文档库 最新最全的文档下载
当前位置:文档库 › DM642上5-3提升小波的优化

DM642上5-3提升小波的优化

DM642上5-3提升小波的优化

DM642上5/3提升小波的优化

在新的图像压缩标准JPEG2000 中,采用9/7、5/3 提升小波变换作为编码算法,其中5/3 小波变换是一种可逆的整数变换,可以实现无损或有损的图像压缩。在通用的DSP 芯片上实现该算法具有很好的可扩展性、可升级性与易维护性。用这种方式灵活性强,完全能满足各种处理需求。1 提升算法提升算法[1]是由Sweldens 等在Mallat 算法的基础上提出的,也称为第二代小波变换。与Mallat 算法相比,提升算法不依赖傅立叶变换,降低了计算量和复杂度,运行效率相应提高。由于具有整数变换及耗费存储单元少的特点,提升算法很适合于在定点DSP 上实现。小波提升算法的基本思想是通过基本小波逐步构建出一个具有更加良好性质的新小波。其实现步骤为分解(split)、预测(predict)和更新(update)。首先按照对原信号进行对称延拓得到新的x(n)。分解是将数据分为偶数序列x(2n)和奇数序列x(2n+1)二个部分;预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量:H(n)=x(2n+1)-{[x(2n)+x(2n+2)]1} 更新是由预测误差更新偶数序列,得到变换的低频分量:L(n)=x(2n)+{[H(n) +H(n-1)+2]2}计算过程如图1 所示。

在这种方法中,SDRAM 中的一个数据块首先传输到L2 中,然后取到L1D 中进行水平方向的提升,再对该块进行垂直方向的提升。这样,由于垂直提升所需的数据都在L1D 中,避免了此处数据缓存缺失的产生,使总的缺失数大大降低。2.3 数据传输(1)SDRAM 与L2 间的数据传输由于EDMA[6][7]数据传输与CPU 运行相互独立,因此在L2 中开辟两块缓存:EDMA 在CPU 处理InBuffA 的同时将下一块数据传输到InBuffB,解决了CPU 读取低速设备SDRAM 引起的时延,如图3 所示。

边界延拓主要是用于计算高频系数。分析发现,水平提升时,当前数据块每

DM642上5-3提升小波的优化

DM642上5/3提升小波的优化 在新的图像压缩标准JPEG2000 中,采用9/7、5/3 提升小波变换作为编码算法,其中5/3 小波变换是一种可逆的整数变换,可以实现无损或有损的图像压缩。在通用的DSP 芯片上实现该算法具有很好的可扩展性、可升级性与易维护性。用这种方式灵活性强,完全能满足各种处理需求。1 提升算法提升算法[1]是由Sweldens 等在Mallat 算法的基础上提出的,也称为第二代小波变换。与Mallat 算法相比,提升算法不依赖傅立叶变换,降低了计算量和复杂度,运行效率相应提高。由于具有整数变换及耗费存储单元少的特点,提升算法很适合于在定点DSP 上实现。小波提升算法的基本思想是通过基本小波逐步构建出一个具有更加良好性质的新小波。其实现步骤为分解(split)、预测(predict)和更新(update)。首先按照对原信号进行对称延拓得到新的x(n)。分解是将数据分为偶数序列x(2n)和奇数序列x(2n+1)二个部分;预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量:H(n)=x(2n+1)-{[x(2n)+x(2n+2)]1} 更新是由预测误差更新偶数序列,得到变换的低频分量:L(n)=x(2n)+{[H(n) +H(n-1)+2]2}计算过程如图1 所示。 在这种方法中,SDRAM 中的一个数据块首先传输到L2 中,然后取到L1D 中进行水平方向的提升,再对该块进行垂直方向的提升。这样,由于垂直提升所需的数据都在L1D 中,避免了此处数据缓存缺失的产生,使总的缺失数大大降低。2.3 数据传输(1)SDRAM 与L2 间的数据传输由于EDMA[6][7]数据传输与CPU 运行相互独立,因此在L2 中开辟两块缓存:EDMA 在CPU 处理InBuffA 的同时将下一块数据传输到InBuffB,解决了CPU 读取低速设备SDRAM 引起的时延,如图3 所示。 边界延拓主要是用于计算高频系数。分析发现,水平提升时,当前数据块每

