文档库 最新最全的文档下载
当前位置:文档库 › 97小波提升程序

97小波提升程序

97小波提升程序
97小波提升程序

97小波提升程序

function output_signal = bldwt9_7(app_sig,det_sig)

%

% output_signal= bldwt9_7(app_sig,det_sig)

%

% The back lifting discrete wavelet transform (BLDWT) using the 9-7 Antonini filters

% Contact me : swf000117@https://www.wendangku.net/doc/c918849885.html,,https://www.wendangku.net/doc/c918849885.html,,QQ:461414909

[x,y] = size(app_sig);

if x~=1

app_sig = app_sig';

det_sig = det_sig';

end

tt=length(app_sig);

alp = -1.586134342;

bet = -0.05298011854;

gam = 0.8829110762;

delt = 0.4435068522;

psi = 1.149604398;

%d0=det_sig.*psi;

%s0=app_sig./psi;

d0=det_sig;

s0=app_sig;

d0 = [d0(1) d0];

s0 = s0(1:tt);

s0 = s0 - floor(delt*(d0(2:length(d0)) + d0(1:length(d0)-1))+0.5);

d0 = d0(2:tt+1);

s0 = [s0 s0(tt-1)];

d0 = d0 - floor(gam*(s0(1:length(s0)-1) + s0(2:length(s0)))+0.5);

s0 = s0(1:tt);

d0 = [d0(1) d0];

s0 = s0 - floor(bet*(d0(2:length(d0)) + d0(1:length(d0)-1))+0.5);

s0 = [s0 s0(tt-1)];

d0 = d0(2:tt+1);

d0 = d0 -floor( alp*(s0(1:length(s0)-1) + s0(2:length(s0)))+0.5);

s0=s0(1:tt);

output_signal(1:2:2*tt)=s0;

output_signal(2:2:2*tt)=d0;

if x~=1

output_signal=output_signal';

end

function img=d2bldwt9_7(dwt_img,level)

%

% img=d2bldwt9_7(dwt_img,level)

%

% The forward lifting discrete 2-D wavelet transform (D2BLDWT) using the 9-7 Antonini filters

% Contact me : swf000117@https://www.wendangku.net/doc/c918849885.html,,https://www.wendangku.net/doc/c918849885.html,,QQ:461414909

[x,y]=size(dwt_img);

xx=x/(2^level);

yy=y/(2^level);

img=dwt_img;

for i=1:level

for k=1:2*yy

app_sig=img(1:xx,k);

det_sig=img(xx+1:2*xx,k);

img(1:2*xx,k)= bldwt9_7(app_sig,det_sig);

end

for l=1:2*xx

app_sig=img(l,1:xx);

det_sig=img(l,xx+1:2*xx);

img(l,1:2*xx)= bldwt9_7(app_sig,det_sig);

end

xx=2*xx;

yy=2*yy;

end

function [cn,dn]=lifting_db97(x)

%=====该程序对向量进行小波变换,所用的小波为利用提升方案实现的Daubechies 9/7小波=====

% 这是一维小波分解

% cn和dn分别是分解得到的低频向量(概貌系数)和高频向量(细节系数)

% x为待分解的向量

L=floor(length(x)/2);

s0=zeros(1,L); d0=zeros(1,L);

alpha = -1.586134342; beta = -0.05298011854; gamma = 0.8829110762; delta = 0.4435068522;

K = 1.149604398; %设定参数值

for i=1:L %进行奇偶二抽取

s0(i)=x(2*i-1);

d0(i)=x(2*i);

end

s1=s0(2:L);

s1=[s1,s0(L)];

d0=d0+alpha*(s0+s1);

d1=d0(1:L-1);

d1=[d0(1),d1];

s0=s0+beta*(d0+d1);

s1=s0(2:L);

s1=[s1,s0(L)];

d0=d0+gamma*(s0+s1);

d1=d0(1:L-1);

d1=[d0(1),d1];

s0=s0+delta*(d0+d1);

cn=K*s0; dn=d0/K; %求出 cn 和 dn

if L length(x)/2 %保持原向量的长度不变

dn = [dn,dn(L)];

end

DM642上5-3提升小波的优化

DM642上5/3提升小波的优化 在新的图像压缩标准JPEG2000 中,采用9/7、5/3 提升小波变换作为编码算法,其中5/3 小波变换是一种可逆的整数变换,可以实现无损或有损的图像压缩。在通用的DSP 芯片上实现该算法具有很好的可扩展性、可升级性与易维护性。用这种方式灵活性强,完全能满足各种处理需求。1 提升算法提升算法[1]是由Sweldens 等在Mallat 算法的基础上提出的,也称为第二代小波变换。与Mallat 算法相比,提升算法不依赖傅立叶变换,降低了计算量和复杂度,运行效率相应提高。由于具有整数变换及耗费存储单元少的特点,提升算法很适合于在定点DSP 上实现。小波提升算法的基本思想是通过基本小波逐步构建出一个具有更加良好性质的新小波。其实现步骤为分解(split)、预测(predict)和更新(update)。首先按照对原信号进行对称延拓得到新的x(n)。分解是将数据分为偶数序列x(2n)和奇数序列x(2n+1)二个部分;预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量:H(n)=x(2n+1)-{[x(2n)+x(2n+2)]1} 更新是由预测误差更新偶数序列,得到变换的低频分量:L(n)=x(2n)+{[H(n) +H(n-1)+2]2}计算过程如图1 所示。 在这种方法中,SDRAM 中的一个数据块首先传输到L2 中,然后取到L1D 中进行水平方向的提升,再对该块进行垂直方向的提升。这样,由于垂直提升所需的数据都在L1D 中,避免了此处数据缓存缺失的产生,使总的缺失数大大降低。2.3 数据传输(1)SDRAM 与L2 间的数据传输由于EDMA[6][7]数据传输与CPU 运行相互独立,因此在L2 中开辟两块缓存:EDMA 在CPU 处理InBuffA 的同时将下一块数据传输到InBuffB,解决了CPU 读取低速设备SDRAM 引起的时延,如图3 所示。 边界延拓主要是用于计算高频系数。分析发现,水平提升时,当前数据块每

