文档库 最新最全的文档下载
当前位置:文档库 › ISO 15848-1-2006 工业阀门.漏气的测量、试验和鉴定程序 第1部分 阀门的分类体系和型式试验鉴定程序

ISO 15848-1-2006 工业阀门.漏气的测量、试验和鉴定程序 第1部分 阀门的分类体系和型式试验鉴定程序

ISO 15848-1-2006 工业阀门.漏气的测量、试验和鉴定程序 第1部分 阀门的分类体系和型式试验鉴定程序
ISO 15848-1-2006 工业阀门.漏气的测量、试验和鉴定程序 第1部分 阀门的分类体系和型式试验鉴定程序

INTERNATIONAL STANDARD ISO 15848-1:2006(E) Industrial valves — Measurement, test and qualification

procedures for fugitive emissions —

Part 1:

Classification system and qualification procedures for type testing of valves

1 Scope

This part of ISO 15848 specifies testing procedures, for evaluation of external leakage of valve stem seals (or shaft) and body joints of isolating valves and control valves intended for application in volatile air pollutants and hazardous fluids. End connection joints, vacuum application, effects of corrosion and radiation are excluded from this part of ISO 15848.

This part of ISO 15848 concerns classification system and qualification procedures for type testing of valves.

2 Normative references

The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.

ISO 5208, Industrial valves — Pressure testing of valves

3 Terms and definitions

For the purposes of this document, the following terms and definitions apply.

3.1

body seals

any seal in pressure containing part except stem (or shaft) seals

3.2

Class

a convenient round number used to designate pressure-temperature ratings

NOTE It is designated by the word “Class” followed by the appropriate reference number from the following series: Class 125, Class 150, Class 250, Class 300, Class 600, Class 900, Class 1 500, Class 2 500.

3.3

concentration

ratio of test fluid volume to the gas mixture volume measured at the leak source(s) of the test valve

NOTE The concentration is expressed in ppmv (parts per million volume), which is a unit deprecated by ISO (1 ppmv = 1 ml/m3= 1 cm3/m3).

? ISO 2006 – All rights reserved1

ISO 15848-1:2006(E)

3.4

control valve

power operated device which changes the fluid flow rate in a process control system and which consists of a valve connected to an actuator that is capable of changing the position of a closure member in the valve in response to a signal from the controlling system

3.5

fugitive emission

any chemical or mixture of chemicals, in any physical form, which represents an unanticipated or spurious leak from equipment on an industrial site

3.6

leakage

loss of the test fluid through the stem (or shaft) seal or body seal(s) of a test valve under the specified test conditions and which is expressed as a concentration or a leak rate

3.7

leak rate

mass flow rate of the test fluid, expressed in mg·s?1 per meter of the perimeter of the stem

3.8

local leakage

measurement of the test fluid leakage using a probe at the leak source point

3.9

mechanical cycle of control valves

for linear/rotary control valves, test cycles performed at 50 % of stroke/angle with an amplitude of ± 10 % of full stroke/angle

3.10

mechanical cycle of isolating valves

motion of a valve obturator moving from the fully closed position to the fully open position, and returning to the fully closed position

3.11

nominal size

DN

alphanumeric designation of size for components of a pipework system, which is used for reference purposes and which comprises the letters DN followed by a dimensionless whole number which is directly related to physical size, in millimetres, of the bore or outside diameter of the end connections

NOTE 1 The nominal diameter is designated by the letters DN followed by a number from the following series: 10, 15, 20, 25, 32, 40, 50, 65, 80, 100, 125, 150, 200, 250, 300, 350, 400, etc.

NOTE 2 The number following the letters DN does not represent a measurable value and should not be used for calculation purposes except where specified in the relevant standard.

3.12

nominal pressure

PN

numerical designation which is a convenient rounded number for reference purposes

NOTE 1 All equipment of the same nominal size (DN) designated by the same PN number has the compatible mating dimensions.

NOTE 2 The maximum allowable working pressure depends upon materials, design and working temperatures and should be selected from the pressure/temperature rating tables in the appropriate standards.

NOTE 3 The nominal pressure is designated by the letters PN followed by the appropriate reference number from the following series: 2,5, 6, 10, 16, 20, 25, 40, 50, etc.

2 ? ISO 2006 – All rights reserved

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

? ISO 2006 – All rights reserved

3

3.13

isolating valve

valve intended for use principally in the closed or open position which may be power actuated or manually operated

3.14

performance class

level of the performance of a test valve defined by the criteria specified in Clause 6 3.15

room temperature

temperature in the range of ? 29 °C to + 40 °C

3.16 stem shaft

valve component extending into the valve shell to transmit the linear/rotary motion from the actuating device to the valve obturator

3.17

stem seal shaft seal

component(s) installed around the valve stem (or shaft) to avoid leakage of internal fluids to atmosphere 3.18

test pressure

pressure used for testing the valve which, unless otherwise specified, shall be the rated pressure specified at the test temperature and the shell material of a test valve in the relevant standards 3.19

test temperature

fluid temperature selected for the test from Table 3 as measured inside the test valve

3.20

thermal cycle

change of the temperature from the room temperature to the specified test temperature and return to the room temperature

3.21

total leakage

collection of leakage of the test fluid at the leak source using an encapsulation method 3.22

type test

a test conducted to establish the performance class of a valve

4 Symbols and abbreviations

M alr predicted maximum leakage SSA

stem (or shaft) seal adjustment

NOTE

The abbreviation SSA corresponds to the abbreviation of “Stem Seal Adjustement”.

OD stem external diameter of the stem RT ambient temperature

ISO 15848-1:2006(E)

5 Type test

5.1 Test conditions

5.1.1 Preparation of a valve to be tested

Only a fully assembled valve shall be used for the test.

A valve shall be selected from standard production at random. The valve shall have been tested and accepted in accordance with ISO 5208 or any other applicable standard and no subsequent protective coating shall have been applied.

Additional seal arrangements to allow the stem sealing system leakage measurement is permitted and shall not affect the sealing performance of the valve.

The test valve interior shall be dried and lubricants (if any) shall be removed. The valve and test equipment shall be clean and free of water, oil and dust and the packing may be changed prior to the test. If the valve packing is changed prior to the test, it should be done under the supervision of the valve manufacturer.

If a test valve is equipped with a manually adjustable stem (or shaft)seal(s), it shall be initially adjusted according to the manufacturer instructions, and recorded in the test report as provided in Clause 7.

The valve manufacturer shall select the appropriate actuating device.

5.1.2 Test fluid

The test fluid shall be helium gas of 97 % minimum purity or methane of 97 % minimum purity. The same test fluid shall be used throughout the test.

5.1.3 Test temperature

Valve mechanical cycling is carried out at the room temperature or in the steps of the room temperature and the selected test temperature other than the room temperature (see 5.2.4.1).

The test temperature shall be recorded for each leakage measurement.

5.1.4 Measurement of test valve temperature

The temperature of the test valve shall be measured at three locations (X, Y, Z), as shown in Figure 1, and recorded in a test report.

a) Measurement at location “X” shall be used to determine the test temperature.

b) Measurement at location “Z “is used to determine the external valve temperature adjacent to the stem (or

shaft) seal(s) for information.

c) Measurement at location “Y” is also made for information. Any use of insulation shall be detailed in the

test report.

All temperatures at location X, Y and Z shall be stabilized before leakage is measured (see Figure 2). Temperature at location “Z” shall be stabilized for minimum 10 min prior to leakage measurement.

Check if the temperature variation is within ± 5 %.

4 ? ISO 2006 – All rights reserved

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

? ISO 2006 – All rights reserved

5

Key

1 location X: flow path (temperature T1)

2 location Y: valve body (temperature T2)

3 location Z: stuffing box (temperature T3)

Figure 1 — Measurements of temperature at three locations

(when the valve is internally heated or cooled)

ISO 15848-1:2006(E)

6

? ISO 2006 – All rights reserved

Key T test test temperature, °C

T 1 stabilization temperature at location X (flow path) T 2

stabilization temperature at location Y (valve body)

T 3

stabilization temperature at location Z (stuffing box) t time

a Stabilization of temperature at location Z (stuffing box). b

Start of mechanical cycles.

Figure 2 — Stabilization of temperatures

5.1.5 Leakage measurement 5.1.5.1

Stem (or shaft) leakage measurement

Leakage shall be measured from a test valve at rest in the partly open position.

The leakage measurement shall be performed by the global method (flushing or vacuum) according to the procedures described in Annex A. 5.1.5.2

Body seal leakage measurement

The leakage shall be measured by the sniffing method according to the procedure described in Annex B and expressed in parts per million volume (1 ppmv = 1 ml/m 3 = 1 cm 3/m 3).

Evaluation of the end connections should be done to insure that they do not affect the results of the evaluation of the body seals.

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

? ISO 2006 – All rights reserved

7

5.1.5.3 Leakage-measurement records

All results of leakage measurements shall be recorded in a test report as specified in Clause 7.

5.2 Test procedures

5.2.1 Safety rules

Testing with high pressure gas is potentially hazardous and thus all applicable local safety rules and adequate safety measures shall be followed. If methane (CH 4) is used, the combination of the test pressure and temperature shall be reviewed for possible combustion concerns. 5.2.2 Test equipment

The test equipment shall be appropriately selected to

a) apply and maintain the test pressure within a range of ± 5 % of the nominal value; b) apply valve mechanical cycles;

c) heat or cool the test valve to the selected test temperature, and maintain it within a range of ± 5 % but not

exceeding 15°C; no mechanical cycling is permitted during temperature change; d) measure and record time, pressure, temperature, leakage and duration of a valve mechanical cycle; e) measure and record actuation forces or torques to operate a test valve; f)

measure and record the stem sealing system loading, if applicable.

5.2.3 Stem (or shaft) seal adjustment (SSA) 5.2.3.1

Number of stem seal adjustment

Mechanical adjustments of stem (or shaft) sealing system during the type test shall be permitted only once, as shown below, for each of qualification stage done according to Figures 3 and 4, if stem (or shaft) leakage has been measured in excess of the target tightness class selected from Tables 1 or 2.

The maximum re-tightening force (or torque) to apply shall be determined prior to the type test.

EXAMPLE

— A maximum of one adjustment is accepted for CC1 or CO1; — A maximum of two adjustments is accepted for CC2 or CO2.