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

基于小波包的图像压缩及matlab实现

基于小波包的图像压缩及matlab实现 摘要:小波包分析理论作为新的时频分析工具,在信号分析和处理中得到了很好的应用,它在信号处理、模式识别、图像分析、数据压缩、语音识别与合成等等许多方面都取得了很有意义的研究成果。平面图像可以看成是二维信号,因此,小波包分析很自然地应用到了图像处理领域,如在图像的压缩编码、图像消噪、图像增强以及图像融合等方面都很好的应用。本文将对小波包分析在图像处理中的应用作以简单介绍。 关键词:小波包图像处理消噪 1.小波包基本理论 1.1 小波包用于图像消噪 图像在采集、传输等过程中,经常受到一些外部环境的影响,从而产生噪声使得图像发生降质,图像消噪的目的就是从所得到的降质图像中去除噪声还原原始图像。图像降噪是图像预处理中一项应用比较广泛的技术,其作用是为了提高图像的信噪比突出图像的期望特征。图像降噪方法有时域和频域两种方法。频率域方法主要是根据图像像素噪声频率范围,选取适当的频域带通过滤波器进行滤波处理,比如采用Fourier变换(快速算法FFT)分析或小波变换(快速算法Mallat 算法)分析。空间域方法主要采用各种平滑函数对图像进行卷积处理,以达到去除噪声的目的,如邻域平均、中值(Median)滤波等都属于这一类方法。还有建立在统计基础上的lee滤波、Kuan滤波等。但是归根到底都是利用噪声和信号在频域上分布不同进行的:信号主要分布在低频区域。而噪声主要分布在高频区域,但同时图像的细节也分布在高频区域。所以,图像降噪的一个两难问题就是如何在降低图像噪声和保留图像细节上保持平衡,传统的低通滤波方法将图像的高频部分滤除,虽然能够达到降低噪声的效果,但破坏了图像细节。如何构造一种既能够降低图像噪声,又能保持图像细节的降噪方法成为此项研究的主题。在小波变换这种有力工具出现之后,这一目标已经成为可能。 基于小波包变换消噪方法的主要思想就是利用小波分析的多尺度特性,首先对含有噪声的图像进行小波变换,然后对得到的小波系数进行阈值化处理,得到

基于Tchebichef矩和小波提升的数字水印算法

—113— 基于Tchebichef 矩和小波提升的数字水印算法 赵 杰,王 晅,何 冰 (陕西师范大学物理学与信息技术学院,西安 710062) 摘 要:提出一种基于Tchebichef 矩和小波提升的抵抗几何攻击的内容认证水印算法,对图像进行一次小波提升分解,计算其低频成分的Tchebichef 低阶矩不变量来构建水印系统。水印认证过程只须计算图像的几个低阶Tchebichef 矩不变量。将该算法与基于几何矩不变量的算法进行比较。结果表明,该算法简单、有效,对旋转、缩放、剪切等几何攻击以及JPEG 压缩等攻击具有较高的稳健性。 关键词:数字水印;Tchebichef 矩;小波提升 Digital Watermark Algorithm Based on Tchebichef Moments and Wavelet Lifting ZHAO Jie, WANG Xuan, HE Bing (School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062) 【Abstract 】The watermark based on Tchebichef moments and wavelet lifting is used in an authentication context. After the discrete lifting wavelet transform, the lower order Tchebichef invariant moments of the sub band coefficients are computed. The processing of the encoder and the decoder is simple, and a few low order moments need to be calculated. The algorithm is compared with the algorithm based on the geometric moments.Results show that the scheme is simple, effective. It has high stabilities of geometrical attacks of rotation, scaling, shearing, and JPEG compression.【Key words 】digital watermark; Tchebichef moments; wavelet lifting 计 算 机 工 程Computer Engineering 第35卷 第11期 Vol.35 No.11 2009年6月 June 2009 ·安全技术· 文章编号:1000—3428(2009)11—0113—03 文献标识码:A 中图分类号:TP391 1 概述 媒体的数字化方便了信息的存取和传播,但同时也使盗版和非法窜改等行为难以认证,水印技术是解决版权保护问题的一个有效途径。目前已提出许多数字水印的算法,但现有的数字水印技术大多难以抵抗几何变换类攻击,如旋转、平移和尺度变换等,其中一个最主要的原因是:几何变换虽然并未去除图像中的水印信息,但却使水印的检测与嵌入之间失去同步,从而导致水印检测的失效。因此,同步问题被认为是抗几何攻击水印技术中有待解决的关键技术。常见抵抗几何攻击的水印算法有文献[1-2]提出的基于Fourier- Mellin 变换的算法。 矩函数可以描述物体形状的全局特征,并提供大量该物体特有的几何信息。矩函数的这种特性被广泛应用于图像编码压缩与重构、模式识别、目标状态与方位估计等方面,数字水印技术是其应用领域之一。文献[3]提出基于Zernike 矩的数字图像水印算法,文献[4]提出基于几何矩不变量的数字水印算法。随着图像处理研究的深入,引入了许多新的矩函数,离散Tchebichef 矩便是其中具有较好性能的一种[5]。由于该矩本身是离散的,因此其计算精度较高,可直接应用于离散图像,无须对定义域进行归一化处理,并且Tchebichef 多项式的计算具有递推关系和对称性,可以加快运算。 本文提出一种基于小波提升和Tchebichef 矩的水印算法,并将其与几何矩的算法进行比较。 2 小波提升方案 由于传统小波变换的滤波器输出是浮点数,而图像的像 素值均为整数,小波系数量化时存在舍入误差,并且图像的 重构质量与变换时延拓边界的方式有关。文献[6]对小波的构造提出一种新的观点:整数小波提升方案(lifting scheme),也称为第2代小波变换。整数小波提升格式具有真正意义上的可逆性,可不用考虑边界效应。提升方案基于传统小波变换的思想,但效率更高。与传统小波变换相比,提升方案主要有以下几个优点:(1)完全是基于空域的构造方法,运算速度快,节省存储空间。(2)不依赖于平移、伸缩的概念,也不需要傅里叶变换进行频谱分析。(3)可直接将整数映射成为整数,无须再进行量化。最低频子带包含了图像的基本信息,占据了原始图像的大部分的能量,是鲁棒水印嵌入的合适位置。图像的小波分解过程如图1所示。 图1 图像的小波分解 3 Tchebichef 矩 假设(,)f x y 表示大小为N ×N 的原始图像,则离散Tchebichef 多项式为32()(1)(,,1;1;1)n n t x N F n x n N =?×??+?, 作者简介:赵 杰(1984-),男,硕士研究生,主研方向:图像处理,数字水印;王 晅,副教授;何 冰,硕士研究生 收稿日期:2008-10-06 E-mail :zhaojie261134@https://www.wendangku.net/doc/1c669995.html,