基于小波变换的图像边缘检测算法

基于小波变换的图像边缘检测算法仿真实 现 学生姓名:XX 指导教师:xxx 专业班级:电子信息 学号:00000000000 学院:计算机与信息工程学院 二〇一五年五月二十日

摘要 数字图像边缘检测是图像分割、目标区域识别和区域形态提取等图像分析领域中十分重要的基础,是图像识别中提取图像特征一个重要方法。 目前在边缘检测领域已经提出许多算法,但是提出的相关理论和算法仍然存在很多不足之处,在某些情况下仍然无法很有效地检测出目标物的边缘。由于小波变换在时域和频域都具有很好的局部化特征,并且具有多尺度特征,因此,利用多尺度小波进行边缘检测既能得到良好的抑制噪声的能力,又能够保持边缘的完备。 本文就是利用此方法在MATLAB环境下来对数字图像进行边缘的检测。 关键词:小波变换;多尺度;边缘检测

Abstract The boundary detection of digital image is not only the important foundation in the field of image segmentation and target area identification and area shape extraction, but also an important method which extract image feature in image recognition. Right now, there are a lot of algorithms in the field of edge detection, but these algorithms also have a lot of shotucuts, sometimes, they are not very effective to check the boundary of the digital image. Wavelet transform has a good localization characteristic in the time domain and frequency domain and multi-scale features, So, the boundary detection of digital image by using multi-scale wavelet can not only get a good ability to suppress noise, but also to maintain the completeness of the edge. This article is to use this method in the environment of MATLAB to detect the boundary of the digital image. Keywords: wavelet transform; multi-scale; boundary detection.

小波变换程序

小波滤波器构造和消噪程序(2个) 1.重构 % mallet_wavelet.m % 此函数用于研究Mallet算法及滤波器设计 % 此函数仅用于消噪 a=pi/8; %角度赋初值 b=pi/8; %低通重构FIR滤波器h0(n)冲激响应赋值 h0=cos(a)*cos(b); h1=sin(a)*cos(b); h2=-sin(a)*sin(b); h3=cos(a)*sin(b); low_construct=[h0,h1,h2,h3]; L_fre=4; %滤波器长度 low_decompose=low_construct(end:-1:1); %确定h0(-n),低通分解滤波器for i_high=1:L_fre; %确定h1(n)=(-1)^n,高通重建滤波器 if(mod(i_high,2)==0); coefficient=-1; else coefficient=1; end high_construct(1,i_high)=low_decompose(1,i_high)*coefficient; end high_decompose=high_construct(end:-1:1); %高通分解滤波器h1(-n) L_signal=100; %信号长度 n=1:L_signal; %信号赋值 f=10; t=0.001; y=10*cos(2*pi*50*n*t).*exp(-20*n*t); figure(1); plot(y); title('原信号'); check1=sum(high_decompose); %h0(n)性质校验 check2=sum(low_decompose); check3=norm(high_decompose); check4=norm(low_decompose); l_fre=conv(y,low_decompose); %卷积 l_fre_down=dyaddown(l_fre); %抽取,得低频细节 h_fre=conv(y,high_decompose); h_fre_down=dyaddown(h_fre); %信号高频细节 figure(2);

