文档库 最新最全的文档下载
当前位置:文档库 › 珩磨

珩磨

珩磨
珩磨

珩磨技术在高精度孔系加工中的应用

一、珩磨技术的引进

珩磨技术是随着汽车的诞生和发展应运而生的。发动机是汽车的心脏,发动机中的缸孔与活塞是最重要的摩擦副,其性能优劣和工作的状态直接影响到汽车产品的质量、品味、使用寿命和人类的生存环境,所以自汽车发明以来,一直在探讨缸孔工作表面精密制造技术。

珩磨是用镶嵌在珩磨头上的油石对工件表面施加一定压力,珩磨工具或工件同时作相对旋转和轴向直线往复运动,切除工件上极小余量的精加工方法。珩磨从汽车发动机(柴油机、汽油机)的应用,到摩托车、拖拉机缸体,广泛应用于飞机零部件、导弹、坦克、枪炮、船舶、工业缝纫机、空调压缩机、液压气动、制动器、油泵油嘴、轴承、工程机械、管乐器、光纤电缆的连接口等等。

二、珩磨的工作原理

珩磨条装在珩磨头上,由珩磨机主轴带动珩磨头作旋转和往复运动,并通过其中的胀缩机构使珩磨条伸出,向孔壁施压以作径向胀开运动,实施珩磨加工。珩磨加工时,珩磨头上圆周上的珩磨条与孔壁的重叠接触点相互干涉,一方面珩磨条将孔壁上的干涉点磨去,另一方面孔壁也相应地使珩磨条上面的磨粒尖角或整个磨粒破碎或脱落,珩磨条与孔壁在珩磨过程中相互修整。再由于珩磨头在珩磨过程中,既有旋转又有往复运动,使工件孔的加工表面形成交叉的螺旋线切削轨迹。由于每一次往复行程时间内珩磨头的转数为非整数,两次行程间又错开一定位置,这样复杂的运动使珩磨条的每一磨粒在孔壁上运动的轨迹不重复。在整个珩磨过程中,孔壁与珩磨条上的每一点相互干涉的机会差不多均等。这样在孔壁和珩磨条间的不断产生新的干涉点,又不断将这些干涉点磨去,使孔壁和珩磨条的接触面积不断增加,相互干涉的作用和切削作用不断减弱,孔与珩磨条面得圆度和圆柱度不断提高,孔壁的粗糙度降低,达到尺寸要求精度后,珩磨条缩回,珩磨头推出工件孔,完成孔的珩磨。

三、珩磨加工的应用

1、珩磨加工应用方式

在发动机加工中珩磨的加工分以下几种方式:(1)缸体内孔表面形成缸孔是气体压缩燃烧和膨涨的空间,并对活塞起导向作用,缸体内孔表面是

发动机磨损最严重的表面之一,它决定了发动机的大修期和寿命。

珩磨是缸体内孔的最后精加工工序,珩磨后的表面具有交叉网纹,有利于润滑油的贮存和油膜的保持,并具有较高的支承率,能承受较大的载荷,耐磨损,使用寿命长。

(2)曲轴孔的珩磨加工

曲轴作为发动机最主要的运动部件,曲轴孔的加工质量对发动机的工作性能将有极大的影响,因此对发动机曲轴孔工艺的要求一般比较严格,包括直径、位置度、圆度、各档曲轴孔中心的直线度及表面粗糙度等。

珩磨加工有利于减小曲轴孔表面的残余应力,提高表面质量。珩磨时采用切削液大都采用过滤过的煤油或煤油加锭子油,也可采用极压乳化液。方便冲刷切屑,避免堵塞珩磨条,同时降低切削区的温度和表面粗糙度。

(3)连杆内孔(大、小端)的珩磨加工

连杆是连接活塞和曲轴的中间部件,主要作用是将活塞的直线往复运动转变成曲轴的回转运动。连杆的加工精度将直接影响柴油机的性能,其中连杆大、小头孔的加工时连杆机械加工的重要工序,它的加工精度对连杆质量有较大的影响。

珩磨加工后使得连杆大头孔公差等级达到IT6,表面粗糙度Ra应不大于0.4μm;小头孔公差等级为IT8,表面粗糙度Ra应不大于3.2μm。满足加工精度的需求。

(4)喷油嘴活塞珩磨加工

在喷油嘴及一些微细小孔的加工中,珩磨加工可以提高孔表面粗糙度差,使喷油嘴流量系数达到0.8以上;可以消除压力室与喷孔处的毛刺,扩大其相贯线处的圆角,减少高压油的压力损失;降低喷孔表面的粗糙度,增加油的流速,获得良好的雾化效果;可提高喷油嘴的流量系数,使动态喷雾角度和流量趋于一至,降低了油耗和排放指标。

2、珩磨加工精度

珩磨用镶嵌在珩磨头上的油石(又称珩磨条)对精加工表面进行的精整加工。又称镗磨。主要加工直径5~500mm甚至更大的各种圆柱孔,孔深与孔径之比可达10或更大。在一定条件下,也可加工平面、外圆面、球面、齿面等。

为提高缸孔的机械性能,对缸孔加工后表面粗糙度要求进行了量化细分,并严格进行检测,大大提高了缸孔的使用寿命。

即增加了:Rpk-----减缩的顶峰高度

Rk-------心部粗糙深度

Rvk------减缩的沟槽深度

珩磨后,孔的尺寸精度为 IT7~4 级,表面粗糙度可达Ra0.32~0.04μm。珩磨余量的大小,取决于孔径和工件材料,一般铸铁件为 0.02~0.15 mm,钢件为 0.01~0.05mm。珩磨头的转速一般为100~200r/min,往返运动的速度一般为15~20m/min。为冲去切屑和磨粒,改善表面粗糙度和降低切削区温度,操作时常需用大量切削液,如煤油或内加少量锭子油,有时也用极压乳化液。

3、珩磨加工特点

珩磨是磨削加工的特殊形式,它的实质是低速磨削,也是一种高效率的光整加工方法。珩磨头外周镶有1~18根长度约为孔长 1/3~3/4的珩磨条,在珩孔时既旋转运动又往返运动,同时通过珩磨头中的弹簧或液压控制而均匀外涨,所以与孔表面的接触面积较大,加工效率较高。它具有以下加工特点:

(1)珩磨的表面质量好,珩磨后表面粗糙度可达Ra0.8—0.2

(2)交叉网纹有利于贮油润滑,实现平顶珩磨,去除网纹的顶尖,可获得较好的相对运动摩擦,获得较理想的表面质量。

(3)加工精度高,圆度、圆柱度可达0.5μm;轴线直线度可达1μm 。

四、珩磨技术的发展前景

随着许多高科技产品的日益发展,机械加工材料种类日益增多,加工难度增大,与之相应的加工技术被赋予越来越高的要求,尤其是在精加工系统领域的珩磨加工,不仅要求在大批量生产中能够尽可能地延长刀具的使用寿命,同时,除了几何精度的要求外,还要求工件加工表面的边缘层具有较高的耐用度。

珩磨工艺的发展受着多种因素的影响,如:珩磨前的预加工、零件材料的特性、零件工艺性能要求、加工公差以及零件不断小型化的发展趋势等,这些要求推动了珩磨技术近几年来的快速发展。由于珩磨具有较好的适应能力,成为当前最具发展潜能的孔件加工手段之一,未来精加工孔系领域中,珩磨必将广泛应用。

珩磨,研磨

珩磨工艺(Honing Process)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在汽车零部件的制造中应用很广泛。珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开, 使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理。珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数, 因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹亦不会重复。此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠长度,使前后磨削轨迹的衔接更平滑均匀。这样,在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差不多相等。因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨去并产生新的更多的干涉点,又不断磨去,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断提高,最后完成孔表面的创制过程。为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。需要说明的一点:由于珩磨油石采用金刚石和立方氮化硼等磨料,加工中油石磨损很小,即油石受工件修整量很小。因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。所以在用金刚石和立方氮化硼油石时,珩磨前要很好地修整油石,以确保孔的精度。珩磨的切削过程定压进给珩磨定压进给中进给机构以恒定的压力压向孔壁,共分三个阶段。第一个阶段是脱落切削阶段,这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面积很小,接触压力大,孔壁的凸出部分很快被磨去。而油石表面因接触压力大,加上切屑对油石粘结剂的磨耗,使磨粒与粘结剂的结合强度下降,因而有的磨粒在切削压力的作用下自行脱落,油石面即露出新磨粒,此即油石自锐。第二阶段是破碎切削阶段,随着珩磨的进行,孔表面越来越光,与油石接触面积越来越大,单位面积的接触压力下降,切削效率降低。同时切下的切屑小而细,这些切屑对粘结剂的磨耗也很小。因此,油石磨粒脱落很少,此时磨削不是靠新磨粒,而是由磨粒尖端切削。因而磨粒尖端负荷很大,磨粒易破裂、崩碎而形成新的切削刃。第三阶段为堵塞切削阶段,继续珩磨时油石和孔表面的接触面积越来越大,极细的切屑堆积于油石与孔壁之间不易排除,造成油石堵塞, 变得很光滑。因此油石切削能力极低, 相当于抛光。若继续珩磨,油石堵塞严重而产生粘结性堵塞时,油石完全失去切削能力并严重发热,孔的精度和表面粗糙度均会受到影响。此时应尽快结束珩磨。定量进给珩磨定量进给珩磨时,进给机构以恒定的速度扩张进给,使磨粒强制性地切入工件。因此珩磨过程只存在脱落切削和破碎切削,不可能产生堵塞切削现象。因为当油石产生堵塞切削力下降时,进给量大于实际磨削量,此时珩磨压力增高,从而使磨粒脱落、破碎,切削作用增强。用此种方法珩磨时,为了提高孔精度和表面粗糙度,最后可用不进给珩磨一定时间。定压--定量进给珩磨开始时以定压进给珩磨,当油石进入堵塞切削阶段时,转换为定量进给珩磨,以提高效率。最后可用不进给珩磨,提高孔的精度和表面粗糙度。珩磨加工特点加工精度高特别是一些中小型的通孔,其圆柱度可达0.001mm 以内。一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。对于大孔(孔径在200mm以上),圆度也可达0.005mm,如果没有环槽或径向孔等,直线度达到0.01mm/1m以内也是有可能的。珩磨比磨削加工精度高,因为磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削精度更差。珩磨一般只能提高被加工件的形状精度,要想提高零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程托架上,调整使它与旋转主轴垂直,零件靠在面板上加工即可)。表面质量好表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而提高了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热

珩磨

珩磨技术在高精度孔系加工中的应用 一、珩磨技术的引进 珩磨技术是随着汽车的诞生和发展应运而生的。发动机是汽车的心脏,发动机中的缸孔与活塞是最重要的摩擦副,其性能优劣和工作的状态直接影响到汽车产品的质量、品味、使用寿命和人类的生存环境,所以自汽车发明以来,一直在探讨缸孔工作表面精密制造技术。 珩磨是用镶嵌在珩磨头上的油石对工件表面施加一定压力,珩磨工具或工件同时作相对旋转和轴向直线往复运动,切除工件上极小余量的精加工方法。珩磨从汽车发动机(柴油机、汽油机)的应用,到摩托车、拖拉机缸体,广泛应用于飞机零部件、导弹、坦克、枪炮、船舶、工业缝纫机、空调压缩机、液压气动、制动器、油泵油嘴、轴承、工程机械、管乐器、光纤电缆的连接口等等。 二、珩磨的工作原理 珩磨条装在珩磨头上,由珩磨机主轴带动珩磨头作旋转和往复运动,并通过其中的胀缩机构使珩磨条伸出,向孔壁施压以作径向胀开运动,实施珩磨加工。珩磨加工时,珩磨头上圆周上的珩磨条与孔壁的重叠接触点相互干涉,一方面珩磨条将孔壁上的干涉点磨去,另一方面孔壁也相应地使珩磨条上面的磨粒尖角或整个磨粒破碎或脱落,珩磨条与孔壁在珩磨过程中相互修整。再由于珩磨头在珩磨过程中,既有旋转又有往复运动,使工件孔的加工表面形成交叉的螺旋线切削轨迹。由于每一次往复行程时间内珩磨头的转数为非整数,两次行程间又错开一定位置,这样复杂的运动使珩磨条的每一磨粒在孔壁上运动的轨迹不重复。在整个珩磨过程中,孔壁与珩磨条上的每一点相互干涉的机会差不多均等。这样在孔壁和珩磨条间的不断产生新的干涉点,又不断将这些干涉点磨去,使孔壁和珩磨条的接触面积不断增加,相互干涉的作用和切削作用不断减弱,孔与珩磨条面得圆度和圆柱度不断提高,孔壁的粗糙度降低,达到尺寸要求精度后,珩磨条缩回,珩磨头推出工件孔,完成孔的珩磨。 三、珩磨加工的应用 1、珩磨加工应用方式 在发动机加工中珩磨的加工分以下几种方式:(1)缸体内孔表面形成缸孔是气体压缩燃烧和膨涨的空间,并对活塞起导向作用,缸体内孔表面是

