减,又φ(x 0)=0, ∴当x <x 0时,φ(x )>0,当x >x 0时,φ(x )<0, ∴当x <x 0时,h ′(x )>0,当x >x 0时,h ′(x )<0, ∴h (x )在区间(-∞,x 0)上为增函数,在区间(x 0,+∞)上为减函数, ∴h (x )≤h (x 0)=0, ∴f (x )≤g (x ). 技法二:“拆分法”构造函数 [典例] 设函数f (x )=ae x ln x +be x -1 x ,曲线y =f (x )在点(1,f (1)) 处的切线为y =e (x -1)+2. (1)求a ,b ; (2)证明:f (x )>1. [解] (1)f ′(x )=ae x ? ?? ??ln x +1x +be x -1 ?x -1? x 2 (x >0), 由于直线y =e (x -1)+2的斜率为e ,图象过点(1,2),

导数与不等式专题一

导数与不等式专题一 1. (优质试题北京理18倒数第3大题,最值的直接应用) 已知函数。 ⑴求的单调区间; ⑵若对于任意的,都有 ≤,求的取值范围. 解:⑴,令, 当时,与的情况如下: 所以,的单调递增区间是和:单调递减区间是, 当时,与的情况如下: 所以,的单调递减区间是和:单调递增区间是。 ⑵当时,因为11 (1)k k f k e e ++=>,所以不会有 当时,由(Ⅰ)知在上的最大值是, 所以等价于,解 综上:故当时,的取值范围是[,0]. 2 ()()x k f x x k e =-()f x (0,)x ∈+∞()f x 1e k 221()()x k f x x k e k '=-()0,f x x k '==±0k >()f x ()f x '()f x (,)k -∞-(,)k +∞(,)k k -0k <()f x ()f x '()f x (,)k -∞(,)k -+∞(,)k k -0k >1(0,),().x f x e ?∈+∞≤0k <()f x (0,)+∞2 4()k f k e -=1(0,),()x f x e ?∈+∞≤24()k f k e -= 1 e ≤10.2k -≤<1(0,),()x f x e ?∈+∞≤ k 1 2 -

2. (优质试题天津理20倒数第3大题,最值的直接应用,第3问带有小的处理技巧) 已知函数,其中. ⑴若曲线在点处切线方程为,求函数的解析式; ⑵讨论函数的单调性; ⑶若对于任意的,不等式在上恒成立,求的取值范围. 解:⑴,由导数的几何意义得,于是. 由切点在直线上可得,解得. 所以函数的解析式为. ⑵. 当时,显然(),这时在,上内是增函数. 当时,令,解得 当变化时,,的变化情况如下表: + 0 - - 0 + ↗ 极大 值 ↘ ↘ 极小值 ↗ ∴在,内是增函数,在,内是减函数. ⑶由⑵知,在上的最大值为与的较大者,对于任意的 ,()()0≠++= x b x a x x f R b a ∈ ,()x f y =()( )2,2f P 13+=x y ()x f ()x f ??????∈2,21a ()10≤x f ?? ? ???1,41b 2()1a f x x '=- (2)3f '=8a =-(2,(2))P f 31y x =+27b -+=9b =()f x 8 ()9f x x x =-+2 ()1a f x x '=- 0a ≤()0f x '>0x ≠()f x (,0)-∞(0,)+∞0a >()0f x '=x =x ()f x '()f x x (,-∞()+∞()f x '()f x ()f x (,-∞)+∞((0,)+∞()f x 1[,1]41()4f (1)f 1 [,2]2 a ∈