基于Tchebichef矩和小波提升的数字水印算法

—113— 基于Tchebichef 矩和小波提升的数字水印算法 赵 杰,王 晅,何 冰 (陕西师范大学物理学与信息技术学院,西安 710062) 摘 要:提出一种基于Tchebichef 矩和小波提升的抵抗几何攻击的内容认证水印算法,对图像进行一次小波提升分解,计算其低频成分的Tchebichef 低阶矩不变量来构建水印系统。水印认证过程只须计算图像的几个低阶Tchebichef 矩不变量。将该算法与基于几何矩不变量的算法进行比较。结果表明,该算法简单、有效,对旋转、缩放、剪切等几何攻击以及JPEG 压缩等攻击具有较高的稳健性。 关键词:数字水印;Tchebichef 矩;小波提升 Digital Watermark Algorithm Based on Tchebichef Moments and Wavelet Lifting ZHAO Jie, WANG Xuan, HE Bing (School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062) 【Abstract 】The watermark based on Tchebichef moments and wavelet lifting is used in an authentication context. After the discrete lifting wavelet transform, the lower order Tchebichef invariant moments of the sub band coefficients are computed. The processing of the encoder and the decoder is simple, and a few low order moments need to be calculated. The algorithm is compared with the algorithm based on the geometric moments.Results show that the scheme is simple, effective. It has high stabilities of geometrical attacks of rotation, scaling, shearing, and JPEG compression.【Key words 】digital watermark; Tchebichef moments; wavelet lifting 计 算 机 工 程Computer Engineering 第35卷 第11期 Vol.35 No.11 2009年6月 June 2009 ·安全技术· 文章编号:1000—3428(2009)11—0113—03 文献标识码:A 中图分类号:TP391 1 概述 媒体的数字化方便了信息的存取和传播,但同时也使盗版和非法窜改等行为难以认证,水印技术是解决版权保护问题的一个有效途径。目前已提出许多数字水印的算法,但现有的数字水印技术大多难以抵抗几何变换类攻击,如旋转、平移和尺度变换等,其中一个最主要的原因是:几何变换虽然并未去除图像中的水印信息,但却使水印的检测与嵌入之间失去同步,从而导致水印检测的失效。因此,同步问题被认为是抗几何攻击水印技术中有待解决的关键技术。常见抵抗几何攻击的水印算法有文献[1-2]提出的基于Fourier- Mellin 变换的算法。 矩函数可以描述物体形状的全局特征,并提供大量该物体特有的几何信息。矩函数的这种特性被广泛应用于图像编码压缩与重构、模式识别、目标状态与方位估计等方面,数字水印技术是其应用领域之一。文献[3]提出基于Zernike 矩的数字图像水印算法,文献[4]提出基于几何矩不变量的数字水印算法。随着图像处理研究的深入,引入了许多新的矩函数,离散Tchebichef 矩便是其中具有较好性能的一种[5]。由于该矩本身是离散的,因此其计算精度较高,可直接应用于离散图像,无须对定义域进行归一化处理,并且Tchebichef 多项式的计算具有递推关系和对称性,可以加快运算。 本文提出一种基于小波提升和Tchebichef 矩的水印算法,并将其与几何矩的算法进行比较。 2 小波提升方案 由于传统小波变换的滤波器输出是浮点数,而图像的像 素值均为整数,小波系数量化时存在舍入误差,并且图像的 重构质量与变换时延拓边界的方式有关。文献[6]对小波的构造提出一种新的观点:整数小波提升方案(lifting scheme),也称为第2代小波变换。整数小波提升格式具有真正意义上的可逆性,可不用考虑边界效应。提升方案基于传统小波变换的思想,但效率更高。与传统小波变换相比,提升方案主要有以下几个优点:(1)完全是基于空域的构造方法,运算速度快,节省存储空间。(2)不依赖于平移、伸缩的概念,也不需要傅里叶变换进行频谱分析。(3)可直接将整数映射成为整数,无须再进行量化。最低频子带包含了图像的基本信息,占据了原始图像的大部分的能量,是鲁棒水印嵌入的合适位置。图像的小波分解过程如图1所示。 图1 图像的小波分解 3 Tchebichef 矩 假设(,)f x y 表示大小为N ×N 的原始图像,则离散Tchebichef 多项式为32()(1)(,,1;1;1)n n t x N F n x n N =?×??+?, 作者简介:赵 杰(1984-),男,硕士研究生,主研方向:图像处理,数字水印;王 晅,副教授;何 冰,硕士研究生 收稿日期:2008-10-06 E-mail :zhaojie261134@https://www.wendangku.net/doc/c918849885.html,

提升小波变换的弱小目标算法研究分析(文献综述)

文献综述 基于提升小波变换地弱小目标检测算法研究 前言 目标检测在计算机视觉,雷达跟踪,红外制导,电视跟踪等研究领域有着极其重要地地位,目标地实时检测已成为现在图像处理地关键技术之一,其中运动目标地检测是当今研究地热点. b5E2RGbCAP 基于小波变换地目标检测算法,这些算法在弱小目标检测上有很大优势. 但计算量大是这些算法应用地瓶颈,寻找快速鲁棒地算法是科研人员不懈努力地方向.1997 年Sweldens 等人提出地提升框架地小波变换(第二代小波)给小波地研究和应用又迎来了一次新地高峰. 提升算法地特点是避免了传统小波算法地卷积操作,彻底摆脱了对傅立叶变换地依赖,计算过程可以在空域中完成,能够通过简单地并行计算快速实现. 并且逆变换具有与前向变换完全相同地变换模式与计算复杂度,无需重新设计. 它使我们能够用一种简单地方法去解释小波地基本理论. 提升小波和基于提升框架地整数小波在图像压缩方面取得了巨大成功,并且被新一代静止图像压缩标准JPEG 正式纳入了核心框架之中. p1EanqFDPw 正文 长期以来人们根据具体情况提出了多种多样地目标检测方法,每种方法在满足各自地条件下均取得很好地效果,有些成熟经典地算法已经被广泛地应用于实际中了. 根据查阅地国外文献报道将序列目标检测方法分成基于像素分析地检测方法、基于特征地检测方法和机遇地变换地检测方法等. DXDiTa9E3d 2.1 基于小波地目标检测方法变换域中检测目标较典型地一种方法是基于傅立叶变换地方法. 对图像序列进行傅立叶变换,运动目标地傅立叶变换地频谱幅度不变而相位谱为一个常数,利用这一性质,可以通过相位相关算法来估计运动特性,计算相邻帧间地相位角差来估计空间域中目标地位置,它要求在图像序列中背景不变且只有一个运动目标Mahmoud对运动目标地变换方法进行了广泛地研究,除了FFT 方法,他还提出了快速 Hartley 变换(FHT)进行多目标跟踪,该方法是先对图像序列进行频域处理,再进行峰值检测,Fourier 谱或Hartley 谱地峰值位置则对应于运动目标地速度.该方法地独到之处是对多运动目标地n 阶遮挡分别用冲击函数地对应次乘积求和表示,从而在一定程度上反映和解决了多目标遮挡地问题. 傅立叶变换是一种纯频域地分析方法,它在频域地定位性是完全准确地,即频域地分辨率高,而在时域则没有任何定位性或分辨能力,也就是说傅立叶变换反映地是整个信号全部时间下地整体频域特征,而不能提供局部时间段上地频率信息. 在其基础上产生地短时傅立叶变换,也称为加窗傅立叶变换,虽然能研究信号在局部时间范围地频域特征,但其窗函数地大小和形状