小波变换的基本原理

10.2小波变换的基本原理 地质雷达的电磁波信号和地震波信号都是非平稳随机时变信号,长期以来,因非平稳信号处理的理论不健全,只好将其作为平稳信号来处理,其处理结果当然不满意。近年来,随着科学技术的发展和进步,国内外学术界已将注意力转向非平稳随机信号分析与处理的研究上,其中非平稳随机信号的时频表示法是研究热点之一。在这一研究中,戈勃展开、小波变换、维格纳分布与广义双线性时频分布等理论发展起来,这些方法既可以处理平稳信号过程,也可以处理非平稳随机时变信号。 小波变换是上世纪80年代中后期逐渐发展起来的一种数学分析方法。1984年法国科学家J.M OLET在分析地震波的局部特性时首先使用了小波这一术语,并用小波变换对地震信号进行处理。小波术语的含义是指一组衰减震动的波形,其振幅正负相间变化,平均值为零,是具有一定的带宽和中心频率波组。小波变换是用伸缩和平移小波形成的小波基来分解(变换)或重构(反变换)时变信号的过程。不同的小波具有不同带宽和中心频率,同一小波集中的带宽与中心频率的比是不变的,小波变换是一系列的带通滤波响应。它的数学过程与傅立叶分析是相似的,只是在傅立叶分析中的基函数是单频的调和函数,而小波分析中的基函数是小波,是一可变带宽内调和函数的组合。 小波变换在时域和频域都具有很好的局部化性质,较好地解决了时域和频域分辨率的矛盾,对于信号的低频成分采用宽时窗,对高频成分采用窄时窗。因而,小波分析特别适合处理非平稳时变信号,在语音分析和图象处理中有广泛的应用,在地震、雷达资料处理中将有良好的应用前景。 下边就小波分析的基本原理、主要作用及在雷达资料处理中的应用三方面作以介绍。 10.2.1小波分析的基本原理 小波函数的数学表达

提升小波变换的弱小目标算法研究分析(文献综述)