珩磨机的工作原理

珩磨机的工作原理 珩磨一般采用珩磨机,机床主轴与珩磨头一般是浮动联接;但为了提高纠正工件几何形状的能力,也可以 用刚性联接。 珩孔时,外周一般镶有2~10根油石,由机床主轴带动在孔内旋转,并同时作直线往复运动,这是 主运动;同时通过珩磨头中的弹簧或液压力控制油石均匀外涨,对被加工的孔壁作径向进给。珩磨头每分 钟往复次数与转数之比应取非整数,使磨料在工件表面形成的加工痕迹成为交叉的网纹而不相重复。图2 为单条油石在孔内珩磨时的运动轨迹。油石上下往复一次,工件回转一圈多。粗珩油石的磨料粒度为120 ~180,精珩用W28以下的细粒度油石。油石宽为3~20毫米,长度约为孔长的1/3~3/4。油石在孔内往复 移动时,两端超越孔外的长度不宜大于油石全长的1/3,否则易产生喇叭口;但超程小于油石长度1/4时,又 会使孔呈鼓形。外圆、平面的珩磨原理和操作要求与内圆珩磨相同。 余量一般不超过0.2毫米。珩磨的圆周速度,对钢材加工约为15~30米/分,对铸铁或有色金属加

工可提高到50米/分以上;珩磨的往复速度不宜超过15~20米/分。油石对孔壁的压力一般为0.3~0.5兆帕 ,粗珩时可达1兆帕左右,精珩可小于0.1兆帕。由于珩磨时油石与工件是面接触,每颗磨粒对工件表面的 垂直压力只有磨削时的1/50~1/100,加上珩磨速度低,故切削区的温度可保持在50~150℃范围内,有利于 减小加工表面的残余应力,提高表面质量。为了冲刷切屑,避免堵塞油石,同时降低切削区温度和降低表 面粗糙度,珩磨时采用的切削液要有一定的工作压力并经过滤。切削液大都采用煤油,或煤油加锭子油, 也有采用极压乳化液的。在没有专门珩磨机的情况下也可以将珩磨刀架安装在立式钻床上来实现珩磨内孔 的任务。

磨削加工原理

7.3.2珩磨 珩磨是磨削加工的 1 种特殊形式,属于光整加工。需要在磨削或精镗的基础上进行。珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。 (1)珩磨原理 在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。 (2)珩磨方法 珩磨所用的工具是由若干砂条 ( 油石 ) 组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有 3 种运动 ( 如图 7.3 a ) ;即旋转运动、往复运动和加压力的径向运动。珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕 ( 如图 7.3 b ), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。 (3)珩磨的特点 1)珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的 1/50~1/100 。此外,珩磨的切削速度较低,一般在 100m/min 以下,仅为普通磨削的 1/30~1/100 。在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。 2)珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为 IT6~IT7 级,表面粗糙度 Ra 为 0.2~0.025 。由于在珩模时,表面的突出部分总是先与沙条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于 0.005mm 。 3)珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。一般镗孔后的珩磨余量为 0.05~0.08mm ,铰孔后的珩磨余量为 0.02~0.04mm ,磨孔后珩磨余量为0.01~0.02mm 。余量较大时可分粗、精两次珩磨。 4)珩磨孔的生产率高,机动时间短,珩磨 1 个孔仅需要 2~3min ,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜

珩磨缸孔网纹工艺技术

缸孔的平台网纹珩磨工艺 图1 缸孔珩磨自动线 箱体零件的孔加工是复杂与关键并存的工艺,近年来,平台网纹珩磨在汽油机缸体缸孔精加工中获得了广泛应用,保证了可靠的精度和性能,并且提高了加工效率,降低了成本。 汽车发动机缸体的缸孔与缸盖、活塞组成燃烧室,承受燃气燃烧的爆发压力和冲击,既要耐高温、高压和高温冲击负荷,又要为活塞高速往复运动提供基准,良好定位,准确导向。因此缸孔与活塞之间,配合间隙要合理,摩擦力要小。为此,要求缸孔表面粗糙度要低,缸孔尺寸精度要高,形状精度和位置精度要好。 为保证缸孔能满足上述要求,具备必要的性能,迫切需要良好可靠的缸孔精加工手段。近年来,平台网纹珩磨在汽油机缸体缸孔精加工中获得了越来越广泛地应用,因此,我们也将平台网纹珩磨用于缸孔精加工。 平台网纹珩磨的优点

所谓平台网纹珩磨,就是通过珩磨在缸孔表面形成细小的沟槽,这些沟槽有规律地排列形成网纹,并由专门的珩磨工艺削掉沟槽的尖峰,形成微小的平台。平台网纹珩磨在缸孔表面形成的这种特殊结构有如下优点: 1.微小的平台增加了接触面积,削掉尖峰,消除了表面的早期快速磨损,提高了表面的耐磨性。 2.细小的沟痕形成良好的储油空间,并在缸孔表面形成良好的油膜,降低了缸孔表面与活塞及活塞环的摩擦,因而可以使用低摩擦力的活塞环。 3. 细小的沟痕形成良好的储油空间,减小了机油的散失,进而降低了机油消耗。 4.珩磨后在缸孔表面形成了无数微小的平台,增加了缸孔与活塞及活塞环的接触面积,加大了缸孔表面的支撑度,减少了缸孔的初期磨损,因此减少了缸孔的磨合时间,甚至不用磨合。 平台网纹珩磨工艺 平台网纹珩磨的基本工艺为:粗珩→精珩→平台珩。 粗珩:消除前工序的加工痕迹,提高孔的形状精度,降低孔的表面粗糙度,为精珩做好准备。 精珩:更换珩磨油石,进一步提高孔的尺寸精度、形状精度、降低表面粗糙度,在缸孔表面形成均匀的交叉网纹。 平台珩:更换油石,去除沟痕波峰,形成平台表面,提高缸孔表面的支撑率。平台珩去掉表面波峰形成平台即可,加工余量较小,最好与精珩磨一次安装加工完成,否则重复定位误差将破坏平台珩磨精度。