图像处理中的小波变换算法原理及其应用

图像处理中的小波变换算法原理及其应用 摘要:小波分析是近年来迅速发展起来的一个数学分支,由于它在时间域和频率域里同时具有良好的局部化性质,因而在图像处理领域有着日益广泛的应用。随着数字图像处理需求的不断增长,相关应用也不断的增长,文章以一例图像处理过程为例,阐述了基于小波二维变换的图像处理方法在图像处理过程中的应用。 关键词:小波变换;图像;分解 1小波变换的基本概念及特点 小波定义:(t)∈L2(R),其傅里叶变换为(),当满足允许条件,即完全重构条件或恒等分条件。 C=∞-∞d<∞时,我们称(t)为一个基本小波,或者母小波。将母函数(t)经伸缩和平移后,得: a,b(t)=(),a,b∈R,a≠0 我们称其为一个小波序列。其中a为伸缩因子,b为平移因子。 小波变换是一种信号的时间-尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变但其形状可变,时间窗和频率窗都可变的时频局部化分析方法。在低频部分具有较高的频率分辨率和时间分辨率,很适合探测正常信号中夹带的瞬态反常现象并展示其成分,因此被誉为分析信号的显微镜。 小波分析是把信号分解成低频A1和高频D1两部分,在分解中,低频A1失去的部分由高频D1捕获。而在下一层分解过程中,又将A1部分分解为低频A2和高频D2两部分,如此类推,可以进行多层分解。 2二维离散小波变换 在图像分解过程中,图像的小波分解就是二维小波的离散化分解。在此可取a=a0j,b=b0j,这里,j∈z,取a0>1,则离散小波函数可写为j,k(t)。 j,k(t)=()=(a0-jt-kb0) 离散化变换系数可表示为: Cj,k +∞-∞ f(t)j,k(t)dt=(f,Cj,k)

用matlab小波分析的实例

1 绪论 1.1概述 小波分析是近15年来发展起来的一种新的时频分析方法。其典型应用包括齿轮变速控制,起重机的非正常噪声,自动目标所顶,物理中的间断现象等。而频域分析的着眼点在于区分突发信号和稳定信号以及定量分析其能量,典型应用包括细胞膜的识别,金属表面的探伤,金融学中快变量的检测,INTERNET的流量控制等。 从以上的信号分析的典型应用可以看出,时频分析应用非常广泛,涵盖了物理学,工程技术,生物科学,经济学等众多领域,而且在很多情况下单单分析其时域或频域的性质是不够的,比如在电力监测系统中,即要监控稳定信号的成分,又要准确定位故障信号。这就需要引入新的时频分析方法,小波分析正是由于这类需求发展起来的。 在传统的傅立叶分析中,信号完全是在频域展开的,不包含任何时频的信息,这对于某些应用来说是很恰当的,因为信号的频率的信息对其是非常重要的。但其丢弃的时域信息可能对某些应用同样非常重要,所以人们对傅立叶分析进行了推广,提出了很多能表征时域和频域信息的信号分析方法,如短时傅立叶变换,Gabor变换,时频分析,小波变换等。其中短时傅立叶变换是在傅立叶分析基础上引入时域信息的最初尝试,其基本假定在于在一定的时间窗内信号是平稳的,那么通过分割时间窗,在每个时间窗内把信号展开到频域就可以获得局部的频域信息,但是它的时域区分度只能依赖于大小不变的时间窗,对某些瞬态信号来说还是粒度太大。换言之,短时傅立叶分析只能在一个分辨率上进行。所以对很多应用来说不够精确,存在很大的缺陷。 而小波分析则克服了短时傅立叶变换在单分辨率上的缺陷,具有多分辨率分析的特点,在时域和频域都有表征信号局部信息的能力,时间窗和频率窗都可以根据信号的具体形态动态调整,在一般情况下,在低频部分(信号较平稳)可以采用较低的时间分辨率,而提高频率的分辨率,在高频情况下(频率变化不大)可以用较低的频率分辨率来换取精确的时间定位。因为这些特定,小波分析可以探测正常信号中的瞬态,并展示其频率成分,被称为数学显微镜,广泛应用于各个时频分析领域。 全文介绍了小波变换的基本理论,并介绍了一些常用的小波函数,它们的主要性质包括紧支集长度、滤波器长度、对称性、消失矩等,都做了简要的说明。在不同的应用场合,各个小波函数各有利弊。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 小波分析在图像处理中有非常重要的应用,包括图像压缩,图像去噪,图像融合,图像分解,图像增强等。文中给出了详细的程序范例,用MATLAB实现了基于小波变换的图像处理。 1.2 傅立叶变换与小波变换的比较 小波分析是傅立叶分析思想方法的发展与延拓。它自产生以来,就一直与傅立叶分析

