文档库 最新最全的文档下载
当前位置:文档库 › 干旱胁迫对植物的影响

干旱胁迫对植物的影响

干旱胁迫对植物的影响
干旱胁迫对植物的影响

干旱胁迫对植物影响

摘要:胁迫严重影响着植物的生长发育,如干旱胁迫,可造成经济作物产量的逐年大幅下降[1],它们不能逃避不利的环境变化, 它

们需要快速的感应胁迫刺激进而适应各种环境胁迫。大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。我们都知道 ,水分在植物的生命活动中起着重要的作用,不仅是光合作用的原料之一,而且还维持着植物的正常体态。因此,我们要用各种预防途径来减少干旱对植物的影响。

关键词:干旱胁迫植物影响

Drought stress impact on plants

Abstract : stress seriously influence the plant growth and development, such as drought stress, which can cause economic crop production has fallen dramatically year by year [1], they cannot escape from adverse environmental change, they need fast induction stress stimulation and adapt to various environmental stresses. Most plants by drought adversity after various physiological processes are subject to the influence of different level. As we all know, water in the plant life activities play an important role, not only is one of the raw material of photosynthesis, but also maintains the normal posture of plants. Therefore, we want to use a variety of preventive ways to minimize the effects of drought on plant.

Keywords : plant drought stress inflengce

引言:干旱可以分为土壤干旱和大气干旱,而大气干旱往往伴随着较高的温度,这两种干旱有时单独出现,但是,在一般情况下同时出现的,这两种干旱方式对植物的影响是相似的。

1、干旱对植物生长发育的影响

植物的生长是环境和植物内部代谢活动相互作用的结果,在各种和植物有关的环境因素中,水的有效性占主导地位。其中,植物叶子的扩展生长对缺水最为敏感,只要有轻微的胁迫,就会使其受到明显的限制。无论是细胞的分裂分化或体积的扩大,都同时依赖于水分的吸收,溶质的积累和细胞壁的松弛。任何能直接或间接影响三者之一的因素均能影响生长。近年来, 许多用活体材料进行的试验表明, 水分亏缺能够改变细胞壁的伸展性能, 如水稻、大豆、玉米、小麦、向日葵等植物在水分亏缺下细胞壁的伸展随生长受抑而明显降低

[4-8]。细胞胞壁中的物质对植物伸长生长起着关键作用。而壁的性质又取决于它的组成、结构和胞壁环境尤其是水分环境。叶细胞壁硬化是作物对干旱胁迫的主要反应之一。许多报道表明: 水分亏缺时细胞壁反应由水力信号传递[ 9]。缺水条件下, 植物通过降低叶的生长速率和使老叶脱落等途径来减少叶面积, 有效地减少蒸腾失水。水分胁迫影响叶面积的程度因作物而异。受胁迫水稻的叶伸长速率、水势、蒸腾速率下降比玉米和大豆要早的多。

2 、干旱胁迫对植物光合作用的影响

干旱胁迫降低植物的光合速率以及叶绿体对光能的吸收能

力和转能效率,降低光合电子传递速率和磷酸化活力,影响光合碳同化[7]随着水分胁迫的加剧,不同抗性植物的光合速率下降的幅度不同,抗旱性强的植物光合速率降低的程度比抗旱性弱的小。柯世省对夏蜡梅的研究表明,其叶片净光合速率、蒸腾速率、气孔导度随着干旱胁迫程度的加重而显著降低[8]但郑希伟等对几种林木研究后发现侧柏和油松的净光合速率最小,但其抗旱性最强。这也表明单纯用净光合速率来鉴定植物的抗旱性是不全面的。

3、干旱胁迫对植物呼吸作用的影响

干旱胁迫下植物的呼吸作用变化分为两种类型[4]即呼吸强

度降低,呼吸作用先升高后降低和呼吸强度明显增强。干旱胁迫时,植物的呼吸作用先升高后降低。

干旱胁迫对呼吸作用的影响比光合作用要小。一般认为,轻度干旱使作物叶、茎及整株呼吸速率升高,而后随着干旱程度的增大而逐渐降低。根系呼吸对干旱的敏感性大于地上部分。李勤报和梁厚果[10]分析了轻度干旱下的小麦叶片呼吸作用上升,根系呼吸作用降低的原因,主要是与细胞内琥珀酸脱氢酶和细胞色素氧化酶的活性水平有关。

4 、干旱胁迫对植物渗透调节的影响

参与植物渗透调节的渗透调节物质很多,可以分为无机离子(K +、Cl-、Ca2+、Mg2+、Na+等),有机物质(可溶性糖、游离氨基酸、

有机酸等),其中脯氨酸是最重要和有效的有机渗透调节物质。干旱胁迫下脯氨酸累积比处理开始时含量高几十倍甚至几百倍.[11]大量试验证明,脯氨酸的积累说明其含量与干旱程度呈正相关,水分胁迫越强,脯氨酸含量越高[12-13]。但也有人认为,脯氨酸数量多少不宜作为植物抗旱性的生理指标,脯氨酸的积累可能与细胞的存活状况和蛋白质代谢情况有关。目前,关于脯氨酸积累与抗旱性之间的关系仍有争议。