珩磨机进给机构原理分析及改进方案探讨-1

论文 题目:珩磨机主要结构机构原理及数控改进方案探讨作者:郭均政 内容简介:本论文主要介绍了珩磨机主要结构如砂条进给、冲程控制 等机构的液压、机械原理,为了提高珩磨工件的表面质量 质量,经过对其工作原理进行了认真的分析,并根据实际 的加工跟踪情况,提出了改进方案,经过论证后现已实施, 效果良好,缸孔质量得到了很大的提高,完全满足了被加 工工件的工艺要求。

珩磨机进给机构原理及数控改进方案探讨 一、发动机缸体珩磨工艺要求 目前在汽车发动机行业的制造工艺中,发动机缸孔的精加工大都采用珩磨加工,这是因为缸孔的表面有严格并特殊的要求,发动机缸孔除了尺寸、几何精度比如圆度,柱度等一般要求外,还对表面质量有特殊的要求,为了能使发动机工作时能得到很好的润滑,表面要能够储存少量的润滑油以便建立良好的油膜,因而发动机表面要求有按一定方向有规律排列的网纹,同时还要有足够的支撑面积。依维柯发动机缸孔的表面质量要求:表面粗糙度Ra0.3-0.6;网纹角度45°-50°;网纹宽度L=0.03-0.05mm;网纹节距P=1.5mm,表面支撑面积TP值80%-95%。详细的要求见图1:珩磨工序工艺附图。从工艺图上我们知道,主轴孔的圆柱度要求为0.005mm,同轴度为0.03mm,为了保证缸孔的尺寸,缸孔要在孔的轴向分别为10mm、50mm、142mm 三个截面进行测量,在圆周方向要测量A、B两个方向,并且在三个截面当中,A向测量必须要保证:三个截面的的平均值与最小值的差要小于0.008mm,最大值与平均值的差小于0.008mm。在B向的测量值必须保证:三个截面的的平均值与最小值的差要小于0.008mm,最大值与平均值的差小于0.008mm。要达到以上的表面质量要求,当然选择合适的珩磨砂条是很重要的,但是网纹的角度、宽度、TP值等比较重要的指标光靠砂条是不能满足的,必须要有合适的珩磨冲程,冲程速度,珩磨主轴的回转速度以及砂条的进给精度,这些要素参数对于珩磨质量的保证起着至关重要的作用。

数控珩磨加工技术研究与应用

数控珩磨加工技术研究与应用 珩磨是磨削加工的一种特殊形式,是随着汽车的诞和生发展应运而生的,在现代汽车制造业和航空航天领域有着广泛的应用。 一、珩磨技术的发展与现状随着现代工业的发展,珩磨技术在航空航天及汽车发动机领域成为发动机气缸、气缸体孔、起落架简体以及工程机械中重要的液压缸等精密零件孔加工不可或缺的工艺技术。越来越多的各种长短孔、薄壁类孔、盲孔、不均匀壁厚类孔迫切需要珩磨机床对孔进行加工,以保证其表面粗糙度、圆度及尺寸精度要求。 在珩磨技术方面,目前在发动机气缸、工程机械液压系统及飞机起落架液压系统中普遍采用珩磨加工技术,但主要采用进口高精度数控立式珩磨机床,例如,美国善能公司最新推出的高精度数控立式珩磨机床SV?2410.由于采用了计算机控制系统,它比其他机械控制系统更改的保证珩磨加工效率和加工精度要求。 国产珩磨机床近年来有了很大的进步,出现了如宁夏大河机床等优秀的珩磨设备厂商,但无论在加工精度、制造水平还是在控制技术方面,与国外相比都有较大的差距,整体 珩磨工艺技术水平较低,对珩磨加工技术的研究仍然局限于

珩磨头的制作机沙条的选材上,对珩磨的工艺参数研究几乎 是空白,根本无法满足现代航空航天和汽车工业技术要求,目前国内市场上精密高效机床几乎全部为国外品牌垄断。 二、珩磨加工工艺珩磨是磨削加工的一种特殊形式,是能使加工表面达到高精度、高表面适质量、高寿命的高效加工方式。是一种快速高效的内孔精加工工艺,应用范围十分广泛。 珩磨的定义:是用镶嵌在珩磨头上的油石(也称珩磨条) 对精加工表面进行光整加工。珩磨与孔表面的接触面积较大,加工效率较高。加工时由涨开机构将油石沿径向涨开,使其压向工件孔壁,从而产生一定的接触面积,同时珩磨头做旋转和往复运动,而零件不动,从而实现珩磨。珩磨工艺具有以下特点。 (1)珩磨的表面质量好,珩磨后表面粗糙度可达 Ra0.8-0.2,甚至更低; (2)加工精度高,圆度、圆柱度可达0.5卩m;轴线直线度可达i p, m ; ( 3)交叉网纹有利于贮油润滑,实现平顶珩磨,可获得较好的相对运动摩擦,获得较理想的表面质量,同时改变了内孔的表面结构组织,形成了具有很好的润滑效果润滑油膜表面; (4)珩磨主要用于孔加工,是以原底孔中心为导向, 加工孔径范围为5-500mm ,深径比可达10,甚至更大; (5)珩磨与研磨相比,珩磨具有可减轻工人体力劳动、生产率高、易实现自动化等特点。

浅谈缸孔平台珩磨(一类参照)