连续小波变换的概念

连续小波变换的概念swt,cwt,dwt 1。连续小波的概念。就是把一个可以称作小波的函数(从负无穷到正无穷积分为零)在某个尺度下与待处理信号卷积。改变小波函数的尺度,也就改变了滤波器的带通范围,相应每一尺度下的小波系数也就反映了对应通带的信息。本质上,连续小波也就是一组可控制通带范围的多尺度滤波器。 2。连续小波是尺度可连续取值的小波,里面的a一般取整数,而不像二进小波a取2的整数幂。从连续小波到二进小波再到正交离散小波,其实就是a、b都连续,a不连续、b连续,a、b都不连续的过程。操作他们的快速算法也就是卷积(快速傅里叶),多孔(a trous),MALLAT。在MATLAB里,也就是CWT,SWT,DWT。SWT称平稳小波变换、二进小波变换、或者非抽取小波变换。3。从冗余性上:CWT>SWT>DWT,前面两个都冗余,后面的离散小波变换不冗余。 4。从应用上:CWT适合相似性检测、奇异性分析;SWT适合消噪,模极大值分析;DWT适合压缩。 5。操作。就是在某个尺度上得到小波的离散值和原信号卷积,再改变尺度重新得到小波的离散值和原信号卷积。每一个尺度得到一个行向量存储这个尺度下的小波系数,多个尺度就是一个矩阵,这个矩阵就是我们要显示的时间-尺度图。 6。显示。“不要认为工程很简单”。我的一个老师说过的话。小波系数的显示还是有技巧的。很多人画出的图形“一片乌黑”就是个例子。第一步,一般将所有尺度下的小波系数取模;第二步,将每个尺度下的小波系数范围作映射,映射到你指定MAP的范围,比如如果是GRAY,你就映射到0-255;第三步,用IMAGE命令画图;第四步,设置时间和尺度坐标。MATLAB是个很专业的软件,它把这些做的很好,但也就使我们懒惰和糊涂,我是个好奇心重的人就研究了下。里面有个巧妙的函数把我说的(1,2)两个步骤封装在了一起,就是WCODEMAT,有兴趣的同学可以看看。 希望大家深入研究小波。 这里,还有要说的是,小波目前理论的热点: 1。不可分的小波或者具有可分性质的方向性小波; 2。XLET: CONTOURLET, WEDGELET, SHEARLET, BANDELET, RIDGELET, CURVELET; PLATELET. 3。多分辨率分析+多尺度几何分析的结合,才真正是我们所需要的。比如小波域的WEDGELET等等。 最后,几点建议: 1。理论研究和实际应用不同,工程上很多问题小波并不是最好的,在做项目的时候大家要实际情况,实际对待。

基于提升算法的二维53和97小波变换的MATLAB仿真与DSP实现

基于提升算法的二维5/3和9/7小波变换的MATLAB 仿真与DSP 实现 王靖琰,刘蒙 中国科学院上海应用物理研究所,上海 (201800) E-mail :wjycas@https://www.wendangku.net/doc/c918849885.html, 摘 要:本文讨论了基于提升算法的二维5/3和9/7小波的原理,对算法进行了MATLAB 仿真,并在浮点型DSP TMS320C6713B 上实现了图像的二维5/3、9/7小波提升变换和逆变换。实验结果证明了方法的有效性。 关键词:小波提升,二维9/7、5/3小波,MATLAB ,TMS320C6713B 1.引言 随着人们对多媒体信息需求的日益增长,数码相机、移动电话、MP4 等多媒体信息处理系统蓬勃发展。基于通用DSP 处理器的此类系统设计以灵活性强、扩展性好、可升级和易维护的优点成为系统开发的首选方案 [1]。 由于良好的时频局部特性和多分辨分析特性,小波已广泛应用于图像处理领域,并且被吸收进新的一些国际标准中成为了标准算法。文中在MATLAB 平台上对基于小波提升的二维离散5/3和9/7小波变换算法进行了仿真,并在浮点型DSP TMS320C6713B 上实现了算法,该程序运算速度快,可充分利用硬件资源,特别适用于嵌入式系统的需求。 2.小波变换提升算法基本原理 1994年Sweldens 提出了小波的提升算法,有效地解决传统的基于Mallat 的塔式分解小波变换算法计算量大、对存储空间的要求高的问题,从算法方面提高了小波变换的实现效率 [2]。 2.1 5/3小波提升格式 小波提升算法的基本思想是通过由基本小波(lazy wavelet)逐步构建出一个具有更加良好性质的新小波,其实现步骤有3个:分解(split)、预测(predict)和更新(update)。分解是将数据分为偶数序列和奇数序列2个部分,预测是用分解的偶数序列预测奇数序列,得到的预测误差为变换的高频分量,更新是由预测误差来更新偶数序列,得到变换的低频分量。在J PEG2000中,5/3提升小波变换的算法为[3]: (2)(22)(21)(21)(1)2(21)(21)2(2)(2)(2) 4x n x n c n x n c n c n d n x n ++??+=+????? ?+++??=+???? 由其正变换的反置即可得到逆变换的算法为 c(2n-1) + c(2n+1)+2x (2n) = d (2n) - (3)4x(2n)+x(2n+2)x(2n+1)=c(2n)+(4) 2?????? ?????? 从算式可以得出,提升算法是原位计算,即进行小波变换时在原位计算各个系数,计算

小波分解案列(程序)