5.2.3.2 Test failure after stem seal adjustment

If a stem (or shaft) sealing arrangement fails to achieve the target tightness class, or it is not possible to continue mechanical cycling, the test shall be considered terminated, and the test valve shall be evaluated for qualification of lower tightness and endurance classes, if applicable. 5.2.3.3

Reporting the number of SSA

The total number of stem (or shaft) seal adjustment shall be recorded in the test report and indicated in the designation of the valve classification as “SSA-1”, “SSA-2” and so forth.

ISO 15848-1:2006(E)

5.2.4 Test description

5.2.4.1 General

The test description is the following.

a) The test valve shall be mounted on a test rig, according to the instructions given by the manufacturer.

b) The valve mounting shall be principally made with a stem (or shaft) positioned vertical. A valve intended

for use in other positions shall be mounted with the stem (or shaft) positioned horizontally.

c) All sealing systems shall have been properly adjusted beforehand, according to the manufacturer's

instructions. For valves using packings as a stem seal, the tightening torque of the gland boltings shall be measured and recorded at the beginning of the test and after any stem seal adjustment.

d) The target number and combination of mechanical and thermal cycles shall be selected from the

endurance classes specified in Figures 3 and 4.

e) Leakage from the stem (or shaft) seal and from the body seals shall be separately measured. If the valve

does not allow such a separate measurement the total leakage of both stem (or shaft) and body seals shall be measured at the same time according to Annex A.

f) Actual methods of mechanical cycles other than those specified in 5.2.4.2 and 5.2.4.3 shall be in

accordance with the manufacturer's instructions, and opening, closing and dwelling time shall be recorded in the test report. Basically, they shall represent the intended operating conditions of a test valve.

g) Valve opening and closing force (or torque) shall be measured and recorded at the start and at the end of

the test, following subsequent stem seal adjustments if applicable.

5.2.4.2 Mechanical cycles of isolating valves

Unless otherwise specified by the valve manufacturer, the valve seating force (or torque) required for tightness under a differential pressure of 0,6 MPa (6 bar), air or inert gas shall be used as the minimum force (or torque) for mechanical cycle of a test valve.

Fully back seating a test valve is not required.

5.2.4.3 Mechanical cycles of control valves

The stem motion of linear action valves shall be between 1 mm/s and 5 mm/s. The shaft motion of rotary control valves shall be between 1°/s and 5°/s.

The actuator to operate a test valve shall withstand only the pressure and friction force (or torque) acting on the valve stem, and these values shall be recorded.

NOTE Measurement of friction force (or torque) is principally intended to check the packing friction usually expressed as the dead band.

5.2.4.4 Preliminary tests at the room temperature (test 1)

The tests are carried out as shown below.

a) Pressurize a test valve with the test fluid to the test pressure as specified in a relevant standard.

b) After the test pressure has been stabilized, measure leakages both from the stem (or shaft) seal and from

the body seals, in accordance with Annexes A and B, respectively.

c) Record the test result in a test report.

8 ? ISO 2006 – All rights reserved

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

5.2.4.5 Mechanical cycle test at the room temperature (test 2)

The tests are carried out as shown below.

a) Perform mechanical cycles at room temperature while the test valve is kept pressurized.

b) Measure the leakage from the stem (or shaft) seal only, in accordance with Annex A.

c) Record the test result in the test report.

d) Repeat the test in case of Class CO1 and CC1, as indicated in Figures 3 and 4.

5.2.4.6 Static test at the selected test temperature (test 3)

The tests are carried out as shown below.

a) Pressurize a test valve with the test fluid to the test pressure as specified in a relevant standard for the

selected test temperature selected from Table 3.

b) After the test pressure has been stabilized, adjust the valve temperature to the selected test temperature,

ensuring that the test pressure does not exceed the level specified in the relevant standard.

c) After the valve temperature has been stabilized with an allowance of ±5 % with a maximum of 15 °C,

measure the leakage from the stem (or shaft) seal only in accordance with Annex A.

d) Record the test result in the test report.

e) Repeat the test in case of Class C01 and CC1, as indicated in Figures 3 and 4.

5.2.4.7 Mechanical cycle test at the selected test temperature (test 4)

The tests are carried out as shown below.

a) Perform mechanical cycles at the selected test temperature while the test valve is kept pressurized.

b) Measure the leakage from the stem (or shaft) seal only in accordance with Annex A.

c) Record the test result in a test report.

d) Repeat the test in case of Class C01 and CC1, as indicated in Figures 3 and 4.

5.2.4.8 Intermediate static test at the room temperature (test 5)

The tests are carried out as shown below.

a) Allow a test valve to return to the room temperature, without artificial cooling (or heating).

b) After the valve temperature has been stabilized, measure the leakage from the stem (or shaft) seal only in

accordance with Annex A.

c) Record the test result in a test report.

5.2.4.9 Final test at the room temperature (test 6)

The tests are carried out as shown below.

a) Allow a test valve to return to the room temperature, without artificial measures.

b) After the valve temperature has been stabilized, measure the leakage from the stem (or shaft) seal in

accordance with Annex A and from body seals in accordance with Annex B.

c) Record the test results in the test report.

? ISO 2006 – All rights reserved9

ISO 15848-1:2006(E)

10

? ISO 2006 – All rights reserved

5.2.4.10 Post test examination

After all the tests have been successfully completed, the test valve shall be disassembled and all sealing components shall be visually examined to record notable wear and any other significant observations for information.

5.2.4.11 Qualification

Tested valves shall be qualified when

? all steps of test procedures have been satisfactorily performed for the target performance class;

? all leakage measurements are verified equal or lower than the values specified for the target performance

class.

6 Performances classes

6.1 Classification criteria

Valve operating conditions and hazards of the line fluid being handled can result in different levels of valve emission performance.

The purpose of Clause 6 is to define classification criteria resulting from the type test. A performance class is defined by the combination of the following criteria: a) “tightness class”: see Tables 1 and 2; b) “endurance class”: see Figures 3 and 4; c) “temperature class”:

see Table 3.

6.2 Tightness classes

6.2.1 Definition

Tightness classes are defined only for stem (or shaft) sealing systems. Leakage from body seals shall be u 50 ppmv in every case.

Table 1 — Tightness classes for stem (or shaft) seals

Class Measured leak rate a

mg ?s ?1?m ?1

Remarks

A b u 10?6 Typically achieved with bellow seals or equivalent stem (shaft) sealing system for quarter turn valves

B u 10?4 Typically achieved with PTFE based packings or elastomeric seals C

u 10?2

Typically achieved with flexible graphite based packings

a Expressed in mg·s ?1·m ?1 measured with total leakage method as defined in Annex A. b

Class A can be measured only with helium using the vacuum method.

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

Table 2 — Leakage from body seals

Measured concentration

ppmv

u 50

NOTE Expressed in ppmv measured with the sniffing method

as defined in Annex B (1 ppmv = 1 ml/m3= 1 cm3/m3).

6.2.2 Helium as test fluid

When the test fluid is helium, the tightness classes are identified as Class AH, Class BH and Class CH.

6.2.3 Methane as test fluid

When the test fluid is methane, the tightness classes are identified as Class BM and Class CM.

6.2.4 Correlations

There is no correlation intended between measurements of total leak rate as described in Annex A and local sniffed concentration as described in Annex B.

There is no correlation intended between the tightness classes when the test fluid is helium (Class AH, Class BH and Class CH) and when the test fluid is methane (Class BM and Class CM).

6.3 Endurance classes

6.3.1 Mechanical-cycle classes for isolating valves

The required minimum number of mechanical cycles for isolating valves shall be 500 cycles (full stroke) with two thermal cycles, except for RT. This classification stage shall be identified as CO1. An extension to classification CO2 shall be accomplished by addition of 1 000 mechanical cycles with one thermal cycle. Further extension to CO3 etc shall be achieved by repetition of the requirement for CO2 (see Figure 3).

? ISO 2006 – All rights reserved11

ISO 15848-1:2006(E)

6.3.2 Mechanical-cycle classes for control valves

The required minimum number of mechanical cycles for control valves shall be 20 000 cycles with two thermal cycles, except for RT. This classification stage shall be identified as CC1. An extension to classification CC2 shall be accomplished by addition of 40 000 mechanical cycles with one thermal cycle. Further extension to CC3 etc shall be achieved by repetition of the requirement for CC2 (see Figure 4).

12 ? ISO 2006 – All rights reserved

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

? ISO 2006 – All rights reserved

13

Key T test test temperature, °C N number of mechanical cycles P test fluid pressure

L 1 measurement of leakage of stem seal L 2 measurement of leakage of body seal

NOTE

The numbers 1 to 6 refer to the test sequences test 1 to test 6 as defined in 5.2.4.4 to 5.2.4.9.

Figure 4 — Mechanical-cycles classes for control valves

6.4 Temperature classes

The target temperature class shall be selected from Table 3. If the test is carried out at any temperature other than those specified in the Table, the next lower class shall apply in case of the test temperature being above zero, or the next higher class shall apply in case of the test temperature being below zero.

EXAMPLE

If the test temperature is 405 °C, the value shall be classified as (t400 °C).

All test temperatures shall be recorded in the test report.

Table 3 — Temperature classes

(t-196 °C) (t-46 °C) (tRT) (t200 °C) (t400 °C)

? 196 °C

? 46 °C

Room temperature, °C

200 °C

400 °C

ISO 15848-1:2006(E)

? Test at ? 196 °C qualifies the valve in the range ? 196 °C up to RT.

? Test at ? 46 °C qualifies the valve in the range ? 46 °C up to RT.

?Test at RT qualifies the valve in the range ? 29 °C to + 40 °C.

?Test at 200 °C qualifies the valve in the range RT up to 200 °C.

?Test at 400 °C qualifies the valve in the range RT up to 400 °C.

To qualify a valve in the range ? 46 °C up to 200 °C, two tests are necessary:

?The test at ? 46 °C qualifies the valve in the range ? 46 °C up to RT;

?The test at 200 °C qualifies the valve in the range RT up to 200 °C.

Alternative temperature classes shall be subject to the agreement between the manufacturer and the purchaser.

6.5 Examples of class designation

?Tightness class: B (reference in Table 1).

? Endurance class:

?isolating valve CO1 ( reference in Figure 3);

?control valve CC1 (reference in Figure 4).

?Temperature class: a test at t200 °C and a test at t?46 °C.

?Test pressure : according to PN or ANSI class rating depending on a relevant valve standard or in bar at room temperature and at test temperature for specific tests; the standard reference is ISO 15848-1.

?Number of stem seal adjustments (SSA): 1.