浅析缸孔平台珩磨技术 吴勤 (东风本田发动机有限公司,广州510700) 摘要:本文从珩磨的原理、评价平台珩磨的各种参数以及影响平台珩磨加工质量的因素三个方面介绍了平台珩磨在缸孔加工领域上的应用。 关键词:平台珩磨、粗糙度、缸孔加工、油石 1、前言 这几年来,汽车行业在我国的蓬勃发展大家有目共睹。汽车在国内的人均保有量越来越大。全国各汽车公司之间的竞争更是越演越烈。怎样才能脱颖而出赢得市场是他们首要关心的问题。另一方面,随着人们环保意识的提高,加上油价攀升等众多因素的影响,购车群体对汽车的经济性、环保性越来越重视。改善发动机加工工艺、降低发动机的油耗及尾气排放是汽车赢得市场的重大突破口。 影响发动机的油耗和尾气排放的因素是很多的,其中一个重要的影响因素是发动机气缸与活塞环这对摩擦副的工作状况。润滑油对活塞环与气缸壁之间的工作状况起着决定性的影响。如果气缸壁的润滑油过多,在高温高压的情况下润滑油很容易燃烧而产生废气,使排放超标;相反如果气缸壁的润滑油过少,会大大增加活塞环对气缸壁的摩擦,降低发动机的效率,增加油耗,还会影响燃烧室的密封性能,增加废气的排放;甚至还有可能出现拉缸的现象。所以控制气缸壁的储油能力对发动机的性能有着重要的影响,这样发动机气缸壁的表面质量就显得尤为重要了。传统的发动机气缸壁的加工工艺已经很难对其表面质量作进一步的改善了,有必要研究和开发新型的发动机气缸壁的加工方法。平台珩磨是国内新型的发动机气缸精加工方法,它能在气缸壁形成良好的表明网纹,使气缸壁在拥有较高的承载率的同时还具有较好的储油能力,大大提高发动机的性能。平台珩磨的表面微观轮廓如下图所示: 2、珩磨的原理 珩磨是利用安装在珩磨头圆周上的多条油石,由张开机构将油石沿径向张开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或者珩磨头只作旋转运动,工件往复运动从而实现珩磨。 珩磨时,油石上的磨粒以一定的压力、较低的速度对工件表面进行磨削、挤压和刮擦。油石作旋转运动和上下往复运动,使油石上的磨粒在孔表面所形轨迹成为交叉而又不重复的网纹。与内孔磨削相比,珩磨参加切削的磨粒多,加在每粒磨粒上的切削力非常小,珩磨切速低,仅为砂轮磨削速度的几十份之一,在珩磨过程中又旋转加大量的冷却夜,使工件表面得到充分的冷却,不易烧伤,加工变形层薄,故能得到很理想的表面纹理。 珩磨头与机床采用浮动连接,这样能减少机床静态精度对珩磨精度的影响。还能保证余量均匀,但也决定了珩磨不能修正被加工孔的轴线位置度误差。由于油石很长,珩磨时工件的突出部分先与油石接触,接触压力较大,使突出部分很快被磨去,直至修正到工件表面与沙条全部接触,因此珩磨能修正前道工序产生的几何形状误差和表面波度误差。 珩磨的切削分为定压切削和定量切削两种。定压进给中进给机构以恒定的压力压向孔壁,共分三个阶段: 第一个阶段是脱落切削阶段,这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面

珩磨工艺原理

珩磨工艺原理 Prepared on 22 November 2020

珩磨工艺原理 一、珩磨工艺原理 珩磨是磨削加工的特殊形式,又是精加工中一种高效加工方法。这种工艺不仅能往除较大的加工余量(在50年代珩磨还是作为抛光用),而且是一种高精密零件尺寸、几何外形精度和表面粗糙度的有效加工方法。 (一)珩磨加工的特点: 1.加工精度高: 特别是一些中小型的光通孔,其圆柱度可达以内。一些壁厚不均匀的零件,如连杆,其圆度能达。对于大孔(孔径在200mm以内),圆度也可达,假如没有环槽或径向孔等,直线度在以内也是有可能的。珩磨比磨削加工精度高,磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削比珩磨精度更差。珩磨一般只能改变被加工件的外形精度,要想改变零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程臂上,调它与旋转主轴垂直,零件靠在面板上加工即可)。 表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而进步了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的均匀磨削压力小,这样工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。磨削比珩磨切削压力大,磨具和工件是线接触,有较高的相对速度。因而会在局部区域产生高温,会导致零件表面结构的永久性破坏。 主要加工各种圆柱形孔:光通孔。轴向和径向有中断的孔,如有径向孔或槽的孔、键槽孔、花键孔。盲孔。多台阶孔等。另外,用专用珩磨头,还可加工圆锥孔,椭圆孔等,但由于珩磨头结构复杂,一般不用。用外圆珩磨工具可以珩磨圆柱体,但其往除的余量远远小于内圆珩磨的余量。几乎可以加工任何材料,特别是金刚石和立方氮化硼磨料的应用。同时也进步了珩磨加工的效率。 (二)珩磨加工原理: 1.珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。 2.大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理 珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹不会重复。此外,珩磨头每转一转,油石

气缸孔珩磨技术简介

摘要 气缸是内燃机重要零件之一,它与活塞、气缸盖等组成燃烧室。燃料在气缸内部燃烧,膨胀的气体推动活塞往复移动,通过连杆驱动曲轴转动,将热能转化为机械能。气缸表面质量较差或长期工作磨损到一定程度,内燃机的动力性能将显著下降,燃润料的消耗急剧增加,使内燃机的经济性变坏。因此, 内燃机机缸体表面质量将直接影响发动机的技术性能和使用寿命。 平顶珩磨、滑动滚磨与普通珩磨相比,是一种先进的珩磨工艺,具有缸孔表面微观形貌呈光滑的平顶(而不是峰尖),与相对较深的波谷(与普通珩磨相比波谷较深)规律性地间隔分布、发动机的磨合周期短、润滑条件好、生产效率高等优点。是目前缸孔珩磨工艺的主流。引进平顶珩磨和滑动滚磨对于提高汽车发动机的缸体质量、提高生产效率有着重要的意义。 本文介绍了国内外缸孔珩磨工艺历程和现状,对普通珩磨。平顶珩磨、滑动珩磨工艺进行了一些对比研究。 关键字:气缸,珩磨工艺,平顶珩磨,滑动珩磨