简介 在数字图像处理中,需要将连续的小波及其小波变换离散化。一般计算机实现中使用二进制离散处理,将经过这种离散化的小波及其相应的小波变换成为离散小波变换(简称DWT)。实际上,离散小波变换是对连续小波变换的尺度、位移按照2的幂次进行离散化得到的,所以也称之为二进制小波变换。 虽然经典的傅里叶变换可以反映出信号的整体内涵,但表现形式往往不够直观,并且噪声会使得信号频谱复杂化。在信号处理领域一直都是使用一族带通滤波器将信号分解为不同频率分量,即将信号f(x)送到带通滤波器族Hi(x)中。 小波分解的意义就在于能够在不同尺度上对信号进行分解,而且对不同尺度的选择可以根据不同的目标来确定。 对于许多信号,低频成分相当重要,它常常蕴含着信号的特征,而高频成分则给出信号的细节或差别。人的话音如果去掉高频成分,听起来与以前可能不同,但仍能知道所说的内容;如果去掉足够的低频成分,则听到的是一些没有意义的声音。在小波分析中经常用到近似与细节。近似表示信号的高尺度,即低频信息;细节表示信号的高尺度,即高频信息。因此,原始信号通过两个相互滤波器产生两个信号。 通过不断的分解过程,将近似信号连续分解,就可以将信号分解成许多低分辨率成分。理论上分解可以无限制的进行下去,但事实上,分解可

以进行到细节(高频)只包含单个样本为止。因此,在实际应用中,一般依据信号的特征或者合适的标准来选择适当的分解层数。 实例 % By lyqmath % DLUT School of Mathematical Sciences 2008 % BLOG:https://www.wendangku.net/doc/c918849885.html,/lyqmath clc; clear all; close all; load leleccum; % 载入信号数据 s = leleccum; Len = length(s); [ca1, cd1] = dwt(s, 'db1'); % 采用db1小波基分解 a1 = upcoef('a', ca1, 'db1', 1, Len); % 从系数得到近似信号 d1 = upcoef('d', cd1, 'db1', 1, Len); % 从系数得到细节信号 s1 = a1+d1; % 重构信号 figure; subplot(2, 2, 1); plot(s); title('初始电源信号'); subplot(2, 2, 2); plot(ca1); title('一层小波分解的低频信息'); subplot(2, 2, 3); plot(cd1); title('一层小波分解的高频信息'); subplot(2, 2, 4); plot(s1, 'r-'); title('一层小波分解的重构信号'); 结果 总结 小波分解可以使人们在任意尺度观察信号,只需所采用的小波函数的尺

小波分析算法资料整理总结

一、小波分析基本原理: 信号分析是为了获得时间和频率之间的相互关系。傅立叶变换提供了有关频率域的信息,但有关时间的局部化信息却基本丢失。与傅立叶变换不同,小波变换是通过缩放母小波(Mother wavelet)的宽度来获得信号的频率特征,通过平移母小波来获得信号的时间信息。对母小波的缩放和平移操作是为了计算小波系数,这些小波系数反映了小波和局部信号之间的相关程度。相关原理详见附件资料和系统设计书。 注:小波分析相关数学原理较多,也较复杂,很多中文的著作都在讨论抽象让非数学相关专业人难理解的数学。本人找到了相对好理解些的两个外文的资料: Tutorial on Continuous Wavelet Analysis of Experimental Data.doc Ten.Lectures.of.Wavelets.pdf 二、搜索到的小波分析源码简介 (仅谈大体印象,还待继续研读): 1、83421119WaveletVCppRes.rar 源码类型:VC++程序 功能是:对简单的一维信号在加上了高斯白噪声之后进行Daubechies小波、Morlet小波和Haar小波变换,从而得到小波分解系数;再通过改变分解得到的各层高频系数进行信号的小波重构达到消噪的目的。 说明:在这一程序实现的过程中能直观地理解信号小波分解重构的过程和在信号消噪中的重要作用,以及在对各层高频系数进行权重处理时系数的选取对信号消噪效果的影响。但这是为专业应用写的算法,通用性差。 2、WA.FOR(南京气象学院常用气象程序中的小波分析程序) 源码类型:fortran程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。 3、中科院大气物理学所.zip(原作者是美国Climate Diagnostics Center的C. Torrence 等)源码类型:fortran和matlab程序各一份 功能是:气象应用。用小波分析方法对太平洋温度的南方涛动指数进行分析。 说明:用的是Morlet和墨西哥帽小波。程序编写规范,思路清晰,但这是为专业应用写的算法,通用性差。 4、Morlet小波变换源程序.rar 源码类型:matlab程序 功能是:对简单的一维时间序列进行小波分析。 说明:用的是墨西哥帽小波。程序短小,但代码写得较乱,思路不清,还弄不明白具体应用。