6.6 Marking

In addition to the marking required by relevant standards, production valves qualified by type testing in accordance with this part of ISO 15848 may be marked with “ISO FE” - which stands for ISO fugitive emission - and the information as indicated in 6.5.

EXAMPLE 1 Performance class: ISO FE BH (or BM) — CO1 — SSA 1 — t(? 46°C, 200 °C) — PN16 — ISO 15848-1. EXAMPLE 2 Performance class: ISO FE BH (or BM) — CO1 — SSA 1 — t(? 46°C, 200 °C) — CL150 — ISO 15848-1. In case of specific tests in bars:

EXAMPLE 3 Performance class: ISO FE BH (or BM) — CO1 — SSA 1 — t200 °C — (40/30) — ISO 15848-1.

14 ? ISO 2006 – All rights reserved

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

7 Reporting

The test report shall include the following information:

a) the name and address of the valve manufacturer;

b) valve sizes and pressure class;

c) valve model number and style;

d) method of sample selection;

e) diagram of the test rig and the data of the test equipment including the detector make and model or the

probe flow rate where any sniffing measurement is quoted;

f) the date of test;

g) reference standards with applicable revision numbers;

h) the test fluid;

i) valve performance classes achieved;

j) valve mounting instructions;

k) valve repacking before type test to be reported if applicable;

l) insulation of test valve to be reported if applicable;

m) valve operation data:

?valve operating torque or force,

?gland bolt tightening torque,

? stroke/angle;

n) description of the actuator if applicable;

o) copy of the test profile;

p) detailed results of the test;

q) qualification certificate.

The specific product data file including the following information shall be the responsibility of the manufacturer and shall be included as an annex:

a) cross sectional valve assembly drawing;

b) bill of valve materials;

c) stem or shaft seal description, dimensions and specifications;

d) body seal(s) description, dimensions and specifications;

e) material specifications of stem (or shaft) seal components;

f) hydrostatic test certificate.

? ISO 2006 – All rights reserved15

ISO 15848-1:2006(E)

8 Extension of qualification to untested valves

Upon the successful completion of the test program as defined in this part of ISO 15848, this qualification may be extended to untested sizes and classes of valves of the same type if the following criteria are met:

a) the stem (or shaft) seals and body seals are of the same material, design (shape) and construction,

independent of the size;

b) loading arrangement applies a similar sealing stress to the seal element as that applied in the test valve;

c) the type of motion of the stem (or shaft) is identical;

d) tolerances classes and surface finishes specifications of all valve components which affect sealing

performance are identical;

NOTE The tolerances classes are in accordance with ISO 286.

e) stem diameters are within the range of 50 % lower and 200 % higher of those of the test valve;

f) the valve Class or PN designation is equal or lower;

g) the required temperature class falls between the room temperature and the test temperature of the

qualified valve;

h) the tightness class required is equal to, or less severe than that of the qualified valve.

The use of gearbox or other actuator does not require separated qualification, provided above criteria are met.

16 ? ISO 2006 – All rights reserved

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

A.2 Flushing method (helium or methane)

A.2.1 Scope

A.2 specifies the flushing method used to measure the total leak rate of the stem sealing system of an industrial valve pressurised with helium (97 % purity) or methane (97 % purity).

A.2.2 Principle

The principle of the flush method is illustrated in Figure A.4. The leakage source is enclosed by a flush chamber. A carrier gas (or flush gas) passes through this chamber, where it mixes with the leakage stream of the test gas. Then it passes down an exhaust line from which it vents to atmosphere. The concentration of the resulting mixture in the exhaust line depends only on the leak rate and the flush gas flow rate. Flush gas flow rate is set to an appropriate value, concentration is measured and leakage is thereby calculated (see A.2.7).

Key

1 flush gas

2 valve stem

3 to detector

4 flush chamber

5 valve body

Figure A.4 — Principle of the flush method for valve stem leak rate measurement

As implemented here, the flush gas is provided from a source of known purity at a measured flow rate.

A.2.3 Equipment and definitions

A.2.3.1 Concentration

Unless otherwise stated, “concentration” shall mean ratio of test gas species volume to gas mixture volume. If the detector scale reads in parts per million by volume (1 ppmv = 1 ml / m3= 1 cm3/m3), the following equation shall be used to calculate concentration as a dimensionless volumetric ratio :

C= 10?6×C ppmv

where

C is the volumetric concentration of the test fluid;

C ppmv is the concentration in parts per million by volume (1 ppmv = 1 ml/m3= 1 cm3 / m3).

? ISO 2006 – All rights reserved23

ISO 15848-1:2006(E)

24

? ISO 2006 – All rights reserved

A.2.3.2 Detector A.2.3.2.1 General

The concentration detector is an instrument which detects the test gas, reading out in terms of volumetric concentration [usually expressed as parts per million by volume (1 ppmv = 1 ml / m 3 = 1 cm 3/m 3)].

The test fluid detector type may include, but is not limited to, mass spectrometry, infrared absorption and molecular screening.

The instrument shall be equipped with an electrically driven pump to ensure that a sample is provided to the detector at a constant flow rate. The detector shall be selected such that this total probe flow rate is at least 100 times greater than the maximum anticipated leak rate.

The detector shall be equipped with a sensing probe, for operation at atmospheric pressure. The detector shall measure concentration of helium or methane.

Alternatively, a flow rate detector may be used for concentration measurement, provided the total probe flow rate is known. The flow rate detector is an instrument which detects the test gas, reading out in terms of test gas flow rate into the detector (usually expressed as millibars per litre per second or atmospheres per cubic centimetre per second). If the total probe flow rate is not known, it shall be measured, as described in A.2.4.4. Concentration may be calculated from probe uptake of test gas (i.e. the meter reading): see A.2.7. A.2.3.2.2 Performance criteria

The scale of the instrument meter shall be readable to within ± 2,5 % of full scale device. The calibration precision shall be equal to or less than 10 %. A.2.3.3 Flush chamber

The flush chamber is an enclosure placed around the valve stem seal to prevent leaking test gas dispersing to atmosphere. The flush chamber incorporates external inlet and outlet connections. A.2.3.4 Flush gas

The flush gas is a carrier gas of known purity fed into the inlet connection to the flush chamber, where it mixes with leakage gas, to be conducted away from the outlet connection of the flush chamber.

The flush gas shall be nitrogen if the test fluid is helium, and pure air if the test fluid is methane, of purity specified in A.2.5.3.2.

A.2.3.5 Flush gas flow rate measurement

An in-line flow meter should be used to measure flush gas flow rate. Suitable equipment may include, but is not limited to, a rotameter with or without upstream flow control valve.

The flow meter shall be calibrated for use in the flush gas at room temperature, with atmospheric pressure downstream.

The flow meter range shall be selected such that the flush gas flow rate (determined as specified in A.2.5) lies between 25 % and 75 % of its full-scale device.

The scale of the flow meter shall be readable to within ± 2,5 % of full-scale device.

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

ISO 15848-1:2006(E)

? ISO 2006 – All rights reserved

25

A.2.3.6 Lower leakage threshold

The lower leakage threshold is a leak rate (expressed in atmospheres per cubic centimetre per second) below which leakage is considered negligible for the purposes of the test. A.2.3.7 Maximum anticipated leak rate

The maximum anticipated leak rate is the leak rate (expressed in atmospheres per cubic centimetre per second) corresponding to the upper limit of valve stem leak rate for the target leakage Class rating. A.2.3.8 Total probe flow rate

The total probe flow rate is the volumetric flow rate (expressed in atmospheres per cubic centimetre per second) of gas drawn into the probe by the detector’s pump. Gas is assumed to be predominantly nitrogen (for tests with helium) or predominantly pure air (with methane). A.2.3.9 Zero gas

The zero gas is a reference gas containing negligible concentration of test gas. The zero gas shall be nitrogen or air of the same purity as the flush gas (see A.2.5).

A.2.4 Calibration

A.2.4.1 General

At the beginning of the instrument performance evaluation test, assemble and start up the instrument according to the manufacturer’s instructions for recommended warm-up period and preliminary adjustments. A.2.4.2 Calibration gases

Regardless of the detector type used, the flush method relies on measurement of the concentration in the flush exhaust line. Therefore, the monitoring instrument shall be calibrated in terms of volumetric concentration of the test fluid.

The calibration gas shall comprise a known concentration of helium in nitrogen or methane in pure air.

If cylinder calibration gas mixtures are used, they shall be analysed and certified by the manufacturer to be within ± 2 % accuracy, and a shelf life shall be either reanalysed or replaced at the end of the specified shelf life. Alternatively, calibration gases may be prepared by the user according to any accepted gaseous standards preparation procedure that yields a mixture accurate to within ± 2 %. Prepared standards shall be replaced each day of use unless it can be demonstrated that degradation does not occur during storage. Calibration gas concentration shall be determined from the following equation:

alr

cal f

M C Q =

where

C cal is the calibration gas volumetric concentration; Q f

is the flush-gas flow rate;

M alr is the maximum anticipated leak rate.

The maximum anticipated leak rate is expressed in atmosphere per cubic centimetre per second.

ISO 15848-1:2006(E)

26

? ISO 2006 – All rights reserved

A.2.4.3 Procedure (with concentration detector)

The calibration precision test shall be completed prior to placing the analyser into service, and at subsequent three-month intervals or at the next use whichever is later.

Assemble and start up the detector according to the manufacturer’s instructions. After the appropriate warm-up period and zero internal calibration procedure, introduce the calibration gas into the instrument sample probe. When the meter reading reaches a steady value, adjust the instrument meter readout to correspond to the calibration gas value.

A.2.4.4 Procedure (with flow rate detector)

Assemble and start up the detector according to the manufacturer’s instructions and run for an appropriate warm-up period.

Many detectors are calibrated by an automatic internal routine involving the use of an internal test leak. If the detector has this facility, run this procedure. Frequent autocalibration cycles are recommended, e.g. every 10 min to 30 min.

If the detector does not offer an autocalibration facility, a certified test leak shall be used. These are provided by the instrument manufacturer. The nearest available value to the maximum anticipated test leak shall be used. Connect the detector probe to the test leak. When the meter reading reaches a steady value, adjust the instrument meter readout to correspond to the test leak value.

The calibrated flow rate detector can now be used to measure concentration. A.2.4.5 Determination of probe flow rate

Connect the detector’s probe to the downstream side of a calibrated flow meter. Leave the upstream side open to atmosphere. With the instrument running and warmed up, note the flow rate indicated on the flow meter.