文献综述 基于提升小波变换地弱小目标检测算法研究 前言 目标检测在计算机视觉,雷达跟踪,红外制导,电视跟踪等研究领域有着极其重要地地位,目标地实时检测已成为现在图像处理地关键技术之一,其中运动目标地检测是当今研究地热点. b5E2RGbCAP 基于小波变换地目标检测算法,这些算法在弱小目标检测上有很大优势. 但计算量大是这些算法应用地瓶颈,寻找快速鲁棒地算法是科研人员不懈努力地方向.1997 年Sweldens 等人提出地提升框架地小波变换(第二代小波)给小波地研究和应用又迎来了一次新地高峰. 提升算法地特点是避免了传统小波算法地卷积操作,彻底摆脱了对傅立叶变换地依赖,计算过程可以在空域中完成,能够通过简单地并行计算快速实现. 并且逆变换具有与前向变换完全相同地变换模式与计算复杂度,无需重新设计. 它使我们能够用一种简单地方法去解释小波地基本理论. 提升小波和基于提升框架地整数小波在图像压缩方面取得了巨大成功,并且被新一代静止图像压缩标准JPEG 正式纳入了核心框架之中. p1EanqFDPw 正文 长期以来人们根据具体情况提出了多种多样地目标检测方法,每种方法在满足各自地条件下均取得很好地效果,有些成熟经典地算法已经被广泛地应用于实际中了. 根据查阅地国外文献报道将序列目标检测方法分成基于像素分析地检测方法、基于特征地检测方法和机遇地变换地检测方法等. DXDiTa9E3d 2.1 基于小波地目标检测方法变换域中检测目标较典型地一种方法是基于傅立叶变换地方法. 对图像序列进行傅立叶变换,运动目标地傅立叶变换地频谱幅度不变而相位谱为一个常数,利用这一性质,可以通过相位相关算法来估计运动特性,计算相邻帧间地相位角差来估计空间域中目标地位置,它要求在图像序列中背景不变且只有一个运动目标Mahmoud对运动目标地变换方法进行了广泛地研究,除了FFT 方法,他还提出了快速 Hartley 变换(FHT)进行多目标跟踪,该方法是先对图像序列进行频域处理,再进行峰值检测,Fourier 谱或Hartley 谱地峰值位置则对应于运动目标地速度.该方法地独到之处是对多运动目标地n 阶遮挡分别用冲击函数地对应次乘积求和表示,从而在一定程度上反映和解决了多目标遮挡地问题. 傅立叶变换是一种纯频域地分析方法,它在频域地定位性是完全准确地,即频域地分辨率高,而在时域则没有任何定位性或分辨能力,也就是说傅立叶变换反映地是整个信号全部时间下地整体频域特征,而不能提供局部时间段上地频率信息. 在其基础上产生地短时傅立叶变换,也称为加窗傅立叶变换,虽然能研究信号在局部时间范围地频域特征,但其窗函数地大小和形状

图像处理中的小波变换算法原理及其应用

图像处理中的小波变换算法原理及其应用 摘要:小波分析是近年来迅速发展起来的一个数学分支,由于它在时间域和频率域里同时具有良好的局部化性质,因而在图像处理领域有着日益广泛的应用。随着数字图像处理需求的不断增长,相关应用也不断的增长,文章以一例图像处理过程为例,阐述了基于小波二维变换的图像处理方法在图像处理过程中的应用。 关键词:小波变换;图像;分解 1小波变换的基本概念及特点 小波定义:(t)∈L2(R),其傅里叶变换为(),当满足允许条件,即完全重构条件或恒等分条件。 C=∞-∞d<∞时,我们称(t)为一个基本小波,或者母小波。将母函数(t)经伸缩和平移后,得: a,b(t)=(),a,b∈R,a≠0 我们称其为一个小波序列。其中a为伸缩因子,b为平移因子。 小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。在低频部分具有较高的频率分辨率和时间分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,因此被誉为分析信号的显微镜。 小波分析是把信号分解成低频A1和高频D1两部分,在分解中,低频A1失去的部分由高频D1捕获。而在下一层分解过程中,又将A1部分分解为低频A2和高频D2两部分,如此类推,可以进行多层分解。 2二维离散小波变换 在图像分解过程中,图像的小波分解就是二维小波的离散化分解。在此可取a=a0j,b=b0j,这里,j∈z,取a0>1,则离散小波函数可写为j,k(t)。 j,k(t)=()=(a0-jt-kb0) 离散化变换系数可表示为: Cj,k +∞-∞ f(t)j,k(t)dt=(f,Cj,k)