一、绪论 1.1选题背景 当代社会,汽车作为城市生活的代步工具,已经进入了大多数家庭当中,他不再是一种奢侈品的象征,而是一种必备的交通工具。在我国,现在汽车年产销售量已经达到1800万辆,随着人们对汽车使用的普及,人们对它的要求也在不断提高,人们对整车的安全性、动力性乘坐舒适性、操作灵活性、外观设计及环保方面都提出了较高的要求,与此同时对汽车发动机的性能要求也越来越高。发动机作为汽车的核心部件,其生产、制造技术也在飞速发展,各种全新技术手段及工艺在逐步推广和应用于汽车制造业的各个环节当中。 对承受高温、高压、高负荷工作的缸孔表面来说润滑极为重要,珩磨后形成的微观支撑平台和珩磨网纹的夹角是保证良好润滑的关键。如果支撑平台过小,发动机磨合期延长,容易造成缸筒早期磨损,支撑平台过大则会造成润滑油量不足而无法形成有效的润滑油膜,不利于活塞环的润滑;如果晰磨网纹夹角太小,发动机趋于无润滑状态,如果珩磨网纹夹角过大,则机油消耗增大。发动机的这些特殊要求在实际生产中使用普通加工方法是难以实现的,这也是世界各国的汽车制造业无一例外地采用珩磨作为缸孔的最终精加主的原因。 1.2国内外珩磨发展的技术水平 国内汽车行业最早采用的是手动珩磨技术,近几年,随着技术的发展,汽车制造业普遍采用的是滑动珩磨技术,少部分先进的汽车加工企业采用平顶珩磨技术。现在在国外的先进汽车、船舶等企业正在逐步推进使用更为先进的珩磨技术如超声珩磨、电解珩磨、螺旋滑动珩磨、刷珩磨、激光珩磨等。目前最新开发的珩磨技术为激光珩磨,这种技术可以使缸孔表面槽的宽度、深度、间距等参数具有较高的一致性,只有这样的储油槽才能在缸孔表面形成均匀有效的油膜,更能有效的保护缸孔和活塞,更能提升发动机性能,适应当代发展需求。

设备远程实时监测系统的研究

设备远程实时监测系统的研究 陈新宇1 周锋2 王丽华1 荀东升3 1.天津科技大学 2.天津电气传动设计研究所 3.天津普辰电子公司 摘要:论述了基于Internet的设备远程实时监测系统的实现方法,采用虚拟仪器技术,研究了以D ataSocket 和A ctiveX技术来实现远程设备运行状态参数的传输和显示,以德国进口的大型珩磨机为例,采用C lient2serv2 er(C S)模式,实现了设备的远程实时监测和简单的故障诊断。 关键词:远程监测 数据采集 C S模式 Study on Rea l-ti m e M on itor i ng Syste m for Re m ote Equ ip m en t Chen X inyu Zhou Feng W ang L ihua Xun Dongsheng Abstract:T he m ethods of real ti m e monito ring fo r remo te equi pm ent are discussed based on virtual instru2 m ents(V I).A new m ethod of data trans m issi on and disp lay of running status of the equi pm ent is studied by D ataSocket and A ctiveX techno logy.T ake ger m an i m po rted grinding m ach ine fo r examp le,the real2ti m e moni2 to ring system fo r the remo te equi pm ent is realized in client2server(C S)mode. Keywords:remo te monito ring data acquisiti on client2server(C S)mode 1 概述 网络测控是融合通信网络技术、自动化测控技术、计算机技术的一门前沿应用学科。实现测控技术网络化的实用意义至少有以下3点。 1)有利于降低测控系统的成本。利用网络技术将分散在不同地理位置不同功能的检测设备联系在一起,使昂贵的硬件、软件在网络内得以共享,减少设备的重复投资。 2)有利于实现远距离测量和控制。通过网络,一台计算机采集的数据可以立即传输到另一台计算机;操作人员也可以在另一台计算机控制这台计算机的采集及输出。 3)有利于实现设备的远距离诊断和维护。特别是进出口设备,如果能实现基于In ternet跨国的远程监测和诊断,将大大降低维修费用。因此,网络测控是当今测控技术发展的方向。 2 实现原理与构成 2.1 实现原理 设备远程监测的原理是:用户连接到网络上,通过远程访问的客户程序发送客户身份验证信息和与远程主机连接的要求,远程主机的服务器端程序验证客户身份,如果验证通过,就与客户建立连接,并向用户发送验证通过和已建立连接的信息。这时,用户便可以通过客户端程序监控或向远程主机发送要执行的指令,而服务器端程序则执行这些指令,然后把执行的结果传递给客户端,并在客户端按一定规则显示出来。远程控制软件一般为C S模式,即客户 服务器模式。这种模式包含2个部分:一个客户端程序,一个服务器端程序。使用前需要将客户端程序安装到主控端计算机上,将服务器程序安装到被控端计算机上。2.2 系统的硬件构成 设备远程监测系统根据被测设备的配制而异,通常系统组成如图1所示。有些设备本身具有联网能力,可以直接接入网络;而大多数设备不具备这样的接口,因此,一般须通过传感系统将被测设备运行状态转换成电量,信号调理单元将转换的电信号进行适当的处理(诸如放大、调制、滤波等),直到便于计算机数据采集和处理,服务器通过In ternet将信息传输到网上,并传输到远程监 84  电气传动 2005年 第35卷 第2期设备远程实时监测系统的研究