5、展望

可以说干旱灾害是全球最大的自然灾害之一。干旱影响作物的生长发育,造成作物减产,加剧全球粮食危机,况且目前世界上有三分之一以上的土地处于干旱和半干旱地带,其他地区在植物生长季节也常发生不同程度的干旱。因此,研究干旱胁迫对作物的的生长发育的影响有重要的意义。对于干旱胁迫对植物生长发育的影响,研究的不是很多。现目前在干旱胁迫对于叶的光和特性、膜保护酶系统,苗期生理生化指标的影响方面有所研究,但对于根、开花期、结果期、果实的品质方面等的研究几乎为零。干旱是一个不定时的自然灾害,可能发生在植物生长发育的各个阶段。因此,对于干旱胁迫对植物生长发育的影响的研究还有待努力。

参考文献:

[1]杨鹤辉, 李贵全, 郭丽, 等. 干旱胁迫对不同抗旱大豆品种花英期质膜透性

的影响=J]. 干旱地区农业研究, 20 3 , 2 1 (3 ) : 127 一13 0 .

[2] “华北平原作物水分胁迫与干旱研究”课题组编著·水分胁迫与干旱研究

[M].郑州:河南科技出版社,1991

[3]志荣干旱胁迫对辣椒生理机制的影响[J].西南农业学报,2003,(2),53-55

[4] 北京植物生理学会编辑植物生理生化进展[M].北京:科学出版社,

1996.4.45

[5] 陈立松,刘星辉编果树逆境生理[M].北京:中国农业出版社,2003

[6] 刘愚等,植物生理学报,1980 ,(6) ,307-310

[7] 王忠. 植物生理学[M]. 北京:中国农业出版社,2000.

[8 ]胡延吉,陈学森.植物育种学[M].北京:高等教育出版社,2003,228-2541.

[9] 李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变化

[J].植物生理学报,1988,14.2),217-222

[10] 李勤报,梁厚果.轻度水分胁迫的小麦幼苗中与呼吸有关的几种酶活性变

化[J].植物生理学报,1988,14(3),217-222

[11] 李君,周守标,王春景,等. 野生和栽培马蹄金抗旱性比较及其抗旱机制初探[J]. 植

物生态学报,2007,31(3):521-527.

[12 ]孙彦,杨青川,张英华. 不同草坪草种及品种苗期抗旱性比较[J]. 草地学报,2001,

9(1):16-20.

[13] 谭晓荣,吴兴泉,戴媛,等. 小麦幼苗叶片活性氧清除能力对干旱胁迫的响应[J]. 河

南农业科学,2001(2):27-30.

植物对环境刺激之反应

10-6 植物對環境刺激之反應 焦點 1 向性反應 ※向性反應:環境刺激→植物產生反應涉及生長方向的改變 1.正向性:植物體的生長反應趨性刺激方向(ex.莖的向光性、根的正向地性) 2.負向性:植物體的生長反應背離刺激方向(ex.莖的負向地性) 一、向光性:(植物體受到側面光照→向光照方向生長彎曲) (1)頂端分生組織產生生長素(向下運送) ?? ??→?側面光照莖兩側生長素分佈不均勻 向光面:生長素含量少、生長慢 背光面:生長素含量多、生長快 (2)莖的頂端:具有接收藍光的色素分子 ∵藍光刺激→莖的向光面和背光面的生長素分佈不均勻 ∴藍光對向光性的作用最為明顯 二、向地性: (1)植物幼苗平放????→?重力影響下半部的生長素濃度較高 莖的細胞生長快速→莖向上彎曲生長(負向地性) 根的細胞生長較慢→根向下彎曲生長(正向地性) (2)根的正向地性與根冠產生的『抑制生長物質』有關 根平放並將根冠摘除→根生長快速,不會表現向地性 若將根冠再置回根尖→根生長變慢,表現出正向地性 三、向觸性:(葡萄、豌豆、瓠瓜的卷鬚????→?接觸物體不均勻生長) 接觸面的細胞停止伸長→卷鬚纏繞物體而攀緣生長 →使植物體獲得支撐,並佔具有利位置以吸收陽光 試題範例 1.有關於植物生長的適應,下列敘述何者正確? (A)受地心引力、光照、溼度的刺激可引起向性運動 (B)具有接受刺激的神經系統,且能傳導刺激並引起反應 (C)平置的幼苗,莖會背地生長、根則向地生長 側面照光對芽鞘的影響: 芽鞘內的箭頭表示生長素的