小波包基搜索算法。 程序设计

10. 4编程实现有限长信号的小波包分解算法并选择一个信息代价函数,实现最佳小波包基搜索算法。 程序设计 实验的程序采用C语言编写,自己实现小波包的分解和重构,选用了Haar,D4等小波进行实验,分解算法采用递归的方法,沿树结构进行深度优先的分解,重构的时候也采用类似的方法。实验数据采用的是lena图像的第一行进行,长度为256。程序中可以选用几种代价函数进行最优基的选择(范数集中度,对数熵,信息熵)。程序读如lena图像的第一行后,并将这行数据存入文件in.dat,进行小波包分解,然后进行最优基的选取,在最优基下相应的系数存入文件out.dat。函数说明: void readbmp(char * file,int n,double * c) //读入lena.bmp的第一行 void dwt(Node * root)//按深度优先进行完全小波包分解void idwt(Node * root)//进行小波包重构 double entroy(double a) //计算每个节点的代价 double total_entroy(Node *root) //寻找最优小波基 root) //输出最优小波基下的系数 * void show(Node 实验结果与分析 读如的一行数据 横坐标为图像横坐标(0-255),纵坐标为像素点的灰度值(0-255). 以下个图是在利用相应的小波和相应的代价函数选择出的最佳小波基对应的小波分解系数 利用haar小波进行小波包分解 (1) 利用范数集中度为代价函数 横坐标表示256个小波分解系数,纵坐标表示每个小波分解系数的值

可见系数能量分布较均匀,说明代价函数不起作用 (2) 利用对数熵为代价函数 横坐标表示256个小波分解系数,纵坐标表示每个小波分解系数的值 可见能量集中在前10 个系数上,大多数系数的绝对值较小,可以认为,基的选择是合适的. (3)利用信息熵为代价函数 横坐标表示256个小波分解系数,纵坐标表示每个小波分解系数的值

基于提升算法的二维53和97小波变换的MATLAB仿真与DSP实现

基于提升算法的二维5/3和9/7小波变换的MATLAB 仿真与DSP 实现 王靖琰,刘蒙 中国科学院上海应用物理研究所,上海 (201800) E-mail :wjycas@https://www.wendangku.net/doc/1c669995.html, 摘 要:本文讨论了基于提升算法的二维5/3和9/7小波的原理,对算法进行了MATLAB 仿真,并在浮点型DSP TMS320C6713B 上实现了图像的二维5/3、9/7小波提升变换和逆变换。实验结果证明了方法的有效性。 关键词:小波提升,二维9/7、5/3小波,MATLAB ,TMS320C6713B 1.引言 随着人们对多媒体信息需求的日益增长,数码相机、移动电话、MP4 等多媒体信息处理系统蓬勃发展。基于通用DSP 处理器的此类系统设计以灵活性强、扩展性好、可升级和易维护的优点成为系统开发的首选方案 [1]。 由于良好的时频局部特性和多分辨分析特性,小波已广泛应用于图像处理领域,并且被吸收进新的一些国际标准中成为了标准算法。文中在MATLAB 平台上对基于小波提升的二维离散5/3和9/7小波变换算法进行了仿真,并在浮点型DSP TMS320C6713B 上实现了算法,该程序运算速度快,可充分利用硬件资源,特别适用于嵌入式系统的需求。 2.小波变换提升算法基本原理 1994年Sweldens 提出了小波的提升算法,有效地解决传统的基于Mallat 的塔式分解小波变换算法计算量大、对存储空间的要求高的问题,从算法方面提高了小波变换的实现效率 [2]。 2.1 5/3小波提升格式 小波提升算法的基本思想是通过由基本小波(lazy wavelet)逐步构建出一个具有更加良好性质的新小波,其实现步骤有3个:分解(split)、预测(predict)和更新(update)。分解是将数据分为偶数序列和奇数序列2个部分,预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量,更新是由预测误差来更新偶数序列,得到变换的低频分量。在J PEG2000中,5/3提升小波变换的算法为[3]: (2)(22)(21)(21)(1)2(21)(21)2(2)(2)(2) 4x n x n c n x n c n c n d n x n ++??+=+????? ?+++??=+???? 由其正变换的反置即可得到逆变换的算法为 c(2n-1) + c(2n+1)+2x (2n) = d (2n) - (3)4x(2n)+x(2n+2)x(2n+1)=c(2n)+(4) 2?????? ?????? 从算式可以得出,提升算法是原位计算,即进行小波变换时在原位计算各个系数,计算