第二代小波提升步骤

第二代小波提升步骤 小波分析2009-10-12 15:14:31 阅读663 评论5 字号:大中小订阅 l 提升原理 小波提升是一种构造紧支集双正交小波的新方法。 1)步骤 由提升构成第二代小波变换的过程分为如下3个步骤: (1) 分裂 分裂(Split)是将原始信号sj = { sj,k }分为两个互不相交的子集和。每个子集的长度是原子集的一半。通常是将一个数列分为偶数序列ej-1和奇数序列oj-1,即 Split (sj) = (ej-1, oj-1 ) 其中,ej-1 = { ej-1, k = sj, 2 k },oj-1 = { oj-1, k = sj, 2 k +1}。 (2) 预测 预测(Predict)是利用偶数序列和奇数序列之间的相关性,由其中一个序列(一般是偶序列ej-1)来预测另一个序列(一般是奇序列oj-1)。实际值oj-1与预测值P (ej-1)的差值dj-1反映了两者之间的逼近程度,称之为细节系数或小波系数,对应于原信号sj的高频部分。一般来说,数据的相关性越强,则小波系数的幅值就越小。如果预测是合理的,则差值数据集dj-1所包含的信息比原始子集oj-1包含的信息要少得多。预测过程如下: dj-1 = oj-1 – P (ej-1) 其中,预测算子P可用预测函数Pk来表示,函数Pk可取为ej-1中的对应数据本身: Pk (ej-1, k ) = ej-1, k = sj, 2 k 或ej-1中的对应数据的相邻数据的平均值: Pk (ej-1) = (ej-1, k + ej-1, k+1) / 2 = (sj, 2 k + sj, 2 k +1) / 2 或其他更复杂的函数。 (3) 更新 经过分裂步骤产生子集的某些整体特征(如均值)可能与原始数据并不一致,为了保持原始数据的这些整体特征,需要一个更新(Update)过程。将更新过程用算子U来代替,其过程如下: sj-1 = ej-1 + U (d j-1) 其中,sj-1为sj的低频部分;与预测函数一样,更新算子也可以取不同函数,如 U k (dj-1) = dj-1, k / 2 或 U k (dj-1) = (dj-1, k -1 + dj-1, k) / 4 + 1 / 2。 P与U取不同的函数,可构造出不同的小波变换。 2) 分解与重构 经过小波提升,可将信号sj分解为低频部分sj-1和高频部分dj-1;对于低频数据子集sj-1 可以再进行相同的分裂、预测和更新,把sj-1 进一步分解成dj-2和sj-2;…;如此下去,经过n次分解后,原始数据sj的小波表示为{sj-n, dj-n, dj-n+1, …, dj-1}。其中sj-n代表了信号的低频部分,而{dj-n, dj-n+1, …, dj-1}则是信号的从低到高的高频部分系列。 每次分解对应于上面的三个提升步骤——分裂、预测和更新: Split (sj) = (ej-1, oj-1 ),dj-1 = oj-1 – P (ej-1),sj-1 = ej-1 + U (d j-1) 小波提升是一个完全可逆的过程,其反变换的步骤如下: ej-1 = sj-1 - U (d j-1 ),oj-1 = dj-1 + P (ej-1),sj = Merge (ej-1, oj-1 )

小波变换快速算法及应用小结

离散小波变换的快速算法 Mallat算法[经典算法] 在小波理论中,多分辨率分析是一个重要的组成部分。多分辨率分析是一种对信号的空间分解方法,分解的最终目的是力求构造一个在频率上高度逼近L2(R)空间的正交小波基,这些频率分辨率不同的正交小波基相当于带宽各异的带通滤波器。因此,对于一个能量有限信号,可以通过多分辨率分析的方法把其中的逼近信号和细节信号分离开,然后再根据需要逐一研究。多分辨率分析的概念是S.Mallat在构造正交小波基的时候提出的,并同时给出了著名的Mallat 算法。Mallat算法在小波分析中的地位相当于快速傅立叶变换在经典傅立叶变换中的地位,为小波分析的应用和发展起到了极大的推动作用。 MALLAT算法的原理 在对信号进行分解时,该算法采用二分树结构对原始输入信号x(n)进行滤波和二抽取,得到第一级的离散平滑逼近和离散细节逼近x k1和d k1,再采用同样的结构对d k1进行滤波和二抽取得到第二级的离散平滑逼近和离散细节逼近x k2和d k2,再依次进行下去从而得到各级的离散细节逼近对x k1,x k2,x k3…,即各级的小波系数。重构信号时,只要将分解算法中的步骤反过来进行即可,但要注意,此时的滤波器与分解算法中的滤波器不一定是同一滤波器,并且要将二抽取装置换成二插入装置才行。 多孔算法 [小波变换快速算法及其硬件实现的研究毛建华] 多孔算法是由M.shen于1992年提出的一种利用Mallat算法结构计算小波变换的快速算法,因在低通滤波器h0(k)和高通滤波器h1(k)中插入适当数目的零点而得名。它适用于a=2j的二分树结构,与Mallat算法的电路实现结构相似。先将Mallat算法的电路实现的基本支路作一下变形。令h0k和h1(k)的z变换为H0(z)与H1(z),下两条支路完全等价,只不过是将插值和二抽取的顺序调换一下罢了。图中其它的上下两条支路也为等效支路,可仿照上面的方法证明。这样,我们便可由Mallat算法的二分树电路结构得出多孔算法的电路级联图,原Mallat算法中的电路支路由相应的等效支路所取代,所以整个电路形式与Mallat算法非常相似。如果舍去最后的抽取环节们实际上相当于把所有点的小波变换全部计算出来。 基干FFT的小波快速算法 [小波变换快速算法及其硬件实现的研究毛建华] Mallat算法是由法国科学家StephaneG.Mallat提出的计算小波分解与重构的快速算法,能大大降低小波分解与重构的计算量,因此在数字信号处理和数字通信领域中得到了广泛的应用。但是如果直接采用该算法计算信号的分解和重构,其运算量还是比较大。主要体现在信号长度较大时,与小波滤波器组作卷积和相关的乘加法的计算量很大,不利于信号的实时处理。