(D)地心引力的刺激,使植物體內的生長素分布傾向朝下的一側 (E)溫度的刺激可促使葉綠素合成和葉綠體發育 【答案】(A)(C)(D)【詳解】(B)植物缺神經系統 (E)光線刺激可促使葉綠素合成和葉綠體發育 2.下列植物運動何者與生長素有關? (A)睡眠運動 (B)莖的向光性 (C)觸發運動 (D)根的向地性 (E)根的向濕性 【答案】(B)(D)(E)【詳解】(A)(C)睡眠運動及觸發運動與膨壓有關 3.下列有關於植物向性的敘述,何者錯誤? (A)一般而言,根具有向地性,莖具有向光性和背地性 (B)將幼苗平置,根部朝上的一側生長素較少,故生長慢 (C)將幼苗平置,莖部朝下的一側生長素較多,故生長快 (D)莖部向光的一側生長素較少,故生長慢 【答案】(B)【詳解】根部朝上的一側生長素較少、生長快,因高濃度的生長素會抑制根的生長 焦點 2 感性反應(與膨壓改變有關) ※感性反應: 環境刺激→植物產生反應未涉及生長方向的改變(一般為可逆反應) 一、睡眠運動:(豆科植物的葉片??????→?睡眠運動) (1)白天:葉枕上方細胞的膨壓較小、下方細胞的膨壓較大→葉片上揚平展 (2)夜晚:葉枕上方細胞的膨壓變大、下方細胞的膨壓變小→葉片下垂閉合 ps.光照刺激→牽牛花、豆科植物的花瓣和葉柄的膨壓改變 →花瓣和葉片在日間張開(夜間閉合) 二、捕蟲運動: 捕蠅草的捕蟲葉受到碰觸→葉片閉合以捕捉昆蟲 三、觸發運動:(含羞草葉片受到碰觸??????→?葉枕膨壓改變葉片閉合) (1)複葉未受到碰觸→小葉平展張開 (2)複葉若受到碰觸→小葉閉合,整片複葉下垂 ps.機械性刺激(震動、觸摸、摩擦)→抑制植物生長

肥料对植物生长的影响

肥料对植物生长的影响 植物除了从土壤中吸收水分外,还要吸收矿质元素和氮素以及有机物质,以维持正常的生命活动。所以,土壤中矿质元素和有机物质的多少直接影响植物的生长和发育。在栽培条件下,肥料的种类和使用量可改变土壤中养分的比例关系,为植物生长提供良好的养分环境。1.氮 1.1氮对植物生长的影响 根系吸收氮肥主要是无机态氮,即铵态氮和硝态氮。也可吸收一部分有机态氮,如尿素。氮是蛋白质(包括一些酶和辅酶)、核酸、磷脂的主要成分,他们是原生质、细胞核和生物膜的重要组成部分,在植物生命活动中具有特殊的作用。氮也是某些植物激素的成分,他们对生命具有调节作用。氮是叶绿素的成分,与光合作用有密切关系。因此氮的多少会直接影响细胞分裂和生长。当氮肥供应充足时,枝叶繁茂,植株高大,分枝能力强,果实活种植中蛋白质含量高。植物的必须元素中,除碳、氢、氧外,氮的需求量最大。因此在农业生产中要特别需要氮肥的供应,常用人粪尿、尿素、硝酸铵、硫酸铵碳酸氢铵等肥料,主要提供氮元素。 缺氮时,蛋白质、核酸、磷脂等合成受阻,植物生长矮小、分枝能力弱,叶片小而薄,花果少且易脱落。缺氮,叶绿素合成受阻,枝叶变黄,甚至干枯,导致产量降低。氮在植物体内移动性大,老叶中的氮分解后可运输到幼嫩组织中去重复利用,所以缺氮时叶片发黄,并由下部叶片开始逐渐向上。 氮过多时,叶片大而深绿,柔软披散,植株徒长。另外,氮素过多时,体内含糖量相对不足,茎干中的机械组织不发达,易倒伏和被病虫危害。 1.2氮的测定 1.2.1肥料中硝态氮含量测定 1.2.1.1还原法 复混肥料中硝态氮和铵态氮在检测中的差别是两者样品在处理过程。前者需要通过铬粉(不含酰氨态氮时用定氮合金)还原处理,使硝态氮还原成铵态氮;后者对试样不需作还原处理。目前,肥料中硝态氮含量的测定常用定氮合金法(德瓦达合金还原法)和铬-盐酸还原法。 两种方法的原理基本相同,一般采取三步检测:第一步,在样品处理中使用铬粉(不含酰氨态氮时用定氮合金)还原硝态氮后,按标准检测方法检测复混肥试样中总氮含量;第二步,在试样处理过程中不使用还原剂,按标准检测方法检测复混肥试样中不含硝态氮时复混肥料中的总氮含量;第三步,用第一步检测结果减去第二步检测结果,即可得出复混肥料中硝态氮含量。 1.2.1.2高效液相色谱法 通常测定硝态氮的方法有:气体法、还原法、重量法、扣除法、比色法、紫外线吸收法。高效液相色谱法测定肥料中的硝态氮含量,其原理是硝酸根在紫外光区190~240nm有较强吸收,通过色谱柱分离后在紫外分光光度计上检测硝酸根含量,再将其换算为氮含量。 高效液相色谱法使用C18柱,以0.04molL-1磷酸二氢钾水溶液为流动相,在230nm波长下测定硝态氮含量,相关系数为0.9997,最低检测浓度为1×106mgmL。此法具有准确度和精密度高,定量分析简便、快捷、准确的特点。 1.2.2复合肥料中总氮测定 1.2.2.1凯氏定氮法 测定原理:将硝酸盐在酸性介质环境中还原成铵盐;在触媒存在下,用浓硫酸进行消化,将有机态氮或尿素态氮和氰氨态氮转化为硫酸铵;将从碱性溶液中蒸馏出的氮,吸收在硼酸溶液中;在甲基红、甲酚绿混合指示剂存在下,用硫酸或盐酸标准溶液进行滴定分析。 凯氏定氮法测定复合肥料总氮含量的实测结果与理论值非常接近,该方法检测速度快,消耗