基于EMD和自适应提升小波分析的图像增强

2014,50(21)图像增强[1]是指按照特定的需要突出一幅图像中的目标景物特征,同时去掉不需要的干扰噪声并且提高视觉清晰度的图像处理方法。其目的是能够改善图像质量,提高图像的对比度,突出图像中感兴趣的特征,进而有助于人眼理解或机器识别。目前图像增强的算法主要分为三大类:分别是空域增强方法、频率增强方法[2-3]和基于参数的增强方法[4-6]。基于空域的增强算法处理时直接对图像灰度级做运算,如直方图均衡法,其主要缺陷是增强图像的同时放大了噪声;又如邻域增强算法在消除图像噪声的同时容易引起边缘的模糊。基于频域的增强算法是在图像的某种变换域内对图像的变换系数值进行某种修正,是一种间接增强的算法,如小波反锐化掩模法。而基于参数优化的方法是通过选取某种参数因子对图像进行一定的调整,获得信息量突出的部分,从而实现图像增强。例如遗传算法图像增强法,其主要缺陷是参数的选择直接影响图像增强的效果。小波变换提供了一种适合人眼视觉原理的多分辨率、显微镜性质的图像表示方法,经过数十年的发展,在理论和实践中取得了一系列令人瞩目的成就,成为图像处理领域中一个有力的工具[7-9]。随着研究的进一步深入,发现经典小波变换在处理二维图像时的主要不足是:变换提供的方向信息固定且有限,对自然图像中非水平或垂直方向的纹理信息表示能力不足。为了对图像的纹理信息实现更加有效的表示,研究者不断提出新的变换算法,如曲面波Curvelet 变换[10],Contourlet 变换[11]等,但Curvelet 变换的主要问题是对于高阶正则的奇异边缘不能达到最优的非线性逼近,增强后的图像边缘存在划痕;而Contourlet 变换缺乏平移不变性,图像增强结果会产生Gibbs 失真现象。美国学者Sweldens [12]于1997年提出提升小波,该方法使用提升框架来构造小波,算法简单、运算速度快,根据纹理方向相邻像素实现原点的预测和更新,能够更加有效地表示图像的纹理信息。Ding [13-14]在2007年提出方向提升小波变换,其主要贡献为在进行二维小波变换时不再局限于图像的水平和垂直 方向,而是根据图像的纹理能够提供灵活的方向信息。尽管提升小波变换表示图像的纹理信息更丰富,但经典基于EMD 和自适应提升小波分析的图像增强 李广琼,陈荣元 LI Guangqiong,CHEN Rongyuan 湖南商学院计算机与信息工程学院,长沙410205 College of Computer and Information Engineering,Hunan University of Commerce,Changsha 410205,China LI Guangqiong,CHEN Rongyuan.Image enhancement based on EMD and adaptive lifting wavelet https://www.wendangku.net/doc/1c669995.html,puter Engineering and Applications,2014,50(21):195-199. Abstract :An effective algorithm of image enhancement based on empirical mode decomposition and adaptive lifting wavelet analysis is presented.The image signal is decomposed to a number of IMF function via EMD;each IMF function is processed by adaptive lifting wavelet transform.The experiments of image enhancement show that this method is efficient and practical.Key words :lifting wavelet transform;Empirical Mode Decomposition (EMD );adaptive lifting wavelet transform;image enhancement 摘要:针对经典和提升小波变换共同的缺陷,提出基于EMD 和自适应提升小波分析的图像增强算法。对二维图像信息作EMD 分解,提取出图像信息的IMF 分量,对此IMF 分量进行自适应提升小波分解并重构,得到增强图像。仿真及实验结果表明该方法具有有效性和实用性。 关键词:提升小波变换;经验模式分解;自适应提升小波变换;图像增强 文献标志码:A 中图分类号:TP391doi :10.3778/j.issn.1002-8331.1212-0026 基金项目:国家自然科学基金(No.41101425);湖南省科技计划项目(No.2012FJ4108)。 作者简介:李广琼(1976—),女,讲师,主要研究方向为人工智能、图像处理。E-mail :liguangqiong0905@https://www.wendangku.net/doc/1c669995.html, 收稿日期:2012-12-03修回日期:2013-01-21文章编号:1002-8331(2014)21-0195-05 CNKI 网络优先出版:2013-03-13,https://www.wendangku.net/doc/1c669995.html,/kcms/detail/11.2127.TP.20130313.0950.012.html Computer Engineering and Applications 计算机工程与应用 195

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

小波包及能量频谱的MATLab算法

一根断条: >> %采样频率 fs=10000; nfft=10240; %定子电流信号 fid=fopen('duantiao.m','r');%故障 N=2048; xdata=fread(fid,N,'int16'); fclose(fid); xdata=(xdata-mean(xdata))/std(xdata,1); %功率谱 figure(1); Y=abs(fft(xdata,nfft)); plot((0:nfft/2-1)/nfft*fs,Y(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); %3层小波包分解 T=wpdec(xdata,3,'db4'); %重构低频信号 y1=wprcoef(T,[3,1]); %y1的波形

figure(2); subplot(2,2,1); plot(1:N,y1); xlabel('时间t/n'); ylabel('电流I/A'); %y1的功率谱 Y1=abs(fft(y1,nfft)); subplot(2,2,2); plot((0:nfft/2-1)/nfft*fs,Y1(1:nfft/2)); xlabel('频率f/Hz'); ylabel('功率谱P/W'); 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。傅立叶变换在实际中有非常明显的物理意义,设f是一个能量有限的模拟信号,则其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换是将图像的频率分布函数变换为灰度分布函数。 这样通过观察傅立叶变换后的频谱图,也叫功率图,我们首先就可以看出,图像的能量分布,如果频谱图中暗的点数更多,那么实际图像是比较柔和的(因