利用导数处理与不等式有关的问题

利用导数处理与不等式有关的问题 关键词:导数,不等式,单调性,最值。 导数是研究函数性质的一种重要工具。例如求函数的单调区间、求最大(小)值、求函数的值域等等。而在处理与不等式有关的综合性问题时往往需要利用函数的性质;因此,很多时侯可以利用导数作为工具得出函数性质,从而解决不等式问题。下面具体讨论导数在解决与不等式有关的问题时的作用。 一、利用导数证明不等式 (一)、利用导数得出函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减)。因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的。即把证明不等式转化为证明函数的单调性。具体有如下几种形式: 1、直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单 调递增(减)区间,自变量越大,函数值越大(小),来证明不等式成立。 例1:x>0时,求证;x 2x 2 --ln(1+x)<0 证明:设f(x)= x 2x 2 --ln(1+x) (x>0), 则f'(x)= 2x 1x - + ∵x>0,∴f'(x)<0,故f(x)在(0,+∞)上递减, 所以x>0时,f(x)a>e, 求证:a b>b a, (e为自然对数的底) 证:要证a b>b a只需证lna b>lnb a 即证:blna-alnb>0 设f(x)=xlna-alnx (x>a>e);则f '(x)=lna-a x , ∵a>e,x>a ∴lna>1,a x <1,∴f '(x)>0,因而f(x)在(e, +∞)上递增 ∵b>a,∴f(b)>f(a);故blna-alnb>alna-alna=0;即blna>alnb 所以a b>b a成立。 (注意,此题若以a为自变量构造函数f(x)=blnx-xlnb (e0时 b x,f'(x)0 ln b <<时 b x ln b >,故f(x)在区间(e, b)

利用导数解决不等式问题

考点43 利用导数解决不等式问题 1.(13天津T8)设函数2()e 2,()ln 3x x g x x x x f +-=+-=. 若实数,a b 满足()0,()0f a g b ==, 则( ) A. ()0()g a f b << B. ()0()f b g a << C. 0()()g a f b << D. ()()0f b g a << 【测量目标】利用导数解决不等式问题. 【考查方式】已知两个函数,通过导数判断函数的单调性,比较值的大小. 【试题解析】首先确定b a ,的取值范围,再根据函数的单调性求解. ()e 10x f x '=+>,∴()x f 是增函数. (步骤1) ∵()x g 的定义域是()0,+∞,∴()120,g x x x '=+> ∴()x g 是()0,+∞上的增函数. (步骤2) ∵()010,(1)e 10,0 1.f f a =-<=->∴<<(步骤3) (1)20,g =-<(2)ln 210,12,()0,()0.g b f b g a =+>∴<<∴><(步骤4) 2.(13湖南T21)(本小题满分13分)已知函数21()e 1x x f x x -= +. ⑴求()f x 的单调区间; ⑵证明:当时1212()()()f x f x x x =≠时,120x x +<. 【测量目标】导数的运算,导数研究函数的单调性,导数在不等式证明问题中的应用. 【考查方式】考查导数的运算、利用导数求函数单调区间的方法、构造函数判断函数大小的方法. 【试题解析】⑴ 函数的定义域,-∞+∞(), 2211()e e 11x x x x f x x x '--??'=+ ?++?? 222(11)e 1)(1)e 21)x x x x x x x -+-?+--?=+((22232e 1)x x x x x --+=?+((步骤1) 22420?=-?<,∴当(,0)x ∈-∞时,()0,()f x y f x '>=单调递增,

导数中不等式相关的几个问题

导数中“不等式”相关的几个问题 f (x )=ln(1+ax ) -2x x +2 . 专题二:不等式两边“变量”相同且不含参 1. (2016年山东高考)已知.当时,证明对于任意的成立. 2. (2016年全国II 高考)讨论函数的单调性,并证明当时,; 专题三:不等式两边不同“变量”的任意存在组合型 1. 已知函数f (x )=x -1 x +1 ,g (x )=x 2-2ax +4,若对于任意x 1∈[0,1],存在x 2∈[1,2],使 f (x 1)≥ g (x 2),则实数a 的取值范围是__________ 2. 已知函数.设当时,若()2 21 ()ln ,R x f x a x x a x -=-+ ∈1a =()3 ()'2 f x f x +>[]1,2x ∈x x 2f (x)x 2 -= +e 0x >(2)20x x e x -++>1()ln 1a f x x ax x -=-+ -()a R ∈2()2 4.g x x bx =-+1 4 a =

对任意,存在,使,求实数取值范围. 专题四:不等式两边不同“变量”的对等构造、齐次消元型 类型1:对称变量,构造法求解 1. 已知函数f(x)= 2 1x 2 -ax+(a-1)ln x ,1a >。 (1)讨论函数()f x 的单调性; (2)证明:若5a <,则对任意x 1,x 2∈(0,)+∞,x 1≠x 2,有 1212 ()() 1f x f x x x ->--。 2. 已知函数 (I )讨论函数的单调性; (II )设.如果对任意,,求的 取值范围。 3. 设函数f (x )=ln x +m x ,m ∈R . (1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x 3 零点的个数; (3)若对任意b >a >0,f (b )-f (a ) b -a <1恒成立,求m 的取值范围. 4. 当()1,,n m n m Z >>∈,时,证明:( )()m n n m mn nm > 1(0,2)x ∈[]21,2x ∈12()()f x g x ≥b 1ln )1()(2 +++=ax x a x f )(x f 1-