生态学实验1--环境因子对植物形态结构的影响

实验1环境因子对植物形态结构的影响 一、实验目的 1、掌握生长在不同环境下的植物形态结构的特点,理解植物形态结构是如何适应于其生境特征。掌握从植物外部形态及生长,生境特点上鉴别植物耐荫性的方法。 2、理解植物器官的结构特点对植物生长发育及其环境适应的意义。初步判定植物对光照强度的适应类型.。 3、使学生掌握划分植物生活型的方法,并通过不同地区和不同植被类型植物生活型的分析,进一步认识植物与环境的关系及划分植物生活型的生态意义 二、实验原理: 1、在植物的生长发育过程中,光和水是极其重要的生态因子。根据植物与其生境中水分的的关系,把植物分为水生植物、陆生植物(包括了中生植物和旱生植物)。水生植物依据其生活型又可分为沉水植物、浮水植物和挺水植物。生长在不同环境中的植物,在演化过程中会形成一些适应环境的结构特征,其中以叶的结构变化最为显著。叶子是植物的重要器官,它有两大生理功能,光合作用和蒸腾作用。蒸腾作用是根系吸收水分的动力之一,植物根系吸收的矿物质主要是随蒸腾液流上升并转运到植物体的其他部位。另外,蒸腾作用也能降低叶片的表面温度,从而使叶子在强烈的日光照射下,不至于因温度过分升高而受损伤。但蒸腾作用会消耗很到植物体内的水分,因而植物根系吸收的水分和叶片蒸腾作用消耗的水分之间需达到一个等量的状态,即水分平衡状态。植物在长期的进化过程中,逐渐形成了防止水分散失的结构,如叶表面的角质层,密生绒毛,气孔下陷或形成气孔窝,叶片内储水组子发达等,都是为了适应保持水分,减少水分蒸腾的特征。植物生活于不同的生态环境中其叶片的这些适应性结构不同,形态变化也较大。 阳光是植物光合作用的能量来源,但是由于植物长期适应不同的环境条件,不同植物需要的光强不同。根据植物对光强的不同要求,把它们分为阳性植物、阴性植物、耐阴植物三大类。阳地植物与阴生植物是生长在不同光照强度环境中的植物,由于叶是直接接受光照的器官,因此,受光照强度的影响,也就容易反映在它们的形态和结构上。又因为具有相同基因型的植物若长期生活在不同的生态环境中,会出现结构和生理的趋异性;而不同基因型的植物生活在同一环境中,又会出现趋同性,所以,即使是同一植物,因叶所处位置的光照不同,也会有阴生与阳生的差异。一般来说树冠上部和向阳一面的叶,具阳生叶特征;而树冠下部和阴面的叶则具阴生叶的特点。由此也可以看出叶是最具变化的器官。 2、生活型是生物对外界环境适应的外部表现形式,同一生活型的生物,不但体态相似,而且在适应特点上也是相似的。对植物而言,其生活型是植物对综合环境条件的长期适应,而在外貌上反映出来的植被类型。它的形成是植物对相同环境条件趋同适应的结果。在同一类生活型中,常常包括了在分类系统上地位不同的许多种,因为不论各种植物在系统分类上的位置如何,只要它们对某一类环境具有相同或(相似)的适应方式和途径,并在外貌上具有相似的特征,它们都属于同一类生活型。 关于植物生活型的分类有各种标准和系统,这里采用丹麦生态学家Raunkiaer的生活型分类系统和《中国植被》中的生活型系统。 (1)Raunkiaer 的生活型分类系统 他以植物体在度过生活不利时期(冬季严寒、夏季干旱)对恶劣条件的适应方式作为作为分类的基础。具体的是以休眠或复苏芽所处位置的高低和保护的方式为依据,把陆生植物划分为五类生活型。