提升小波变换及其在图像处理中的应用

0引言 小波变换是20世纪80年代后期发展起来的应用数学分支,并在近些年里得到了快速的发展。由于它具有良好的时频局部特性和多分辨分析特性,因此成为当前信号研究的主要方向之一,尤其在图像处理方面得到了广泛应用。但在实际应用过程中,由于计算机的计算精度是有限的,所以经过小波变换后的图像会产生部分的信息损失。1994年Sweldens 等学者提出了一种新的小波构造方法——“提升”格式。这给使用小波变换进行图像处理提供了一种新的思路。为和以往的小波变换相区别,这种基于提升格式构造的小波变换被称为“第二代小波变换”。所以本文尝试使用这种新的小波变换方法,结合图像处理中会遇到的一些实际问题,对提升小波变换在图像中的一些比较重要的应用分别做了详细的介绍。 1提升小波变换的基本原理 第一代小波的研究工具主要是傅立叶分析,即从频域来 分析问题。在实际应用中,传统小波变换的实现是通过卷积完成的,它计算复杂,运算速度慢,对内存的需求量较大,不适于实时实现。信号经过传统小波变换后产生的是浮点数,由于计算机有限字长的影响,往往不能精确的重构原始信号。 而且传统小波对原始图像的尺寸有严格的要求,一般要求图像的长和宽都必须是2的整数次幂的倍数。而提升小波则直接在时(空)域分析问题,使问题变得更加简单,并且可以将所有传统小波都通过提升方法构造出来。基于提升方法的小波变换既保持了传统小波的时频局部化等特性,又克服了它的局限性。提升算法给出了双正交小波简单而有效的构造方法,它使用了基本的多项式插补来获取信号的高频分量 ( 系数)。提升 算法的基本思想在于通过一个基本小波,逐步构建出一个更具有良好性质的新小波,这就是提升的基本含义。一个标准的提升算法包含3个步骤:分裂;预测;修正。它的实现步骤如图1所示。 由于数据之间有某种相关性,可以将它用更为紧凑的格式来表示,也就是说,寻找原数据列的一个子集,使它能够表示原始信号所包含的信息。下面按照提升小波的分解和重构 收稿日期:2006-04-17E-mail :sohugaosw@https://www.wendangku.net/doc/c918849885.html, 作者简介:高世伟(1980-),男,湖南岳阳人,博士研究生,研究方向为小波变换、图像处理、目标识别;郭雷(1956-),男,教授,博士生导师,研究方向为神经计算理论、图像处理、计算机视觉技术;杜亚琴(1972-),女,博士研究生,研究方向为图像处理、目标识别;杨宁(1977-),女,博士研究生,研究方向为图像处理;陈亮(1980-),男,博士研究生,研究方向为图像处理、目标识别。 提升小波变换及其在图像处理中的应用 高世伟,郭 雷,杜亚琴,杨宁,陈亮 (西北工业大学自动化学院,陕西西安710072) 摘 要:提升算法是一种新的双正交小波构造方法,此方法大大降低了计算的复杂程度,因此该算法可以有效地减少程序运行时间。详细说明了提升算法的原理及实现步骤,并结合该算法介绍了它在图像处理中的一些应用。实验表明基于提升算法设计的图像处理系统有很好的性能。 关键词:小波变换;提升算法;图像去噪;图像压缩;图像融合中图法分类号:TP391.41 文献标识码:A 文章编号:1000-7024(2007)09-2066-04 Lifting wavelet transform and its application in image processing GAO Shi-wei, GUO Lei, DU Ya-qin, YANG Ning, CHEN Liang (College of Automation,Northwestern Ploytechnical University,Xi'an 710072,China ) Abstract :Lifting Scheme is a new method to construct biorthogonal wavelet,this method decrease complexity of count greatly,and reduce runtime effectively.The basic principle of lifting scheme is explained in detail,and some applications in image processing using this scheme are introduced.Experimental results indicate that image processing systems designed based on lifting scheme have good per-formance. Key words :wavelet transform;lifting scheme;image denoising;image compress;image fusion 2007年5月计算机工程与设计 May 2007 第28卷第9期Vol.28 No.9 Computer Engineering and Design 图1 提升算法的实现步骤 分裂预测 修正

小波变换详解

基于小波变换的人脸识别 近年来,小波变换在科技界备受重视,不仅形成了一个新的数学分支,而且被广泛地应用于模式识别、信号处理、语音识别与合成、图像处理、计算机视觉等工程技术领域。小波变换具有良好的时频域局部化特性,且其可通过对高频成分采取逐步精细的时域取样步长,从而达到聚焦对象任意细节的目的,这一特性被称为小波变换的“变聚焦”特性,小波变换也因此被人们冠以“数学显微镜”的美誉。 具体到人脸识别方面,小波变换能够将人脸图像分解成具有不同分辨率、频率特征以及不同方向特性的一系列子带信号,从而更好地实现不同分辨率的人脸图像特征提取。 4.1 小波变换的研究背景 法国数学家傅立叶于1807年提出了著名的傅立叶变换,第一次引入“频率”的概念。傅立叶变换用信号的频谱特性来研究和表示信号的时频特性,通过将复杂的时间信号转换到频率域中,使很多在时域中模糊不清的问题,在频域中一目了然。在早期的信号处理领域,傅立叶变换具有重要的影响和地位。定义信号(t)f 为在(-∞,+∞)内绝对可积的一个连续函数,则(t)f 的傅立叶变换定义如下: ()()dt e t f F t j ωω-? ∞ -∞ += (4-1) 傅立叶变换的逆变换为: ()()ωωπ ωd e F t f t j ? +∞ ∞ -= 21 (4-2) 从上面两个式子可以看出,式(4-1)通过无限的时间量来实现对单个频率的频谱计算,该式表明()F ω这一频域过程的任一频率的值都是由整个时间域上的量所决定的。可见,式(4-1)和(4-2)只是同一能量信号的两种不同表现形式。 尽管傅立叶变换可以关联信号的时频特征,从而分别从时域和频域对信号进

相关文档