A.2.4.6 Calibration precision

Make a total of three measurements by alternatively using zero gas and the specified calibration gas. Record the meter readings.

The calibration precision is the degree of agreement between measurements of the same known value, expressed as the relative percentage of the average difference between the meter readings and the known concentration to the known concentration:

()

av cal p cal

100C C C C ?=×

where

C av

is the average volumetric concentration from meter readings;

C cal is the known volumetric concentration of calibration gas; C p

is the calibration precision, expressed in percentage.

标准分享网 https://www.wendangku.net/doc/1817860335.html, 免费下载

阀门检修工艺及维修标准

锅炉管阀与附件检修工艺规程 1 Velan Y型无阀盖截止阀检修工艺规程 1.1 设备概况与参数 1.1.1 Velan Y型无阀盖截止阀概况 1/4英寸– 4 英寸(8-100毫米) Velan Y型无阀盖截止阀是加拿大威兰有限公司的,阀体为整体铸造式,这种设计结构适用在高压状态下工作。阀门带有定向阀盘, 其材质为钨铬钴合金6。钨铬钴合金是包含钨、铬、钴三种金属的合金。它的平均布氏硬度为400。在阀门行业里,它通常被当作一种理想的坚硬的表面材料来使用。然而,阀盘和阀座并非是不可毁坏。例如,如果有坚硬的杂质被夹在阀盘和阀座之间,当阀盘被压进阀座时,就有可能损毁阀门。 Velan Y型无阀盖截止阀1/4英–4 英寸(8-100毫米)用在台电SG—2026/17.5—M905锅炉的炉顶承压管道排空系统。 1.1.2 Velan Y型无阀盖截止阀参数 1.1. 2.1推荐使用的石墨密封填料的压盖螺母扭矩

1.1. 2.2推荐润滑

1.1. 2.3阀门修整允许公差 1.2 VELAN截止阀检修步骤、工艺方法与质量标准 1.2.1. VELAN截止阀准备工作 1.2.1.1确认阀体内和与其相连接的管道内没有工作压力。 1.2.1.1准备出拆卸和装配阀门的工作场地,在堆放时不能使零件损坏。 1.2.1.2准备好必要的工具和量具。 1.2.1. 3准备好卡尺,在拆卸后对阀门进行测绘,并做好记录。

1.2.2 VELAN截止阀检修步骤、工艺方法 1.2.2.1用手轮将阀门摇开几圈。松开盘根压盖铰接螺栓,将填料压盖压板松活。松盘根压盖螺母时要用专用标准扳手。 1.2.2.2对于电动阀门取下电传动装置。传动头取下后应水平放好,防止蜗轮箱内齿轮油漏入电动机里。 1.2.2.3拆卸阀门框架。 A 对于螺栓连接的截止阀,展平止动垫松开框架固定螺钉。 B 对于丝扣连接的阀门,应用锯或剔的方法将框架与门体的焊点除去。剔或锯时一定注意不要损坏门体和框架连接螺纹。 C 将框架逆时针方向旋转,同时将上部阀杆沿开启方向旋转,使其带动下阀杆一起提升,将框架连同上下阀杆一起取下。框架取下后,应将阀体密封好,防止掉入杂物。 1.2.2.4框架解体。 A 对于DN10,DN20截止阀拧松两个连接螺母,取下螺栓,取出滚珠和下阀杆,DN20门为连接垫片。从阀杆螺母中旋出上门杆。 B 对于DN40,DN50,DN65截止阀,松开开度指示板。用冲子取出下阀杆与连接套连接销,取出下阀杆和连接钢珠。保存好。 C 从上门杆螺母中旋出上门杆。从连接套上的小孔中退出滚珠,将连接套与上门杆脱离。保存好滚珠。 1.2.2.5将密封填料清理干净,从下阀杆取下填料压盖和压板,填料座圈进行清理打磨。测量、压盖、座圈、门杆、填料室各部尺寸,是否符合要求。

换热器基础知识测试题

换热器基础知识测试题 姓名:分数: 一、填空题(每空1分,共50分) 1、以在(两种流体)之间用来(传递热量)为基本目的的传热设备装置,称为换热器,又叫做(热交换器)。 2、换热器按作用原理和传热方式分类可分为:(直接接触式换热器)、(蓄热式换热器)(间壁式换热器)。 3、、离心式压缩机可用来(压缩)和(输送)化工生产中的多种气体。它具有:处理量大,(体积小),结构简单,(运转平稳),(维修方便)以及气体不受污染等特点。 4、换热器按传热面形状和结构分类可分为:(管式换热器)、(板式换热器)及特殊形式换热器。 5、管壳式换热器特点是圆形的(外壳)中装有(管束)。一种介质流经(换热管)内的通道及其相贯通部分(称为壳程)。它可分为:(浮头式换热器)、(U 型管式换热器)、套管式换热器、(固定管板式换热器)填料函式换热器等。 6、U型管式换热器不同于固定管板式和浮头式,只有一块(管板),换热管作为(U字形)、两端都固定在(同一块管板)上;管板和壳体之间通过(螺栓)固定在一起。 7、(换热管)是管壳式换热器的传热元件,它直接与两种介质(接触),换热管的形状和(尺寸)对传热有很大的影响。 8、写出下列换热管及其在管板上的排列名称分别为: (a)正三角形(b)转角正三角形(c)正方形(d)转角正方形 9、管壳式换热器流体的流程:一种流体走管内称为(管程),另一种流体走管外称为(壳程)。管内流体从换热管一端流向另一端一次,称为(一程);对U 形管换热器,管内流体从换热管一端经过U形弯曲段流向另一端一次称为(两程)。 10、管板与换热管间的连接方式有(胀接)、(焊接)或二者并用的连接方式。 11、折流板的作用是引导(壳程流体)反复地(改变方向)作错流流动或其他形式的流 动,并可调节(折流板间距)以获得适宜流速,提高(传热效率)。另外,折流板还可起到(支撑管束)的作用。 12、换热器的水压试验压力为最高操作压力的(1.25~1.5)倍。 13、换热器的清洗方法有:(酸洗法)、(机械清洗法)、(高压水冲洗法)、海绵球清洗法。 14、写出下面编号的阀门类型:H(止回阀)、D(蝶阀)、J(截止阀)、A(安全阀)Z(闸阀)、Q(球阀) 15、阀门的密封试验通常为公称压力PN的)(1.1)倍。 二、不定项选择题(每题1分,共10分)

阀门检验标准(新)

阀门检验标准(新)

一、阀门检验标准 、适用范围 该标准适用于生产的阀门的试验检查项目及有关的方法、判定标准记录等规定。 、试验检查项目 (1)材料检查 (2)外观检查 (3)尺寸检查 (4)构造检查 (5)压力检查 (a) 阀体的耐压检查 (b) 气密检查 (c) 阀体泄露检查 (6)非破坏试验 (7)其他试验 、材料检验 (1)材料检验按照ONS M0004材料管理规定对每一炉必须有相互的制造编号记录表进行管理。 (2)试验方法 (a) 化学成分ONS K 0007 根据材料分析要领书

查标准页码:11/2 、外观检查 外观检查通过目视检查。 (1)铸造品内外面上都不能有有害的缩孔、毛刺、粘壳、夹渣、氧化皮裂缝等欠缺。 (2)铸造品不能有有害的伤痕、花脸、深度拉伤 (3)机械加工面不能有有害的缺陷,不同的光洁度、表面光洁度按图纸指示执行。 (4)阀座面及球垫全部不能有缩孔,伤痕。 (5)两端流量孔要有适度的光洁度。 (6)阀体表面以ONS D 0010阀门表示方法或制作要领书规定的正确表示方法。 、尺寸检查 5.1 尺寸检查使用卡尺、螺纹检规进行检查 (1)法兰尺寸公差参照表1,法兰尺寸公差(JIS),表2法兰尺寸公差(ANSI (2)面间尺寸公差参照表3. (3)两端法兰的平行度及直角度参照表4。 (4)口径(铸造)的公差参照表5。 (5)制作图中没有注明的切削加工公差的参照表6。 (6)制作图中没有注明铸造产品的尺寸公差按照表7。 (7)阀体阀盖结合部的配合公差参照表7。 表3 面间尺寸的公差

密封座的形状 嵌入式 连管焊接式法兰 插管焊接式法兰 一体法兰 a C4C2 C3C1f a f a C4 f 3 C3 d1 D d1T t T t d D a t d D 表1 法兰尺寸公差 (JIS B 2203) 尺寸是关于内径是圆形的情况下时规定。 注 1)阀门原为一体法兰的铸造面的内径d 为s ,为保证壁厚,上记 公差许增加100%。 2)对法兰面间尺寸面一定限制的阀门,法兰厚度t 允许上记公差允 许增加100%。 3)一体法兰及插管焊接式法兰图的一点锁线表示大平面磨的场合。表2法兰允许公差 (ANSI B16.5) (单位㎝) D G t

阀门基础知识测试题-及答案(工艺)

阀门基础知识测试题 姓名:分数: 一、填空题(每空1分,共50分) 1、阀门按管道连接方式分为:(法兰连接),(螺纹连接),(焊接连接)、夹箍连接、(卡套连接)。4 2、“DN100”表示的含义是(阀门通径为100mm)。1 3、写出下面编号的阀门类型:H(止回阀)、D(蝶阀)、J(截止阀)、A(安全阀)Z(闸阀)、Q(球阀)6 4、阀门的试验压力方法有(强度试验压力)和(密封试验压力)。2 5、阀门按照压力分类为:(真空阀)、(低压阀)、(中压阀)、(高压阀)、(超高压阀)。5 6、阀门填料函由(填料压盖)、(填料)和填料垫组成。填料函结构分为(压紧螺母式)、(压盖式)和波纹管式。4 7、球阀主要由(球体)、(阀体)、(密封结构)、(执行机构)等几大件组成。4 8、止回阀的作用是(防止介质倒流)。1 9、阀门的开关方法是顺时针方向为(关),逆时针方向为(开)。2 10、阀门按用途和作用可分为(闸阀),(截止阀),(止回阀)等。3 11、低压阀门:PN≤(1.6)MPa;中压阀门:PN(2.5~6.4)MPa;高压阀门:PN(10~80)MPa;超高压阀:PN(≥100)MPa。4 12、阀门是(管道)输送系统中的(控制)装置,具有导流、(截流)、(调节)、节流、防止倒流、分流或溢流卸载等功能。5 13、阀门适用的介质有:(气体介质);(液体介质);(含固体介质);腐蚀介质和剧毒介质。3 14、阀门密封副有:(平面)密封、(锥面)密封、(球面)密封。3 15、阀门的驱动形式有:手动,(蜗轮蜗杆传动),正齿轮传动,(气动传动),(液动传动),(电动传动)。3 16、阀门的密封试验通常为公称压力PN的)(1.1)倍。1 17、旋塞阀的结构中阀体形式有(直通式),(三通式),(四通式)。3