植物对干旱胁迫的响应及其研究进展

植物对干旱胁迫的响应及其研究进展 学院:班级: 姓名:学号: 摘要:植物在经受干旱胁迫时,通过细胞对干旱信号的感知和传导,调节基因表达,产生新蛋白质,从而引起大量形态、生理和生化上的变化.干旱胁迫对植物在细胞、器官、个体、群体等水平的形态指标有显著影响,也会影响其光合作用、渗透调节、抗氧化系统等生理生化指标.植物对干旱胁迫分子响应较复杂,包括合成一些新的基因如NCED、Dehydrin基因和CBF、DREB等转录因子.另外,干旱胁迫还能造成蛋白质组学的变化. 关键词干旱胁迫;生态响应;生理机制;研究进展干旱作为影响作物生长发育、基因表达、分布以及产量品质的重要因素之一,严重限制了作物的大面积扩展。植物对干旱的适应能力不仅与干旱强度、速度有关,而且更受其自身基因的调控。在一定干旱阀值(drought threshold)胁迫范围内,很多植物能够进行相关抗旱基因的表达,随之产生一系列生理、生化及形态结构等方面的变化,从而显现出抗旱性的综合性状。因此,从植物本身出发,深入研究植物的抗旱机理,揭示其抗旱特性,提高植物品种的抗旱耐旱能力,以降低作物栽培的用水量,同时最大程度提高作物的产量和品质,科学选育适宜广大干旱、半干旱地区种植的优良作物品种,已成为国内外专家学者们所特别关注和研究的热点问题,对于水资源的合理利用和生态环境的改善均有着重要的意义。 目前,生存资源、环境与农业可持续发展之间的矛盾日益突出,这就要求人们更应高度重视农业综合开发过程中作物逆境生物学的基础研究。 一、植物抗旱基因工程研究新进展 (一)与干旱胁迫相关的转录因子研究 通过转化调节基因来提高植物脱水胁迫的耐性是一条十分诱人的途径.由于在逆境条件下,这些逆境相关的转录因子,能与顺式作用重复元件结合,从而调节这些功能基因的表达和信号转导,它们在转基因植物中的过量表达会激活许多抗逆功能基因的同时表达.胁迫诱导基因能增强胁迫反应的耐力,不同的转录因子参与胁迫诱导基因的调控.遗传研究已经鉴

缺磷对植物生长的影响(1)(1)

磷 元 素 对 植 物 生 长 的 影 响 磷元素对植物生长的影响

摘要:应用溶液培养技术,对番茄幼苗进行缺磷培养,溶液中磷元素的多少必然使植物发生相应的生理生化反应并影响其生长发育而产生相应症状。记录植株的生长情况,元素缺乏症的症状及出现的部位。测量植株的根茎长度、叶子数目及大小。结果显示:磷元素在在植物生长过程中是必不可少的,能促进植物的正常健壮生长,在缺磷的营养液中培养的番茄幼苗,老叶受影响,植株深绿色并出现红或紫色,叶柄短而且纤弱。 关键词:溶液培养,番茄苗,缺磷,红紫色,株高 引言 目前世界上已有许多国家把溶液培养应用到生产上,应用溶液培养进行无污染蔬菜的栽培生产。我国有些单位已将这些方法应用于水稻育苗、花卉栽培和蔬菜生产,同时溶液培养是研究植物矿质营养最基本和最有用的方法,它在阐明植物的必须元素以及奠定施肥的理论基础方面起着重要的作用。在发育过程中,各个营养元素执行一定的生理功能,当植物长期缺少某种元素时,相应地要在形态结构与生理功能等方面发生反应,出现症状。 一、实验目的:熟悉植物的林元素缺乏症的典型症状以及掌握溶液培养技术。 二、实验原理:植物的生长发育,除需要充足的阳光和水分外,还需要矿质元素,否则植物就不能很好地生长发育甚至死亡。应用溶液培养技术,可以观察矿质元素对植物生长的必需性;用溶液培养做植物的营养实验,可以避免土壤里的各种复杂因素。 另外,生物膜结构的组成成分磷脂中含有磷元素,磷元素是DNA和RNA的组成成分,磷元素又是ATP和NADPH的组成元素。磷元素还直接参与糖类的合成和分解,如果植株缺磷后会表现出相应的症状。 三、器材与试剂 1、实验仪器:分析天平、培养缸(瓷质)、移液管、烧杯、量筒 2、实验试剂:按下表分别配置的贮备液(所用药品均须分析试剂级)。