17.导数中的不等式放缩

第121课 导数中不等式放缩 基础知识: (1)在不等式放缩中,常见的函数不等式有①e 1x x ≥+;②1ln x x -≥. 特别地,要注意在具体题目中灵活变形应用这些不等式. 如利用上面①、②易得1ln 2x x +≥+,e ln 2x x >+,e sin 1x x ≥+等不等式. (2)与隐零点相关的放缩问题 常用方法:利用隐零点问题中常用的代换技巧表达出()f x 的最大值(最小值)0()f x ,再由0x 的取值范围求出0()f x 的最大值(最小值),即得到0()()f x f x M ≤≤(0()()f x f x M ≥≥),进而证得题目中所证不等式. 一、典型例题 1.已知函数()23e x f x x =+,()91g x x =-. 比较()f x 与()g x 的大小,并加以证明. 2.已知函数()2e x f x x =-. (1)求曲线()f x 在1x =处的切线方程; (2)求证:当0x >时, ()e 2e 1ln 1x x x x +--?. 二、课堂练习 1. 已知()e ln x f x x =-. (1)求()y f x =的导函数()y f x ¢=的零点个数; (2)求证:()2f x >. 2. 已知函数()() 23e 4cos 1x f x x ax x x =+++,()()e 1x g x m x =-+. (1)当1m 3时,求函数()g x 的极值; (2)若72a ? ,证明:当()0,1x ?时,()1f x x >+. 三、课后作业 1. 已知函数()()21ln f x x x x =-+,求证:当02x . 2. 设函数()e sin x f x a x b =++. 若()f x 在0x =处的切线为10x y --=,求,a b 的值. 并证明当(0,)x ??时,()ln f x x >.

2021-2022年高考数学二轮复习上篇专题整合突破专题一函数与导数不等式第2讲不等式问题练习

2021年高考数学二轮复习上篇专题整合突破专题一函数与导数不等 式第2讲不等式问题练习 一、填空题 1.(xx·苏州调研)已知f (x )=???x 2 +x (x ≥0),-x 2 +x (x <0), 则不等式f (x 2 -x +1)<12的解集是________. 解析 依题意得,函数f (x )是R 上的增函数,且f (3)=12,因此不等式f (x 2-x +1)<12等价于x 2-x +1<3,即x 2-x -2<0,由此解得-1<x <2. 因此,不等式f (x 2 -x +1)<12的解集是(-1,2). 答案 (-1,2) 2.若点A (m ,n )在第一象限,且在直线x 3+y 4 =1上,则mn 的最大值是________. 解析 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n 4 =1, 所以m 3·n 4≤2 342m n ?? + ? ? ? ?? ? ???? 当且仅当m 3=n 4=12,即m =32,n =2时,取“=”,所以m 3·n 4≤? ????122=1 4,即mn ≤3,所以mn 的最大值为3. 答案 3 3.(xx·苏北四市模拟)已知函数f (x )=???x 2 +2x ,x ≥0, x 2-2x ,x <0, 若f (-a )+f (a )≤2f (1),则 实数a 的取值范围是________. 解析 f (-a )+f (a )≤2f (1)?

???a ≥0, (-a )2-2×(-a )+a 2 +2a ≤2×3或 ?? ?a <0, (-a )2+2×(-a )+a 2-2a ≤2×3 即???a ≥0,a 2+2a -3≤0或???a <0,a 2-2a -3≤0, 解得0≤a ≤1,或-1≤a <0. 故-1≤a ≤1. 答案 [-1,1] 4.已知函数f (x )=???log 3 x ,x >0, ? ?? ??13x ,x ≤0,那么不等式f (x )≥1的解集为________. 解析 当x >0时,由log 3x ≥1可得x ≥3,当x ≤0时,由? ?? ??13x ≥1可得x ≤0,∴不等 式f (x )≥1的解集为(-∞,0]∪[3,+∞). 答案 (-∞,0]∪[3,+∞) 5.(xx·南京、盐城模拟)若x ,y 满足不等式组???x +2y -2≥0, x -y +1≥0,3x +y -6≤0, 则 x 2+y 2的最小值是 ________. 解析 不等式组所表示的平面区域如图阴影部分所示, x 2+y 2表示原点(0,0)到此区域内的点P (x ,y )的距离. 显然该距离的最小值为原点到直线x +2y -2=0的距离. 故最小值为|0+0-2|12+22=25 5.