小波变换的原理及matlab仿真程序讲解学习

小波变换的原理及m a t l a b仿真程序

基于小波变换的信号降噪研究 2 小波分析基本理论 设Ψ(t)∈L 2( R) ( L 2( R) 表示平方可积的实数空间,即能量有限的信号空间) , 其傅立叶变换为Ψ(t)。当Ψ(t)满足条件[4,7]: 2 () R t dw w C ψψ =<∞? (1) 时,我们称Ψ(t)为一个基本小波或母小波,将母小波函数Ψ(t)经伸缩和平移后,就可以得到一个小波序列: ,()( )a b t b t a ψ -= ,,0a b R a ∈≠ (2) 其中a 为伸缩因子,b 为平移因子。 对于任意的函数f(t)∈L 2( R)的连续小波变换为: ,(,),()( )f a b R t b W a b f f t dt a ψψ-=<>= ? (3) 其逆变换为: 211()(,)()f R R t b f t W a b dadb C a a ψ ψ+-= ?? (4) 小波变换的时频窗是可以由伸缩因子a 和平移因子b 来调节的,平移因子b,可以改变窗口在相平面时间轴上的位置,而伸缩因子b 的大小不仅能影响窗口在频率轴上的位置,还能改变窗口的形状。小波变换对不同的频率在时域上的取样步长是可调节的,在低频时,小波变换的时间分辨率较低,频率分辨率较高:在高频时,小波变换的时间分辨率较高,而频率分辨率较低。使用小波变换处理信号时,首先选取适当的小波函数对信号进行分解,其次对分解出的参

数进行阈值处理,选取合适的阈值进行分析,最后利用处理后的参数进行逆小波变换,对信号进行重构。 3 小波降噪的原理和方法 3.1 小波降噪原理 从信号学的角度看 ,小波去噪是一个信号滤波的问题。尽管在很大程度上小波去噪可以看成是低通滤波 ,但由于在去噪后 ,还能成功地保留信号特征 ,所以在这一点上又优于传统的低通滤波器。由此可见 ,小波去噪实际上是特征提取和低通滤波的综合 ,其流程框图如图所示[6]: 小波分析的重要应用之一就是用于信号消噪 ,一个含噪的一维信号模型可表示为如下形式: (k)()()S f k e k ε=+* k=0.1…….n-1 其中 ,f( k)为有用信号,s(k)为含噪声信号,e(k)为噪声,ε为噪声系数的标准偏差。 假设e(k)为高斯白噪声,通常情况下有用信号表现为低频部分或是一些比较平稳的信号,而噪声信号则表现为高频的信号,下面对 s(k)信号进行如图结构的小波分解,则噪声部分通常包含在Cd1、Cd2、Cd3中,只要对 Cd1,Cd2,Cd3作相应的小波系数处理,然后对信号进行重构即可以达到消噪的目的。