安全阀门检修工艺

弹簧式安全阀检修步骤、工艺方法及质量标准 3.2.1 弹簧式安全阀检修准备 3.2.1.1确认该阀门已进行有效隔离,工作相关风险预控措施已落实。安全技术交底已完成。 3.2.1.2工器具、量具、备件已准备好。 3.2.1.3检查阀门外部阀体情况,阀体表面应无砂眼、无裂纹、无重皮、螺栓及零部件完好。 3.2.1.4对阀门上需拆卸螺栓处用松动剂进行润滑。 3.2.2 弹簧式安全门检修步骤、工艺方法 3.2.2.1安全门解体。 3.2.2.1.1拆除操纵杆销、操纵杆、提升传动装置;拆除定位螺母定位销及复位螺母。3.2.2.1.2用深度尺测量压紧螺钉上端面至阀杆顶端的距离,并做好记录 3.2.2.1.3松开压紧螺钉锁定螺母,用专用扳手逆时针旋转直至压紧螺钉与弹簧上部垫圈松开。 3.2.2.1.4用专用扳手均匀地拆下两个顶轭杆的螺母。将轭架从阀杆上提离阀门,在弹簧顶部做好原始定位标记拆除支座组件和顶部弹簧垫圈及弹簧底部弹簧垫圈。从重叠套环和阀杆组件上拆下重叠套环的开口销。 3.2.2.1.5在重叠套环上位与阀杆销孔的槽口处做一标记,然后把重叠套环逆时针转动,直至环上4条线中的最低一条线与上浮垫圈持平。 3.2.2.1.6仔细地数清通过阀杆开口销孔前面的槽口数。 3.2.2.1.7在盖板与通气孔上做好定位标记,然后拆下盖板的双头螺栓螺母并从双头螺栓上提出盖板。将阀杆连同阀瓣、阀瓣压环组件从阀门里拆出。从阀杆上拆下阀瓣和阀瓣压环,测量从导承顶部至套筒座距离尺寸以及从导承顶部至上调整环底面的距离尺寸并记录,从阀座上拆下上调整环销,提出导承。 3.2.2.1.8从底座上拆下上调环和导座组件,用记号笔标出上调整环槽口相对于导承的径向位置,旋松下调整环销,直至销与环的槽口稍微分离。然后在套筒座的顶部放一平板,在下调整环位于下调整环的销处的槽口做一标记,以下调整环销为基准,逆时针旋转下调整环直至与平板接触,数清并记录通过下调整环销的槽口数后,将下调整环从阀座套筒上旋下并从阀体内取出;(注意:在旋下调整环销时,不要转动下调整环)。 3.2.2.2安全阀检查 3.2.2.2.1将压盖螺母、衬套、上下调整杆拆下,检查螺纹部位有无损伤,如有损伤应使用锉刀修整,用1755清洗剂除锈后擦拭干净 3.2.2.2.2取出上下调整环,彻底清扫螺纹部位 3.2.2.2.3检查阀座表面有否缺陷,检查内壁有无磨损冲刷引起的壁厚减薄现象 3.2.2.2.4测量密封面溶焊金属厚度及喷咀形阀座密封面对阀体上口的不平行度,如超标应对密封面进行研磨校正(溶焊金属厚度不得小于4mm,密封面对阀体止口不平行度不得超过0.03mm) 3.2.2.2.5检查密封表面至主阀座基准面的高度,如小于1.5mm应对主阀座基准面进行加工 3.2.2.3阀瓣组件检查 2.4.2. 3.1目视检查密封面损伤及导向部位是否有擦、咬伤、粘合、卡住痕迹,如有应清理,并对导向套和阀瓣外部进行清理 3.2.2.3.2检查与阀杆头部接触面有无裂纹等缺陷,如有应更换 3.2.2.3.3检查密封面磨损情况 3.2.2.4阀杆检查 3.2.2. 4.1目视检查阀杆表面是否有咬伤、粘合、卡住的痕迹,如有应清理、修整,如严重时应更换 3.2.2. 4.2检查阀杆的不直度,超过标准应修正,无法修正的应更换 3.2.2. 4.3检查阀杆的磨损情况不得大于0.1mm,阀杆连接丝扣完好无损,与螺母配合良好,顶部园弧

阀门知识题库

阀门知识题库 1、阀门是管路流体输送系统中控制部件,它是用来改变通路断面和介质流动方向,具有______功能。 ①导流②截止③调节④节流⑤止回⑥分流⑦溢流卸压 A. ①②③④ B. ②③④⑤⑥ C. ①④⑤⑥⑦ D. 全选 2、下面不属于调节阀类的有______。 A.调节阀 B.节流阀 C.减压阀 D.安全阀 3、大口径阀门公称通径DN为______mm。 A.300~120 B.300~1250 C.350~1200 D.350~1250 4. 阀门可按公称压力进行分类,可分为真空阀、低压阀、中压阀、高压阀、超高压阀、下列公称压 力(PN)不属于中压阀的是______: A.2.5 Mpa B.4.0 Mpa C.6.4Mpa D.7.5Mpa 5、高压阀的公称压力PN为______MPa. A.5~80 B.10~80 C.10~90 D.10~95 6、某公司拟选用某阀门,现已知阀门可按工作温度进行分类,可分为:超低温阀、低温阀、常温阀、中温阀、高温阀,且工作温度为-20℃,只考虑温度的影响,不考虑其他因素,应选用______: A. 超低温阀 B. 低温阀 C. 常温阀 D. 中温阀7、手动阀门是借助手轮、手柄、杠杆或 链轮等,由______来操纵的阀门。 A.电动机 B.电磁 C.空气压力 D.人力 8、不属于楔式闸阀的有______。 A.单闸板式 B.双闸板式 C.弹性闸板式 D.升降杆有导流孔式 9、有关闸阀的叙述不正确的是______: A. 闸阀通常适用于不需要经常启闭,而且保持闸板全开或全闭的工况, 不适用于作为调节或节流使 用。 B. 这种类型的阀门的作用可允许介质向多方向流动。 C. 阀门是靠转动手轮,通过手轮与阀杆的螺纹的进、退,提升或下降与阀杆连接的阀板,达到开启 和关闭的作用。 D. 闸阀与截止阀相比而言,因为无论是开或闭,闸板运动方向均与介质流动方向相垂直,因此启闭 时较省力。 10、闸阀的启闭件是闸板,闸板的运动方向与流体方向相______。 A.平行 B.垂直 C.45o D.30o 11、闸阀的优点有______。 A.结构简单 B.密封面之间不易引起冲蚀、擦伤

阀门压力试验规程

Q 中核苏阀科技实业股份有限公司企业标准 Q/DJ 104.2-2005 代替Q/DJ 104.2-2003 阀门压力试验规程 (第三版) 2005-10-25发布 2005-11-01实施中核苏阀科技实业股份有限公司发布

Q/DJ 104.2-2005 前言 本标准是对Q/DJ104.2-2003《阀门压力试验规程》标准的修订。本标准对Q/DJ104.2-2003在以下方面的技术内容进行了较大修改和补充: ──修改了规范性引用文件,其中取消了BS 5155、BS 5156及BS 6755-1标准,增加了EN 593、EN 13397、EN 12266-1、EN 12266-2标准; ──修改了3.6、3.23.2、4.3.2 c)、3.23.5、10.1.2、10.2.2及10.3.2; ──修改了表2-A及表2-B中表注; ──增加了EN 12266标准压力试验要求表2-D; ──修改了表5、表6、表9、表11、表12、表14及表17; ──取消了表18、表19、表20及表21; ──增加了4.2.1 d)、4.4.1 e)、5.2.1 d)、5.3.1 d)、6.1.1 d)、6.3.1 d)、6.4.1 c)、7.1.1 c)、 8.1.1 c)、8.2.1 d)、8.3.1 d) 及9.1.1 d); ──增加了附录A(规范性附录)EN 12266标准壳体强度和密封试验及阀座密封试验。 本标准的附录A为规范性附录。 本标准从实施之日起,同时代替Q/DJ104.2-2003。 本标准由中核苏阀科技实业股份有限公司标准化技术委员会提出。 本标准由技术研发中心起草。 本标准主要起草人:。 本标准由中核苏阀科技实业股份有限公司总工程师批准。 本标准所代替标准的历次版本发布情况为: ── Q/DJ 104.2-1997、Q/DJ 104.2-2003。 4-9

各种阀门检修方案及规程

各种阀门检修方案及规程1 截止阀检修工艺规程 1.1截止阀概况及参数 业主提供 截止阀概况 业主提供 检修步骤、工艺方法及质量标准 确认该阀门已进行有效隔离,工作相关风险预控措施已落实。安全技术交底已完成。 工器具、量具、备件已准备好。 拆除保温,清除杂物,检查阀门外部阀体情况,阀体表面应无砂眼、无裂纹、无重皮、螺栓及零部件完好。 阀门上需拆卸螺栓处用松动剂进行润滑。 CONVLA 截止阀检修步骤和工艺 阀门解体及检查清理 松动盘根压盖调节手柄,将盘根套筒旋至阀箍衬套的最高处。 将卡箍锁紧螺钉从卡箍中完全旋出,并将其旋入卡箍螺栓系耳代螺纹的一边,用一块金属