环境污染对生物的影响

[案例分析]生物教学:环境污染对生物的影响1 教学活动对象:高一学生 教学活动准备:开放生物实验室,并准备学生活动所需的各类仪器装置;实验所需各种生物、各类污染物等主要由学生自己采集、准备。 教学活动过程:该主题的教学活动过程主要分为以下步骤: (1) 教师提出课题“环境污染对生物的影响”。 (2) 学生调查学校周围环境中的主要污染现象,分析污染原因。如让学生走访区环保局和环境监测站,随同专业人员采集黄浦江水样、测定水样,调查学校周围环境的空气、水质和绿化现状等。 (3) 学生经过对周边环境的各类污染因素与常见生物的关系的调查和分析后,组成若干课题研究小组(每组3-5人),各自选定实验研究项目。 (4) 各小组相互评议实验研究项目,进行可行性论证,然后确定实验研究项目。 (5) 各小组设计具体的实验研究方案。实验方案中应包括以下内容:①研究题目;②研究目的;③实验原理;④所需材料(应具有可行性);⑤具体实验步骤;⑥预期结果。 (6) 师生分别作实验准备。 (7) 在课堂内,各组学生按照自己的实验方案进行操作。小组成员之间应相互协作,相互切磋,共同解决实验中出现的问题。 (8) 各组间相互交流实验研究的过程和结果,相互进行评议和质询,提出自己的不同看法。 各组在听取评议的基础上进一步完善实验或提出进一步研究的方案。 (9) 学生写出实验研究报告,提出自己对实验研究结果的见解。 在“环境污染对生物的影响”教学案例中,学生的探究活动分为形成概念和问题、制定学习计划、开展探究活动、总结发现四个阶段。在第一阶段,教师就“环境污染对生物产生的影响”这一现象要求学生进行多种体验,通过调查活动学生形成一系列概念和问题,从而引发学生探究的兴趣。第二阶段开始划分学习小组并进行小组讨论,以选定各自的实验研究项目,制定实验研究计划。第三阶段主要依靠学生自己开展探究活动,教师给予学生适度的辅导。探究的最后阶段是以实验报告的形式来进行总结活动,教师明确提出了实验报告的格式和要求等,并预先制定了相应的量规用于评价学生的整个学习和探究过程。 1.研究课题:环境污染对生物的影响。 2.活动目标: 在活动中提高学生的环保意识和科研意识; 在实验研究的过程中促进学生发展创造性思维; 培养学生设计和操作实验的能力; 培养学生相互合作的精神。 3.参加活动对象:高-年级部分学生(由学生自由报名)。 4,活动的准备: 开放生物实验室,并准备学生活动所需的各类仪器装置。实验所需各种生物、各类污染物等主要由学生自己采集、准备。 5.活动过程: (1)教师就课题"环境污染对生物的影响"概述进行科学实验与研究的基本方法。 (2)学生调查学校周围环境中的主要污染现象,分析污染原因。如让学生走访区环保局和环境监测站,随同1案例来源:上海故业中学费循蛟老师https://www.wendangku.net/doc/2215340768.html,/3_anli/3_jijin/jijin_008.htm

植物对生存环境的影响

植物对生存环境的影响 森林作为地球上可再生自然资源及陆地生态系统的主体,在人类生存和发展的历史起着不可替代的作用。 在绿色植被中,森林有地球之肺之称。 这是因为森林大量地吸收二氧化碳,制造人类和其他生物所需的氧气。 树木是氧气制造厂、树木是粉尘过滤器、树木还是天然蓄水库和天然空调…… 树木带给我们无穷无尽好处……保护森林和植被 一、森林的作用 1、制造氧气: 绿色植物是二氧化碳的消耗者和氧气的生产者。通常一公顷阔叶林一天可以消耗1000千克的二氧化碳,释放730千克的氧气。 2、树木能保护土壤,涵养水源; 森林地表枯枝落叶腐烂层不断增多,形成较厚的腐质层,就像一块巨大的吸收雨水的海绵,具有很强的吸水、延缓径流、削弱洪峰的功能。另外,树冠对雨水有截流作用,能减少雨水对地面的冲击力,保持水土。据计算,林冠能阻载10-20%的降水,其中大部分蒸发到大气中,余下的降落到地面或沿树干渗透到土壤中成为地下水,所以一片森林就是一座水库。森林植被的根系能紧紧固定土壤,能使土地免受雨水冲刷,制止水土流失,防止土地荒漠化。 4、森林能涵养水源; 3、大量树木能调节气候,减弱热岛效应; 森林浓密的树冠在夏季能吸收和散射、反射掉一部分太阳辐射能,减少地面增温。冬季森林叶子虽大都凋零,但密集的枝干仍能削减吹过地面的风速,使空气流量减少,起到保温保湿作用。据测定,夏季森林里气温比城市空阔地低2-4℃,相对湿度则高15-25%,比柏油混凝土的水泥路面气温要低10-20℃。由于林木根系深入地下,源源不断的吸取深层土壤里的水分供树木蒸腾,使林正常形成雾气,增加了降水。通过分析对比,林区比无林区年降水量多10-30%。国外报导,要使森林发挥对自然环境的保护作用,其绿化覆盖率要占总面积的25%以上。 4、树木能净化城市空气; 随着工矿企业的迅猛发展和人类生活用矿物燃料的剧增,受污染的空气中混杂着一定含量的有害气体,威胁着人类,其中二氧化硫就是分布广、危害大的有害气体。凡生物都有吸收二氧化硫的本领,但吸收速度和能力是不同的。植物叶面积巨大,吸收二氧化硫要比其他物种大的多。据测定,森林种空气的二氧化硫要比空旷地少15-50%。若是在高温高湿的夏季,随着林木旺盛的生理活动功能,森林吸收二氧化硫的速度还会加快。相对湿度在85%以上,森林吸收二氧化硫的速度是相对湿度15%的5-10倍。 实验证明,林木在低浓度范围内,吸收各种有毒气体,使污染的环境得到净化。 例如,一公顷柳杉林每月可以吸收二氧化硫60千克。美人蕉、月季、丁香、菊花以及银杏、洋槐也能够吸收二氧化硫。 5、树木群能消除城市噪声。 实验测得,公园或片林可降低噪声5-40分贝,比离声源同距离的空旷地自然衰减效果多5-25分贝;汽车高音喇叭在穿过40米宽的草坪、灌木、乔木组成的多层次林带,噪声可以消减10-20分贝,比空旷地的自然衰减效果多4-8分贝。城市街道上种树,也可消减噪声7-10分贝。要使消声有好的效果,在城里,最少要有宽6米(林冠)、高10米半的林带,林带不应离声源太远,一般以6-15米间为宜。 6、过滤尘埃:

缺磷对植物生长的影响

缺磷对植物生长的影响 王林青 2009014040313 【河北农业大学农学院植物科学与技术专业0903 】 摘要:环境中磷元素的多少必然使植物发生相应的生理生化并影响其生长发育而产生相应症状。磷素的缺乏会影响核蛋白形成,抑制细胞分裂与增殖,使作物生长发育延缓或停止。玉米缺磷,苗期生长缓慢,叶片呈紫红色,生长速率下降;根冠比改变;根的活力及物质合成受影响,从而影响到植物生长及粮食产量[1-2]。本实验以沈玉26品种为材料,运用培养液为基础进行植物溶液缺磷培养。以茎高,根冠比,叶绿素含量等确定植株的光和能力及生长情况。本实验表明:磷素在植物生长过程中是必不可少的元素,能促进植物的正常健壮生长,缺乏磷元素会导致植物生长缓慢或停滞,影响作物产量。在实验中出现的症状可以指导实际生产合理施肥。 关键词:玉米磷缺素培养根冠比叶绿素缺素症状 引言:玉米是世界第三大粮食作物,也是我国主要的粮食作物,饲料作物及工业原料是改善人民生活和出口外贸的重要资源之一,对农业和畜牧业具有十分重要的意义[3]。缺磷是限制玉米生产的重要因素之一。磷作为植物生长发育所必需的大量元素之一,它不仅是核酸和生物膜的重要组分,而且在能量代谢、光合作用、呼吸作用、酶活性调节、氧化还原反应、信号传导和碳代谢等方面也扮演重要角色[2]。环境中磷元素的多少必然使植物发生相应的生理生化并影响其生长发育而产生相应症状。为了提高玉米的产量和品质,在农业栽培技术和作物育种上开展各项研究的同时掌握作物个体发育对外界环境条件

营养需求极为重要,磷是自然生态系统中存在的必需元素,它既是植物体内许多重要的有机化合物的组成成分,在结构和生理上起着重要作用,同时又以多种方式参与植物体内的各种生理代谢过程,对促进植物生长发育和新陈代谢以及作物的早熟高产优质都起着重要作用[4]。缺少磷元素时,植物生长缓慢,叶小,分枝或分蘖减少,植株矮小,叶色暗绿,抗性减弱。 本实验通对玉米幼苗在缺磷的生长状况,地上与地下部分的形态观察及生理指标和叶绿素的含量的测定,做出实验分析,以证明磷元素是玉米生长必需的重要元素,对玉米的生长有重要作用,也可通过玉米缺磷表现指导施肥。 内容: 1.材料与方法 1.1材料 实验材料为沈玉26号玉米品种及其生长幼苗 1.2方法 1.2.1播种 在花盆中加满蛭石,选择饱满的沈玉26号种子4-6粒分散种在花盆中,每3个花盆放在1个托盘中,向托盘内加适量自来水,待种子发芽。 1.2.2移栽 移栽前向托盘内加入少量自来水,右手捏住幼苗基部,左手将花盆拿起倒扣,右手将幼苗取出,平展放于桌上,在两个托盘中选取6

沙漠植物对干旱的适应策略

生存有道---沙漠植物对干旱的适应策略 沙漠地区的植物在地球上历尽沧桑,通过自然界选择、优胜劣汰,在长期的进化演替过程中,形成了适应特殊环境条件的能力,表现出对沙漠环境的多种适应方式和适应特性。沙漠植物适应沙漠特殊生境的一般规律表现在:适应能力强(除对气候干旱,高温、日灼等的适应外,许多植物对土壤贫瘠、盐碱,对风蚀、沙打沙割、沙埋等的适应和忍耐性能也很强);结实量大、易更新繁殖(繁殖材料可大量获得,包括有性繁殖和无性繁殖,或具根茎相互转化的功能、具有克隆或可平茬复壮的特性);枝叶特化、根系发育特殊(叶片小或退化以同化枝来进行光合作用,或多浆茎、叶储水保水;根系生长迅速,深根性或水平根发达),生长稳定,长寿或短时间完成生活史(短期生植物,亦称短命植物或短生植物)等。 根系发达、生长迅速 沙漠植物的根系在适应干旱环境的特征上有所不同,在荒漠、半荒漠地区,由于降水稀少,年平均降水多在200毫米以下,甚至小于50毫米,沙丘上干沙层很厚,这就迫使生物量大的木本植物的根系向深层发展,以求利用地下水,因此,深根性植物较多,如白梭梭和梭梭的垂直根深达5米以下,深深扎入地下水层,以吸收地下水。柽柳(红柳)的主、侧根都极发达,主根往往伸至地下水层,最深可达10余米。在吐鲁番的坎儿井的竖井中发现,骆驼刺的根系在离地表20米以下