珩磨加工问题

发动机缸孔珩磨几何形状的控制 作者:王成伟文章来源:长城汽车股份有限公司技术中心,河北省汽车工程技术研究中心 缸孔珩磨几何形状加工不良和缸盖装配后的气缸孔变形是影响活塞漏气量大和发动机烧机油的重要因素.本文通过常规缺陷预防,增加在线形状修正珩磨和增加模拟压板珩磨工艺等控制方式,使其缸孔几何形状品质有了很好的提升和改善. 缸孔珩磨几何形状加工不良和缸盖装配后的气缸孔变形是影响活塞漏气量大和发动机烧机油的重要因素。本文通过常规缺陷预防、增加在线形状修正珩磨和增加模拟压板珩磨工艺等控制方式,使其缸孔几何形状品质有了很好的提升和改善。 气缸体是联接发动机的曲柄连杆机构、配气机构以及供油、润滑和冷却等机构的核心基础部件。而缸孔是气缸体的关键部位,尤其缸孔珩磨后的加工质量水平直接影响到发动机整机的经济性和动力性,也是决定排放性能能否达标的关键之一。气缸孔珩磨几何形状加工不良和缸盖装配后的气缸孔变形是影响活塞漏气量大、发动机烧机油的重要因素,也是进一步提高发动机产品品质的难点。 缸孔珩磨几何形状过程控制 珩磨作为气缸孔加工中的最后一道关键工序,是提高缸孔尺寸精度、几何形状精度和表面粗糙度的一种必要的磨削工艺。珩磨是利用工件不动,通过涨开机构将珩磨头上的油石径向涨开,压向孔壁,采用液压或伺服驱动装置使珩磨头旋转和往复运动来修正缸孔,来提高精度。

在日常生产过程中,缸孔的几何形状精度超差是缸孔生产中的常见缺陷之一,是影响生产线产品质量控制、生产效率的重要原因之一。通常的解决方式为:现场工程师根据工件的测量报告,分析几何形状的异常现象,继而对珩磨设备进行相应的检查和人工调整,尤其是加工参数的调整,完全依靠人工调试积累的经验或反复的测量、调整尝试,直到满足产品图样要求为止。同时我们也知道,缸孔的形状测量一般采用精密测量间的圆柱度仪进行检测,检测的时间比较长,一般为2~3h(包括清洗、恒温和测量时间),严重影响生产效率。为了最大限度地预防和减少生产线的停线时间,及时保证和恢复生产,我们对新旧设备都采取了相应的解决方法。 1.旧珩磨设备应对控制方法——缺陷矩阵表 现有生产线的珩磨设备因使用年限较久,软件系统版本比较低,很难通过软件升级实现在线缸孔几何形状自动修正功能。通过吸取珩磨厂家的经验和我司自身珩磨过程缺陷调整的案例经验,按照收集、整理以及归纳的方式,总结了一套关于珩磨设备缺陷应对的缺陷矩阵表,如表1所示。 2.新购设备应对控制方法——在线自动修正珩磨 我们知道,在缸孔珩磨工艺过程中,容易产生缸孔圆柱度缺陷的主要有三种类型共5种形式,如图1所示。 影响珩磨几何形状的参数主要有3个:孔的长度、砂条的长度和砂条的伸出长度(砂条在珩磨时伸出孔外的长度)。孔的长度由产品设计确定,砂条的长度根据珩磨厂商的经验,一般在通孔加工中应为孔长的2/3。受工件本身的特性及刀具设计的限制,该长度一旦确定则在后面的生产中也需要保持固定不变。

珩磨安全技术操作规程简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 珩磨安全技术操作规程简 易版

珩磨安全技术操作规程简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1 必须遵守《磨床安全技术操作规程》。 2 工件要卡牢固,调节行程时要注意是否 有可能发生碰撞,第一次行程要缓慢进给。 3 测量工件、调整行程挡块必须停车进 行。 4 开车前磨头前端必须先进入工件内再开 车。操作时要防止夹伤手指。 5 自动进刀时,必须将行程限位调节适当 并坚固牢靠,方可开机。 6 工件动转中,不准调整行程。 7 电气设备上防止沾染润滑油、冷却液及 灰尘。电气导线不准外露,防止因磨擦破损发

生漏电。 8 安全装置必须齐全可靠,不准任意拆除。 9 数控珩磨机还要遵守《数控机床安全技术操作规程》有关规定。 该位置可填写公司名或者个人品牌名 Company name or personal brand name can be filled in this position

高精度珩磨机控制系统设计_陆永耕

第12卷第2期 2009年6月 上海电机学院学报 JO U RN A L O F SH A NG H AI DI AN JI U N IV ERSIT Y Vol.12No.2 Jun.2009 收稿日期:2009-04-17 作者简介:陆永耕(1963-),男,教授,博士,专业方向为工业自动化、超声电机控制及数字图象处理,E -mail:luyg @https://www.wendangku.net/doc/1d6851264.html, 文章编号 1671-2730(2009)02-0095-04 高精度珩磨机控制系统设计 陆永耕 (上海电机学院电气学院,上海200240) 摘 要:根据珩磨车床加工工艺原理和控制要求,利用可编程控制PLC 技术,设计了珩磨车床控制系统。阐述了系统PLC 主控制器系统硬件组成和I/O 端口设计、控制参数设置及运行控制方式。 关键词:珩磨;控制系统;PLC 中图分类号:T G 589.023.5 文献标识码:A Design of the Control System for High Precision Honing Machines L U Yong geng (Scho ol of Electric,Shanghai Dianji University,Shanghai 200240,China) Abstract:The control system o f a ho ning machine based on the PLC techno logy is desig ned in this paper,accor ding to the pro cessing principle and the control requirements of the ho ning m achine.T he system hardw are construction o f PLC main contr oller,the I/O po rts and control param eter setting and m ode o f operation co ntro l are presented. Key words:honing;contr ol system;PLC 早期的珩磨实际上是一种摩擦工艺,最初生产的珩磨头装于钻床上珩磨,切削量非常小(最大为0.15mm )。现代珩磨可定义为一种切削金属的方法,实现对工件尺寸、圆度、直线度、位置度和表面粗糙度的要求。珩磨作为一种万能的孔加工方法,在粗珩工序上采用大切削的工艺,最大切削量可达0.70~1.00mm;并取消了传统的精镗、精磨工序,广泛地应用于油缸、气缸套和泵体缸孔等的加工作业[1]。 现代珩磨机大量采用高新控制、振动珩磨头制造、多种材质珩磨条制造和现代测量等技术,特别是随着珩磨工件要求的不断提高,对与之配套的刀具 材料也提出了越来越高的要求,由单一的油石向金刚石、刚玉、氮化硼、碳化硅发展,从而实现大加工余量的切削。同时,控制系统也由传统的机-电-液压控制系统,向数字控制、数字控制工艺参数的数控(CNC)车床方向发展 [2-4] 。 作为油缸加工的核心设备之一,珩磨机的研制开发成为许多精密加工厂家急需解决的问题。通过对国内外重点生产厂家同类产品的比较,在总结德 国格林、美国德隆、美国善能产品的基础上,结合油缸、喷嘴、异形工件等深孔产品的精加工特点和实际工作经验,制订了适合冷拔、镗孔等管坯加工使用的强力珩磨机设计方案,在满足加工工艺指标的前提