第二代小波提升步骤

第二代小波提升步骤 小波分析2009-10-12 15:14:31 阅读663 评论5 字号:大中小订阅 l 提升原理 小波提升是一种构造紧支集双正交小波的新方法。 1)步骤 由提升构成第二代小波变换的过程分为如下3个步骤: (1) 分裂 分裂(Split)是将原始信号sj = { sj,k }分为两个互不相交的子集和。每个子集的长度是原子集的一半。通常是将一个数列分为偶数序列ej-1和奇数序列oj-1,即 Split (sj) = (ej-1, oj-1 ) 其中,ej-1 = { ej-1, k = sj, 2 k },oj-1 = { oj-1, k = sj, 2 k +1}。 (2) 预测 预测(Predict)是利用偶数序列和奇数序列之间的相关性,由其中一个序列(一般是偶序列ej-1)来预测另一个序列(一般是奇序列oj-1)。实际值oj-1与预测值P (ej-1)的差值dj-1反映了两者之间的逼近程度,称之为细节系数或小波系数,对应于原信号sj的高频部分。一般来说,数据的相关性越强,则小波系数的幅值就越小。如果预测是合理的,则差值数据集dj-1所包含的信息比原始子集oj-1包含的信息要少得多。预测过程如下: dj-1 = oj-1 – P (ej-1) 其中,预测算子P可用预测函数Pk来表示,函数Pk可取为ej-1中的对应数据本身: Pk (ej-1, k ) = ej-1, k = sj, 2 k 或ej-1中的对应数据的相邻数据的平均值: Pk (ej-1) = (ej-1, k + ej-1, k+1) / 2 = (sj, 2 k + sj, 2 k +1) / 2 或其他更复杂的函数。 (3) 更新 经过分裂步骤产生子集的某些整体特征(如均值)可能与原始数据并不一致,为了保持原始数据的这些整体特征,需要一个更新(Update)过程。将更新过程用算子U来代替,其过程如下: sj-1 = ej-1 + U (d j-1) 其中,sj-1为sj的低频部分;与预测函数一样,更新算子也可以取不同函数,如 U k (dj-1) = dj-1, k / 2 或 U k (dj-1) = (dj-1, k -1 + dj-1, k) / 4 + 1 / 2。 P与U取不同的函数,可构造出不同的小波变换。 2) 分解与重构 经过小波提升,可将信号sj分解为低频部分sj-1和高频部分dj-1;对于低频数据子集sj-1 可以再进行相同的分裂、预测和更新,把sj-1 进一步分解成dj-2和sj-2;…;如此下去,经过n次分解后,原始数据sj的小波表示为{sj-n, dj-n, dj-n+1, …, dj-1}。其中sj-n代表了信号的低频部分,而{dj-n, dj-n+1, …, dj-1}则是信号的从低到高的高频部分系列。 每次分解对应于上面的三个提升步骤——分裂、预测和更新: Split (sj) = (ej-1, oj-1 ),dj-1 = oj-1 – P (ej-1),sj-1 = ej-1 + U (d j-1) 小波提升是一个完全可逆的过程,其反变换的步骤如下: ej-1 = sj-1 - U (d j-1 ),oj-1 = dj-1 + P (ej-1),sj = Merge (ej-1, oj-1 )

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

小波变换理论及应用

2011-2012 学年第一学期 2011级硕士研究生考试试卷 课程名称:小波变换理论及应用任课教师:考试时间:分钟 考核类型:A()闭卷考试(80%)+平时成绩(20%); B()闭卷考试(50%)+ 课程论文(50%); C(√)课程论文或课程设计(70%)+平时成绩(30%)。 一、以图示的方式详细说明连续小波变换(CWT)的运算过程,分析小波变换的内涵;并阐述如何从多分辨率(MRA)的角度构造正交小波基。(20分) 二、综述小波变换理论与工程应用方面的研究进展,不少于3000字。(25分) 三、运用MATLAB中的小波函数和小波工具箱,分别对taobao.wav语音信号在加噪之后的taobao_noise.wav信号进行降噪处理,要求列出程序、降噪结果及降噪的理论依据。(25分) 四、平时成绩。(30分)

(一)连续小波变换(CWT )的运算过程及内涵 将平方可积空间中任意函数f (t )在小波基下展开,称这种展开为函数f (t )的连续小波变换(Continue Wavelet Transform ,简记CWT )其表达式为 t a b t t f a b a f W d )(*)(||1),(? ∞+∞--=ψψ ( 1.1) 其中,a ∈R 且a ≠0。式(1.19)定义了连续小波变换,a 为尺度因子,表示与频率相关的伸 缩,b 为时间平移因子。其中)(| |1)(,a b t a t b a -=ψψ为窗口函数也是小波母函数。 从式(1.1)可以得出,连续小波变换计算分以下5个步骤进行。 ① 选定一个小波,并与处在分析时段部分的信号相比较。 ② 计算该时刻的连续小波变换系数C 。如图1.5所示,C 表示了该小波与处在分析时段内的信号波形相似程度。C 愈大,表示两者的波形相似程度愈高。小波变换系数依赖于所选择的小波。因此,为了检测某些特定波形的信号,应该选择波形相近的小波进行分析。 图1.5 计算小波变换系数示意图 ③ 如图1.6所示,调整参数b ,调整信号的分析时间段,向右平移小波,重复①~②步骤,直到分析时段已经覆盖了信号的整个支撑区间。 ④ 调整参数a ,尺度伸缩,重复①~③步骤。 ⑤ 重复①~④步骤,计算完所有的尺度的连续小波变换系数,如图1.7所示。 C =0.2247

相关文档