导数与不等式常考题型

导数与不等式题型 1.已知2()ln ,()3f x x x g x x ax ==-+-. (1) 求函数()f x 在[,2](0)t t t +>上的最小值; (2) 对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,求实数a 的取值范围; (3) 证明:对一切(0,)x ∈+∞,都有12ln x x e ex >-成立. 本题是一道函数、导数与不等式证明的综合题,主要考查导数的几何意义、导数的求法以及导数在研究函数的性质和证明不等式等方面的应用,考查等价转化、分类讨论等数学思想方法以及分析问题与解决问题的能力. 对于第(1)问,只要运用导数的方法法研究出函数()f x 的单调性即可,最值就容易确定了;对于第(2)问,是一个不等式恒成立的问题,可通过分离常数,将其转化为求函数的最值问题来处理;对于第(3)问,可以通过构造函数,利用导数研究其函数值的正负来实现不等式的证明. 解析: (1) '()ln 1f x x =+, 当1(0,)x e ∈,'()0f x <,()f x 单调递减, 当1(,)x e ∈+∞,'()0f x >,()f x 单调递增. ① 102t t e <<+< ,t 无解; ② 102t t e <<<+,即10t e <<时,min 11()()f x f e e ==-; ③ 12t t e ≤<+,即1t e ≥时,()f x 在[,2]t t +上单调递增,min ()()ln f x f t t t ==; 所以min 110()1ln t e e f x t t t e ?-<,则2 (3)(1)'()x x h x x +-=,(0,1)x ∈,'()0h x <,()h x 单调递减,(1,)x ∈+∞,'()0h x >,()h x 单调递增,所以min ()(1)4h x h ==. 因为对一切(0,)x ∈+∞,2()()f x g x ≥恒成立,所以min ()4a h x ≤=. (3) 问题等价于证明2ln ((0,))x x x x x e e > -∈+∞, 由⑴可知()ln ((0,))f x x x x =∈+∞的最小值是1e -,当且仅当1x e =时取到.

构造函数法解决导数不等式问题教学设计公开课

构造函数法解决导数不等式问题 在函数中解决抽象函数问题首要的前提是对函数四种基本性质的熟练掌握,导数是函数单调性的延伸,如果把题目中直接给出的增减性换成一个'()f x ,则单调性就变的相当隐晦了,另外在导数中的抽象函数不等式问题中,我们要研究的往往不是()f x 本身的单调性,而是包含()f x 的一个新函数的单调性,因此构造函数变的相当重要,另外题目中若给出的是'()f x 的形式,则我们要构造的则是一个包含()f x 的新函数,因为只有这个新函数求导之后才会出现'()f x ,因此解决导数抽象函数不等式的重中之重是构造函数。 例如:'()0f x >,则我们知道原函数()f x 是单调递增的,若'()10f x +>,我们知道()()g x f x x =+这个函数是单调递增的,因此构造函数的过程有点类似于积分求原函数的过程,只不过构造出的新函数要通过题目中给出的条件能判断出单调性才可。 既然是找原函数,那么就可能遇上找不到式子的原函数的时候,但是我们判断单调性只需要判断导函数的正负即可,例如()g x 的原函数是不能准确的找到的,但是如果我们知道一个式子的导函数里面包含()g x ,则也能大致将那个函数看成是原函数,例如'()()g x m x x = ,或者()m x 的导函数中包含一个能判断符号的式子和()g x 相乘或相除的形式,我们也可以将()m x 大致看成()g x 的原函数。 构造函数模型总结: 关系式为“加”型: (1)'()()0f x f x +≥ 构造''[()][()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造''[()]()()xf x xf x f x =+ (3)'()()0xf x nf x +≥构造''11'[()]()()[()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)' ()()0f x f x -≥ 构造'''2()()()()()[]()x x x x x f x f x e f x e f x f x e e e --== (2)' ()()0xf x f x -≥ 构造''2()()()[]f x xf x f x x x -= (3)' ()()0xf x nf x -≥构造'1''21()()()()()[]()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论)

相关文档
相关文档 最新文档