金工实习报告车铣刨磨

如对您有帮助,请购买打赏,谢谢您! 第四周,我们的实习内容是铣刨磨。到了车间,老师把我们领到机器前。一台台外表已显岁月的机器,老师说这就是车床了。 铣床刨床磨床是金属切削机床中使用最广,生产历史最悠久,种类最多的一类机床。车床的种类型号很多,按其用途,结构可分为:仪表车床、卧式车床、单轴自动车床、多轴自动和半自动车床、转塔车床、立式车床、多刀半自动车床、专门化车床等。近年来,计算机技术被广泛运用到机床制造业,随之出现了数控车床、车削加工中心等机电一体化的产品。我们使用的是沈阳第一机床厂的普通车床。 首先,老师给我们讲解车床的工作原理。 铣床的工作原理很简单,主要用铣刀在工件上加工各种表面,通常铣刀旋转运动为主运动,工件(和)铣刀的移动为进给运动。它可以加工平面、沟槽,也可以加工各种曲面、齿轮等。铣床的种类很多,按其结构分主要有: (1)台式铣床:小型的用于铣削仪器、仪表等小型零件的铣床。 (2)悬臂式铣床:铣头装在悬臂上的铣床,床身水平布置,悬臂通常可沿床身一侧立柱导轨作垂直移动,铣头沿悬臂导轨移动。 (3)滑枕式铣床:主轴装在滑枕上的铣床,床身水平布置,滑枕可沿滑鞍导轨作横向移动,滑鞍可沿立柱导轨作垂直移动。 (4)龙门式铣床:床身水平布置,其两侧的立柱和连接梁构成门架的铣床。铣头装在横梁和立柱上,可沿其导轨移动。通常横梁可沿立柱导轨垂向移动,工作台可沿床身导轨纵向移动。用于大件加工。 (5)平面铣床:用于铣削平面和成型面的铣床,床身水平布置,通常工作台沿床身导轨纵向移动,主轴可轴向移动。它结构简单,生产效率高。 (6)仿形铣床:对工件进行仿形加工的铣床。一般用于加工复杂形状工件。 (7)升降台铣床:具有可沿床身导轨垂直移动的升降台的铣床,通常安装在升降台上的工作台和滑鞍可分别作纵向、横向移动。 (8)摇臂铣床:摇臂装在床身顶部,铣头装在摇臂一端,摇臂可在水平面内回转和移动,铣头能在摇臂的端面上回转一定角度的铣床。 (9)床身式铣床:工作台不能升降,可沿床身导轨作纵向移动,铣头或立柱可作垂直移动的铣床。 (10)专用铣床:例如工具铣床:用于铣削工具模具的铣床,加工精度高,加工形状复杂。 磨床是指用磨具或磨料加工工件各种表面的机床。一般用于对零件淬硬表面做磨削加工。通常,磨具旋转为主运动,工件或磨具的移动为进给运动,其应用广泛、加工精度高、表面粗糙度Ra值小,磨床可分为十余种: (1)外圆磨床:是普通型的基型系列,主要用于磨削圆柱形和圆锥形外表面的磨床。 (2)内圆磨床:是普通型的基型系列,主要用于磨削圆柱形和圆锥形内表面的磨床。 (3)座标磨床:具有精密座标定位装置的内圆磨床。 (4)无心磨床:工件采用无心夹持,一般支承在导轮和托架之间,由导轮驱动工件旋转,主要用于磨削圆柱形表面的磨床。 (5)平面磨床:主要用于磨削工件平面的磨床。 (6)砂带磨床:用快速运动的砂带进行磨削的磨床。 (7)珩磨机:用于珩磨工件各种表面的磨床。 (8)研磨机:用于研磨工件平面或圆柱形内,外表面的磨床。 (9)导轨磨床:主要用于磨削机床导轨面的磨床。 (10)工具磨床:用于磨削工具的磨床。 (11)多用磨床:用于磨削圆柱、圆锥形内、外表面或平面,并能用随动装置及附件磨削

珩磨工艺原理简介及盲孔珩磨技巧

珩磨工艺原理简介及盲孔加工技巧 上海善能机械有限公司熊元一郭建忠侯军丽李贵贤 Abstract: Honing process has been widely used both at home and abroad. In order to increase the awareness of honing process, the paper mainly explains what the honing process is and what benefits the honing process will bring to us. In particular, the paper also introduces the honing techniques of blind holes, which will greatly help those who have been encountered with the problems in honing blind holes. 一、珩磨工艺简介 珩磨工艺是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法。 珩磨是一种以被加工面作为导向定位面,在一定进给压力下,通过工具(油石)和零件的相对运动去除余量,其切削轨迹为交叉网纹的高效、精密加工工艺。 1.珩磨加工特点: 1.1加工精度高:特别是一些中小型的通孔,其圆柱度可达 0.001mm 以 内。一些壁厚不均匀的零件,如连杆,其圆度能达到0.002mm。对于大孔(孔径在200mm以上),圆度也可达 0.005mm, 如果没有环槽或径向孔等,直线度达到 0.01mm/1m 以内也是有可能的。珩磨比磨削加工精度高, 磨削时支撑砂轮的轴承位于被珩孔之外, 会产生偏差, 特别是小孔加工, 磨削比珩磨精度更差。珩磨一般只能提高被加工件的形状精度, 要想提高零件的位置精度, 需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度 (面板安装在冲程托架上, 调整使它与旋转主轴垂直, 零件靠在面板上加工即可)。 1.2表面质量好:表面为交叉网纹,有利于润滑油的存储及油膜的保持。 有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而提高了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的平均磨削压力小,这样珩磨时,工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和

相关文档