板插入阀箍开口处,旋入阀箍螺栓,将阀箍开口顶开约2mm。逆时针旋转并拆下阀箍,注意保护阀盖密封面,严禁划伤。 将阀杆、阀芯连通阀盖从阀体上拆下,阀杆从阀盖中取出;用软棒将阀盖内旧填料拆除,注意保护填料室内壁,严禁划伤;检查阀座与阀芯、阀盖与阀体密封面、盘根腔室底部密封面有无异物、裂纹、砂眼、麻点等并做好记录。 检查盘根套筒、阀箍套管螺纹、阀杆传动铜套螺纹无损伤。 阀门密封面检修 检查检修阀芯。如阀芯上有缺陷。 —,阀杆与其他部件同轴线。 截止阀检修质量标准 检查阀杆弯曲度≤,而且不超过阀杆总长的1/1000, 阀杆表面腐蚀坑深度≤椭圆度不应超过表面锈蚀,磨损深度不超过,阀杆螺纹完好,与螺纹套筒配合灵活,不符合上述要求应进行更换. 检查检修阀芯。如阀芯上有缺陷,用车床夹住阀芯外部,保证同心度在以内,加工面与中心轴线成29°±10〞的角度,用单点硬质合金刀头,以30-50英尺/分钟圆周的速度加工,在形成新的加工面的前提下,切削量越少越好。 °或45°角,每相邻两圈填料接口处应错开90°-120°,填料放入填料室长短应适宜,不应有间隙或叠加现象。

阀门基础知识测试题

阀门基础知识测试题 (满分:100,时间:90分钟) 姓名:分数: 一、填空题(每空2分,共30分) 1.阀门按管道连接方式分为:、、。 2.“DN100”表示的含义是。 3.写出下面编号的阀门类型: H 、D 、J 、A Z 4.通常为了使离心泵启动在底部装的阀门叫。 5.球阀的基本结构由、、、、组成。 二、选择题(每题2分,共24分) 1.下列哪项不是阀门的作用() A、接通和截断介质 B、调节介质的流量 C、调节介质的温度 D、调节管道压力 2.下列哪项不是调节阀() A、减压阀 B、调压阀 C、节流阀 D、疏水阀 3.公称压力PN2.5~6.4MPa的阀门称为什么阀( ) A、低压阀 B、中压阀 C、高压阀 C、超高压阀 4.下列哪项是阀门密封的形式() A、平面密封 B、侧面密封 C、球面密封 D、锥面密封 5.下面哪项不是旋塞阀的结构部件() A、阀板 B、塞子 C、填料 D、阀体 6.旋塞阀可以改变介质方向或进行介质分配的阀体形式为() A、直通式 B、双通式 C、三通式 D、四通式 7.下列哪项不是止回阀的结构部件() A、阀盖 B、填料 C、阀瓣 D、摇杆 8.圆盘式疏水阀的工作原理是() A、水的密度和蒸汽的密度差 B、蒸汽的冷凝水液位的变化 C、液体与气体的流速不同 D、液体温度的变化动作 9.安装法兰或者螺纹的阀门时,阀门应该在()状态下。 A、打开 B、关闭 C、半开半闭 D、打开或者关闭 10.通过查看阀门的型号可以知道阀门的() A、连接方式 B、体积大小 C、阀体材料 D、出厂日期 11.下面是截止阀的特点为() A、可以调节液体的流量 B、流体阻力损失大 C、开闭力矩较大 D、通常有两个密封面 12.止回阀的结构有() A、单瓣式 B、双瓣式 C、三瓣式 D、多瓣式 三、判断题(每题2分,共26分) 1.闸阀通常适用于不需要经常启闭,而且保持闸板全开或全闭的工况。()

逆止阀检修工艺规程

逆止阀检修工艺规程 逆止阀又称止回阀。分升降式和旋启式两种类型。 升降式止回阀的结构与截止阀相同,但阀盘上有导杆可以在阀盖的导向套筒内自由升降。当介质自下向上流动时能推开阀盘而流过;若流向相反,则阀盘下降截断通路,阻止逆流。升降式逆止阀安装在水平管路上,且使阀盘的轴线严格地垂直于水平面,这样才能保证阀盘的灵活升降与可靠工作。 旋启式逆止阀是利用摇板来启闭的。介质由盘下进入时,阀盘被介质的压力抬起,将通路打开。当介质逆向流动时,阀盘在自身重量的作用下,落到本体的阀座上,将会自然关闭。 逆止阀的检修方法: 1 阀门解体: a 升降式逆止阀 b 旋启式逆止阀 1-阀座 2-阀盘 3-阀体 4-阀盖 5-向导套筒 6-摇杆 7-摇板 8-阀座密封圈 9-枢轴 10-定位紧固螺钉与锁母 11-阀盖 12-阀体 逆止阀 1)将阀盖螺栓旋下,取下阀盖。 2)升降式的可以直接取出阀芯;旋启式的先松开销轴端部螺母,启出销轴,再将阀芯和连杆一同取出,将销轴处填料挖出。 3)松开阀芯与连杆的连接螺母,使其分开。 4)研磨阀芯与阀座的密封面。 2 清扫检查: 1)清扫全部零件。 2)检查阀体和阀盖有无裂纹、缩孔、夹渣、腐蚀等缺陷。法兰是否完整光滑,

有无沟痕和腐蚀,填料室无沟痕。 3)检查阀座和阀芯的密封面是否光滑,有无沟痕和裂纹,并涂红丹粉检查接触情况。 4)检查密封面是否严密,有无掉上或掉下现象如下图所示: a-吊上现象 b-掉下现象 c-正确密合 旋启式逆止阀吊上、掉下现象 5)检查销轴的表面是否光滑,有无磨损和弯曲,并测量销轴与连杆的间隙。 6)检查阀芯与连杆的连接是否灵活,有无磨损。 3 组装: 1)所有零件清扫检查合格后,按与解体相反的顺序组装。 2)组装时零件的相互接触面及螺纹上应涂黑铅粉润滑。 3)垫应更换,销轴处有填料的应更换填料。 4)安装阀盖前,应扳动连杆开关阀门,检查开关是否灵活,升降式的将阀杆在阀盖的导向槽内活动是否灵活。 4 质量标准: 1)阀体和阀盖无裂纹、夹渣、无严重冲刷和腐蚀现象,填料室无纵向沟痕、腐蚀和变形。 2)阀座和阀芯的密封间光滑无裂纹和沟痕,接触痕迹应连续均匀。 3)销轴表面应光滑无磨损和弯曲,销轴与连杆连接处间隙为0.05-0.15mm。 4)阀芯与连杆的连接应灵活可靠,连接处无磨损阀芯无卡涩。 5)法兰紧固后四周间隙均匀。 6)螺栓、螺母配合良好,不松旷、不卡涩,螺纹无损坏。 7)阀门组装正确,开关灵活无卡涩现象。

阀门压力试验规范

1.目的 为确保产品的压力试验检验符合有关标准规定,特制定本规范。 2.范围 适用于本公司生产的切断类阀门产品。 3. 引用标准 JB/T9092-1999 阀门的试验和检验 API598-2009 阀门的检查 API 6D-2008 管道阀门规范 4. 压力试验 4.1 试验准备 4.1.1压力测试操作人员应接受相关培训,取得公司颁发的上岗资格证,方可独立从压力测试工作。 4.1.2除订货要求外,试验前,阀门不得涂漆,但磷化处理或类似的化学处理用于保护表面是允许的,且阀体应清理干净。 4.2试验介质 4.2.1壳体试验、高压密封试验、高压上密封试验,试验介质为含有水溶性油或防锈剂的水,若用煤油作试验须在合同中注明; 4.2.2低压密封试验,低压上密封试验,试验介质为气体或惰性气体; 4.2.3奥氏体不锈钢阀门用水作试验时,所用水的氯含量应不超过100ppm。 4.2.4试验介质的温度应在5℃~40℃之间。 4.3压力表的管理 4.3.1压力表的量程确认 压力表量程应是试验压力的1.5~3倍(测量压力应在量程范围的25%~75%),压力表的精度不低于2.5级并在满量程25%、50%、75%、100%的位置上定期校准。 b)JIS K级和API磅级阀门试压时选用的压力表量程范围见表2。 c)0.6MPa气密封试验用压力表量程范围选用0~1.6MPa。 4.3.2所有的试验用压力表应按照公司的“监视和测量设备控制程序”程序进行控制和校准,并贴有校准标签,且在有效期内。 4.4压力试验的要求 4.4.1如有带有驱动装置,应使用驱动装置操作阀门试验。

4.4.2试验过程中,不允许对阀门施加影响试验结果的任何外力。 4.5压力试验操作方法和程序 4.5.1上密封试验 将阀门完全开启,使上密封起作用,松开填料压盖,向体腔内加压至规定的试验压力,并保压至规定的时间,检查填料处是否有上浮及泄漏现象。合格后压紧填料压盖。 4.5.2壳体试验 将装好的试验阀门的两端封闭,阀门部分开启,接通试验装置,向阀门体腔内注入试验介质,排除气体并逐渐加压至规定的试验压力。保持压力至规定的保压时间,检查壳体有无泄漏、渗透、冒汗现象,检查填料处有无泄漏。合格后逐渐泄压。 4.5.3密封试验 4.5.3.1在壳体试验后进行,阀体内充满介质前应部分开启以便将阀体内的空气排净,然后关紧,升到试验压力,并且保压时间大于规定时间. 4.5.3.2对受压元件和连接处进行观察,确认有无泄漏。 4.5.4密封试验方法,见表3 4.6阀门所需的压力试验项目 4.6.1JB/T9092规定的检验项目 a) 公称通径小于或等于100mm、公称压力小于或等于25.0Mpa及公称通径大于或等于125mm、 b) 公称通径小于或等于100mm、公称压力大于25.0MPa和公称通径大于或等于125mm、公称压

电磁阀检修规程

电磁阀检修规程 1 目的 为了加强电磁阀的维护保养和检修质量,使电磁阀能正常工作,特制定本规程。 2 适用范围 适用于公司中用于生产过程的电磁阀的维护、保养、检修。 3 电磁阀的工作原理 电磁阀有两个基本单元组成:A电磁线圈和磁芯,B包含一个或几个孔的阀体,当线圈通电或断电时,阀芯的运转导致流体通过阀体或被切断。电磁线圈被直接装在阀体上,磁芯被封闭在密封管中,构成一个简洁的,紧凑的组合。 3.1.1直动式阀 在直动式阀中,电磁线圈通电时,磁芯直接开启常闭的孔或关闭常开的孔。阀门将在OPSI至其额定最大压力范围内工作。 3.1.2先导式操作阀 先导式操作阀能借用管线压力来操作一个先导孔和一个旁通孔,电磁阀断电时,先导孔关闭,管线的压力通过旁通孔施压于活塞或膜片的顶部,提供一个阀座力,严密关闭阀门。电磁线圈通电时,磁芯开启先导孔,通过阀的出口活塞或膜片的顶部压力,管线压力本身将活塞或膜片推离主孔,开启阀门。 3.1.3手动复位阀 手动复位阀必须手动地锁住到锁定位置,依结构不同,只有当电磁线

圈通电或断电时,手柄才会回到原始位置。 4 运行维护 4.1 电磁阀的安装 4.1.1电磁阀在安装时保证电磁阀上的指示箭头与管路介质的运动方向是一致的。在安装方向上电磁阀必须保持水平安装,线圈的安装方向保持垂直向上。垂直安装的好处是可以增长使用寿命。 4.1.2 要特别注意安装环境的电压是否与电磁阀线圈的电压相匹配,不匹配的情况下容易烧坏电磁阀。 4.1.3电磁阀如果在连续生产工作环境下的,最好采用旁路,这样便于检修,不影响生产。 4.1.4电磁阀安装使用之前先冲洗干净,要在介质不洁净的管道上应安装过滤器,以防止杂质妨碍电磁阀的正常工作。 4.2 电磁阀的日常巡检 4.2.1检查电磁阀气路,接头和空气过滤器等处漏气情况,冬季要注意仪表压缩风的带水情况。 4.2.2 检查电磁阀线圈的带电情况,可以用手触摸的方式或在阀的动作周期内检查电磁阀的动作正常情况。 4.2.3 检查交流电磁阀时注意不要存在蜂鸣声。 4.2.4 检查PSA等集中供气的设备油雾器的储油,清洁程度,注意定期更换润滑油。 4.3 电磁阀的检修

2018年地震安全知识测试题(答案)

3、地震发生时如果在室外,应(AB) A、待在原地不要动。 B、远离建筑区、大树、街灯和电线电缆。 4、地震滑坡的工程治理:分为(AB)两类。 A、减滑工程、 B、抗滑工程, C、减震工程 5、当滑坡、泥石流发生时,现场人员应紧急发出危险性警报,并因时、因地进行躲避。主要有( ABC ) A、滑坡的躲避。 B、崩塌和滚石的躲避。 C、泥石流的躲避 6、灾后搜救搜索手段主要有(ABC) A、搜救犬搜索, B、技术搜索, C、人工搜索, D、电动搜索 7、震后应迅速派人调查,根据情况,救治同发型滑坡、泥石流带来的灾害;采取措施,防治后发型滑坡、泥石流的发生。主要是(ABCD) A、人员救护, B、清除堆积, C、防治后发型滑坡和泥石, D、重建家园的选址。 8、随着灾难的发生,当事人的情绪会经历(ABCD)截然不同的阶段。 A 、受冲击阶段, B 、整理阶,C、营救阶段,D、恢复阶段, F痊愈阶段 9、在开展搜救工作之前,必须立即将受灾区域设为禁区。建立营救工作点时,必须优先完成以下规划:(ABCDEF) A、出入道路、 B、紧急集合区域、 C、医疗援助区、 D、人员集散区、 E、装备集散区、 F、建构仓库 10、历史上经历过无数次大灾难袭击的日本人,用自己的智慧开发出很多用于防灾的商品,值得我们借鉴。主要有(ABCDEFGHIJK) A、高频哨子、 B、手摇电灯、 C、保质水罐、 D、方便米饭、 E、冷冻蔬菜、 F、长明蜡烛、 G、防灾兜帽、 H、炉具套件、 I、干洗发剂、 J、全能电器、 K、压缩内衣 三、判断题(对的打“√”,错的打“X”,共20分) 1、地震发生时如果室内应远离玻璃制品、建筑物外墙、门窗以及其他可能坠落的物体。(√) 2、地震发生时如果在室外,待在原地不要动。远离建筑区、大树、街灯和电线电缆。(√) 3. 地震发生时如果在开动的汽车上,在确保安全的情况下,尽快靠边停车,留在车内。(√) 4、地震发生时如果在开动的汽车上,(不要)把车停在建筑物下、大树 旁、立交桥或者电线电缆下。(√)

通用阀门压力试验标准

通用阀门压力试验标准 本标准参照采用国标标准GB/T13927—1992《工业用阀门阀门的压力试验》。 1主题内容与适用范围 本标准规定了通用阀门压力试验的要求、方法和评定指标。 本标准适用于闸阀、截止阀、止回阀、旋塞阀、球阀、蝶阀、隔膜阀等的压力试验。 2术语 2.1试验压力 试验时阀门内腔应承受的计示压力。 2.2壳体试验 对阀体和阀盖等联结而成的整个阀门外壳进行的压力试验。目的是检验阀体和阀盖的致密性及包括阀体与阀盖联结处在内的整个壳体的耐压能力。 2.3密封试验 检验启闭件和阀体密封副密封性能的试验。 2.4上密封试验 检验阀杆与阀盖密封副密封性能的试验。 2.5试验持续时间 在试验压力下试验所持续的时间。 3试验项目

压力试验的项目包括: a.壳体试验; b.上密封试验(具有上密封结构的阀门应做该项试验); c.密封试验。 4实验要求 4.1每台阀门出前均应进行压力试验。 4.2在壳体试验完成之前,不允许对阀门涂漆或使用其它防止渗漏的涂层,但允许进行无密封作用的化学防锈处理及给衬里阀衬里。对于已涂过漆的库存阀门,如果用户代表要求重做做压力试验时,则不需除去涂层。 4.3密封试验之前,应除去密封面上的油渍,但允许涂一薄层粘度不大于煤油的防护剂,靠油脂密封的阀门,允许涂敷按设计规定选用的油脂。 4.4试验过程中不应使阀门受到可能影响试验结果的外力。 4.5如无特殊规定,试验介质的温度应在5~40℃之间。 4.6下列试验介质由制造自行选择,但应符合表1和表2的规定; a 液体:水(可以加入防锈剂煤油或粘度不大于的其它适宜液体; b气体:空气或其它适宜的气体。 4.7用液体作试验时,应排除阀门腔体内的气体。用气体作试验时,应采用安全防护措施。 4.8进行密封和上密封试验时,应以设计给定的方式关闭。 4.9试验压力应符合规定。 4.9.1壳体试验的试验压力按表1的规定。

阀门基础知识

阀门基础知识 依据国标《GB/T 17447-2012》 1.阀门的基础知识 阀门定义:固定在气雾剂容器上的机械装置,关闭时保证内容物不泄漏,促动时使内容物以预定形态释放出来。 1.1.常规阀门的基本结构 单个阀门由阀杯、阀室(阀座)、阀杆、内垫圈、弹簧、外垫圈组成 配上吸管(摩丝阀门除外),和按钮(又称触动器)组成一套阀门。 1.2.阀门工作原理 1.2.1保证气雾剂产品有良好的密封作用。阀门与气雾罐一起,将具有压力的抛射剂和产品密封,不会泄漏和变质。根据国家标准,阀门充气到不小于0.85MPA,用手按压后松开,保持1MIN无气泡冒出为合格。 1.2.2保证气雾剂内容物可靠有效地喷出来。在促动器(按钮)的促动下,阀杆(阀杆座)向下移位,内垫圈不再包裹(压紧)阀杆(阀杆座)。阀门打开,罐内的气雾剂在抛射剂的压力推动下喷出;放开按钮,阀杆(阀杆座)在弹簧和罐内压力推动下复位,气雾剂又被密闭在容器内。 1.2.3正倒向阀门(一般称的万向阀、360阀)工作原理,此类阀门在阀室处有小室内有一可上下移动的钢珠,钢珠室有分体式(MJS)和一体式(APU 精密)两种。 正喷时,物料从吸管处进入,气体从钢珠室进入,钢珠室相当于一个大孔径的气相旁孔。 倒喷时,物料从钢珠室进入,气体从吸管末端进入 需要指出的是:我公司的设计,当倒喷的时候,由于吸管孔径大,因此气体进入阀室量比较多,特别是对于四孔阀杆来说,流量大,会出现倒喷时气体过多,物料过少的现象。一般不推荐客户使用四孔万向阀,如果客户强烈要求,需事先跟客户声明此类阀门的工作特点,要求客户自行测试后才谨慎使用 正倒向阀,如果将罐体水平放置,或者接近水平方式时,当阀门吸管和钢珠室同时脱离液体内容物的浸泡,将会出现无法喷出物料的现象,一次正倒向阀门不能用于水平喷射。因此严格来说,此类阀门知道能覆盖正倒喷,无法做到真正360度喷射 1.2.4囊阀(二元包装)的工作原理:此类阀门需要用特种灌装设备,首先将压缩气体(空气.、氮气等)从封杯下(称盖下充填)灌入气雾剂罐体和囊袋之间,然后阀门封口。压缩气体就被密封在罐子和阀门之间。下一步是将物料用专用的灌装设备从阀门灌入囊袋中。此时罐内压力因为气体再受压缩,继续提升(一般可达到8-10公斤)。囊袋内的物料是靠罐内压缩空气的压力喷出。 囊阀(二元包装)靠压缩气体作为动力,才是真正意义上的360度喷射阀门。 2.阀门的选用 2.1气雾剂内容物与阀杯材质的配合; 2.1.1.我公司所生产阀门的几种材质

安全知识测试题

安全知识测试题 1.对本单位的安全生产工作全面负责的人是生产经营单位的( C )。 A.分管安全生产的负责人 B.安全生产管理机构负责人 C.主要负责人 2.依照《安全生产法》第二十一条规定,生产经营单位必须保证上岗的从业人员都经过( C ),否则,生产经营单位要承担法律责任。 A.安全生产教育 B.安全技术培训 C.安全生产教育和培训 3.《安全生产法》规定,特种作业人员必须经专门的安全作业培训。取得特种作业( A )证书,方可上岗作业。 A.操作资格 B.许可 C.安全 4.从业人员经过安全教育培训,了解岗位操作规程,但未遵守而造成事故的,行为人应负( C )责任。 A.领导 B.管理 C.直接 5.不依法保证安全生产所必需的资金投入,导致发生生产安全事故,尚不够刑事处罚的,对生产经营单位的主要负责人给予( C )处分。 A.降级 B.降职 C.撤职 6.以下( A )症状应判断为患者无呼吸? A.胸部有起伏,但口鼻处感受不到空气进出 B.感到患者呼吸急促 C.感受患者口鼻处空气进出较弱 7.发现人员触电,首先应采取的措施是( B )。 A.呼叫救护人员 B.切断电源或使伤者脱离电源 C.进行人工呼吸 8.当身上的衣服烧着后,以下灭火方法中,( C )做法是正确的。 A.快速奔跑呼救 B.用手扑打火焰 C.就地打滚,压灭火焰 部门:信息部姓名:王刚成绩:

9.安全生产方针正确的是(A )。 A.安全第一、预防为主 B.管生产必须管安全 C.安全第一、预防为主、综合治理 10.发现煤气中毒人员,采取以下行动中,急救方法正确的是( A )。 A.迅速打开门窗通风,并将病人送到新鲜空气环境 B.在现场拨打电话求救 C.在现场马上给伤员做人工呼吸 11.眼睛被消毒液灼伤后,首先采取的正确方法是( B )。 A.点眼药膏 B.立即开大眼睑,用清水冲洗眼睛 C.马上到医院看急诊 12.当被烧伤时,正确的急救方法应该是( A )。 A.以最快的速度用冷水冲洗烧伤部位 B.立即用嘴吹灼伤部位 C.包扎后去医院诊治 13.下列( A )情况不宜采用胸外心脏按摩。 A.心跳停止并有肋骨骨折的 B.触电后心跳停止的 C.心肌梗塞病人 14.以下( A )急救措施对解救休克病人有作用。 A.掐“人中”穴(位) B.人工呼吸 C.心脏按摩 15.以下( C )情况不宜采用口对口人工呼吸。 A.触电后停止呼吸的 B.高处坠落后停止呼吸的 C.硫化氢中毒呼吸停止的 16.发生骨折后,应及时将断骨固定,固定时应保持( C )。 A.尽可能紧 B.尽可能松 C.松紧适当,以不影响血液流通为宜 17.重一点的烫伤应立即用冷水冲洗不少于( B )分钟。 A.20 B.30 C.40 18.成人口对口人工呼吸每分钟应为( B )次。 A.10~12次 B.16~18次 C.18~24次

闸阀性能试验规范

闸阀性能试验规范 1 承压件的强度液压试验: 1.1 阀体、阀盖、被视为承压件需进行强度液压试验。 1.2 强度液压试验前,将阀体、阀盖清洗干净。 1.3 外部表面不得有油漆,并保持干燥,如表面有水份可采用压缩空气吹干。 1.4 承压件强度液压试验介质一般为清水。 1.5 试验压力: 1.5.1 对于工作压力为2000Psi、3000Psi,其试验压力为工作压力的2倍。 1.5.2对于工作压力为5000Psi、10000Psi、15000Psi,其试验压力为工作压力的1.5倍。 1.6接受准则: 室温下的静水压试验:当每小时试验压力的变化不大于5%或500Psi(3.45MPa)时(取其较小值),应予接受。 1.7 试验程序: 1.7.1 初次稳压时间3分钟。 1.7.2 降压至零。 1.7.3 再次稳压时间15分钟。 1.7.4 强度液压试验时,需用液压记录仪进行观察试压过程中的压力变化,强度液压试验完成后,需将承压件(阀体)的跟踪号记录在对应的曲线上,填上记录仪器的设备号,日期和签字,并妥善保管好记录材料,以备客户查阅。 2 阀门的通径规试验: 2.1所有全径阀阀门在装配后,必须使用阀门通径规进行通径试验。 2.1.1通径规规格:

对 2 1/16”平板阀,其通径规规格为φ51.6 mm。 对 2 9/16”平板阀,其通径规规格为φ64.3 mm。 对 3 1/16”平板阀,其通径规规格为φ77 mm。 对 3 1/8”平板阀,其通径规规格为φ78.6 mm。 对 4 1/16”平板阀,其通径规规格为φ102.4 mm。 2.2 通径规必须完全通过全径阀阀门。 3 阀座的密封液压试验: 3.1阀座密封液压试验压力应等于额定工作压力,试验压力应依次作用在阀板的一侧,另一侧通大气,处于常压状态并保持干燥。 3.2在密封液压试验前,阀门外表面不得有油漆,并保持干燥,如表面有水份可采用压缩空气吹干。 3.3 阀座密封液压试验介质一般为清水。 3.4接受准则: 室温下的静水压试验:当每小时试验压力的变化不大于5%或500Psi(3.45MPa)时(取其较小值),应予接受。 3.5试验程序: 3.5.1 初次稳压时间3分钟。 3.5.2 在具有压差 (额定工作压力)的状态下打开阀门, 此降压至零。 3.5.3第二次稳压时间15分钟。 3.5.4 降压至零。 3.5.5 以上试压合格后,将阀调头,对另一端的阀座密封进行试压,方法同上。 3.6 试验时,需用液压记录仪进行观察试压过程中的压力变化,密封液压试验完成后,需将阀体的跟踪号记录在对应的曲线上,填上记录仪器的设备号,日期和签字,并妥善保管好记录材料,以备客户查阅。

各种阀门检修方案设计及规程

各种阀门检修方案及规程 1截止阀检修工艺规程 1.1截止阀概况及參数 业主提供 1.1.1截止阀概况 业主提供 1.2检修步骤、工艺方法及质■标准 1.2.1检修准备 1.2.1.1确认该阀门已进行有效隔离,工作相关风险预控措施已落实。安全技术交底已完成。 1.2.1.21器具、呈具' 备件已准备好。 1.2.1.3拆除保温,潸除杂物,检查阀门外部阀体情况,阀体表面应无砂眼' 无裂纹、无重皮、螺栓及零部件完好。 1.2.1.4对阀门上需拆卸螺栓处用松动剂进行润滑。 1.2.2 CONVLA裁止阀检修步骤和工艺 1.2.2.1阀门解体及检查渭理 1.2.2. 2通知热工人员将执行器就地电源插头拆除,井用防雨布包好。 1.2.2. 3拆卸阀箍法兰与执行器连接螺栓,将执行器从阀杆适配器上拆下,放置合适位置防止淋雨或磕碰;松动阀杆上执行器适配器的锁紧螺母,将适配器从阀杆上拆下。 1.2.2.4松动盘根压盖调节手柄,将盘根套筒旋至阀箍衬套的最高处。 1.2.2. 5将卡箍锁紧螺钉从卡箍中完全旋岀,井将其旋入卡箍螺栓系耳代螺纹的一边,用一块金属板插入阀箍开口处,旋入阀箍螺栓,将阀箍开口顶开约2mm。逆时针旋转井拆下阀箍, 注意保护阀盖密封面,严禁划伤。 1.2.2. 6将阀杆' 阀芯连通阀盖从阀体上拆下,阀杆从阀盖中取岀;用软棒将阀盖旧填料拆除,注意保护填料室壁,严禁划伤;检查阀座与阀芯、阀盖与阀体密封面、盘根腔室底部密封面有无异物、裂纹、砂眼、麻点等并做好记录。 1.2.2. 7检查盘根套筒'阀箍套管螺纹、阀杆传动铜套螺纹无损伤。 1.2.2. 8阀门密封面检修 1.2.2. 9检查检修阀芯。如阀芯上有缺陷。 1.2.2.10检查检修阀座。用根据该阀门阀芯尺寸加工的阀座研磨工具研磨阀座密封面,直至阀座密封面产生新的接触面。 1.2.2.11将阀芯与阀座适呈对研至阀座、阀芯出现平滑封闭的接触线,阀线宽度为1.6(I In 左右;禁止过度研磨,防止阀座与阀芯之间由线接触变为完全面接触。 1.2.2.12清理阀盖与阀体密封面,并适当对研至岀现一个平滑的加工面。 1.2.2.13加装填料,回装阀门 1.2.2.14将阀盖滑到阀杆上,并在阀盖填料室加入新盘根:上下为编织盘根。 1.2.2.15将调节垫片重新放到阀盖上,并将阀杆旋进阀箍至中间行程位置,注意将垫片放正。 1.2.2.16在阀体、阀箍的螺纹上涂防咬合剂,将阀箍旋入阀体,注意保护阀芯及阀体密封面,严禁碰伤;在旋入过程中确保阀杆位于中间行程,在阀箍与阀体连接处加载力矩至600 FT-LBS ,检查阀箍与阀体上的记号是否重合,如阀箍与阀体未到预紧力要求而阀箍已到阀体螺纹尽头,则需在阀盖上增加

天然气基础知识考试题及答案

客户安全应知应会试题(一) 部门姓名分数 一、选择题:(每题2分,共20分) 1、下列哪一种可燃气体的热值最高?(B ) A、天然气 B、液化石油气 C、人工煤气 2、检查燃气用具是否漏气时,通常采用( B )来寻找漏气点。 A、用火试 B、肥皂水 C、闻气味 3、天然气充分燃烧后的产物。( C ) A、水和一氧化碳 B、氢气和二氧化碳 C、水和二氧化碳 4、目前国内普遍使用的天然气加臭剂是( C ) A、硫化氢 B、乙硫醇 C、四氢噻吩 5、用于扑灭精密仪器、贵重设备、档案资料及带电设备火灾的灭火器是( B )灭火器。 A、化学泡沫灭火器 B、二氧化碳灭火器 C、清水灭火器 6、《石油天然气管道保护条例》要求:管道两侧各(B )线路带内禁止种植深根植物,禁止取土、采石和构建其他建筑物等。 A、1m B、5m C、50m 7、天然气组成中一般( A )的所占比例最大。 A、甲烷 B、乙烷 C、丙烷 8、输气管线的储气量与管线长度、管径和( B )等有关。 A、管线埋深 B、管线压力 C、场站大小 9、生成天然气水合物的主要条件是一定的水分、低温和(A ) A、高压 B、低压 C、常压 10、使用可燃气体报警仪,若指针指示到80%时,则表示此时该地区空气中天然气浓度已达到了( C )。 A、80% B、5% C、4% 二、填空题:(每空2分,共40分) 1、天然气是埋藏在地下的古生物经过亿万年的高温和高压等作用而形成的可燃气。天然气的主要成分是甲烷,天然气具有易燃、易爆的特性天然气比空气轻,容易挥发,天然气热效率高安全性能好。 2、天然气中,纯天然气的爆炸极限为5%~15% 。 3、从事燃气钢质管道焊接的人员必须具有锅炉压力容器压力管道特种设备操作人员资格证书,且应在证书的有效期及合格范围内从事焊接工作,如间断焊接时间超过_6_个月,再次上岗前应重新考试合格。 4、国家规定的天然气灶具的使用年限是8 年。 5、根据国家标准,软管与家用燃具连接时,其长度不应超过2 米,并不得有接口。 6、根据国家标准规定连接燃气器具的橡胶软管应定期更换,要求更换时间为不超过18 个月。 7、燃烧应具备的条件:可燃物、助燃剂、火源。

相关文档
相关文档 最新文档