可见。胡杨、沙拐枣属植物的根系多为水平分布,水平根可超过10米;但在地下水8~10米深的吐鲁番沙地上,沙拐枣的根系可垂直向下发展到5米左右,能深达地下水沿毛细管上升的区域;银沙槐水平根发达,垂直根深入沙层2米余,水平根交错盘诘,集中分布在30~50厘米沙层内,长可达10米以上此外,一年生幼苗主根深扎沙土层50厘米,三年的实生苗垂直根生90厘米,根幅约1.5米,银沙槐地上部分生长比根系发育缓慢,当年幼苗地下部分垂直方向的生长近5倍以地上部分的高生长。而我国东部草原地区降水较多,年平均降水量在250~400毫米,沙漠植物为了充分利用降水,以发展水平根系为主。如沙柳主根发育不明显,水平根极发达,密如蛛网,一丛四年生沙柳,株高3.5米,水平根幅达20余米,为地上部分的五倍多,黄柳垂直根可达3.5米,而向水平伸展常达20米以上。杨柴为浅根性灌木,主根一般深1~2米, 侧根多分布在深10~40厘米深的土层中,2年生侧根长达2.4米,成年植株可达10余米。花棒成年植株根幅可达10余米,最大根幅可达20~30米。分布于干草原地区的差巴嘎蒿垂直根下扎2米左右,水平根向四周强烈扩展,根幅达3米以上。白沙蒿无明显垂直根系,水平根极发达,5年生根幅为冠幅的7.5倍。油蒿虽属深根性半灌木,12龄的植株根深3.5米,但根幅达9.2米,侧根密布在0~130厘米的沙层内,在荒漠地区的沙坡头,油蒿主根深达4.5米。通常沙漠地表层为干沙层,30~40厘米以下为稳定湿沙层,植物发芽后,主根具有迅速延伸,以尽快达到稳定湿沙层的能力。沙漠植物就是利用自身发达的根系,在沙地土壤内或垂直或水平发展

植物与环境是相互作用的关系

植物与环境是相互作用的关系,植物周围的环境为植物的生长提供阳光空气水分养料适宜的温度等等植物生长所必需的条件,而植物的生长又会对环境产生影响,比如植物根系的生长腐败的植物会影响土壤的结构和组成,植物可以保持水土,植物可以调节气候,植物种类的改变会造成生物种类的改变等等。同时植物又依赖于特定的环境,植物离开了所适合的生长环境,可能会造成不结实生长不良甚至死亡等不良后果。 植物的形态结构功能与环境是相适应的,如生活在干旱地区的植物,叶片较小或退化,根系发达,松树、仙人掌,生活在湿润地区的植物,叶片则较大;水稻生活在水中,有适应水中生活的气腔,生活在寒冷地区的植物植株矮小,喜兴的植物高大,喜阴的植物矮小等等。 花有花蜜,味道吸引昆虫,利于传粉 叶,扁片状(也有特化的)利于充分接受光照,进行光合作用 果实,或有香甜的包被(苹果的果肉),吸引动物去吃,以便把种子散发到各处 种子有坚硬的外壳,保护种子内部不被外界各种因素伤害(如虫子咬食) 等等还有很多. 1.光因子。不同的植物对光强的反应是不一样的。适应强光照地区的植物成为阳地植物,常见的有蒲公英,松,杉等。适应若弱照地区生活得成为阴地植物,例如那些灌木等。 2.温度因子。例如,有得植物生有密绒毛和鳞片,能过滤一部分阳光,有得植物体呈白色=银白色,能反射阳光,免受热伤害。 3.水因子。陆生植物主要是尽量减少蒸腾作用,水生植物增加透气。 4.土壤因子。不同酸碱度的土壤,会有不同的植物生长;另外土壤的含盐量、含水量等也是指标之一。 董美兰、孙雪垠、刘尹、白荣荣、惠敏,请赶快(7月15日前)把就业协议交给方丽慧老师,以便办最后一批报到证。参加社区工作的,办理社区报到证,若考上教师,提前给方老师打电话,办教师报到证,否则到8月25日前按社区录入系统。

水分胁迫

科技名词定义 中文名称:水分胁迫 英文名称:water stress 定义1:因土壤水分不足或外液的渗透压高,植物可利用水分缺乏而生长明显受到抑制的现象。 所属学科:生态学(一级学科);生理生态学(二级学科) 定义2:因土壤水分不足而明显抑制植物生长的现象。 所属学科:土壤学(一级学科);土壤物理(二级学科) 本内容由全国科学技术名词审定委员会审定公布 1水分胁迫 water stress 水分胁迫(water stress)植物水分散失超过水分吸收,使植物组织含水量下降,膨压降低.正常代谢失调的现象。 植物除因土壤中缺水引起水分胁迫外,干旱、淹水、冰冻、高温或盐演条件等不良环境作用于植物体时,都可能引起水分胁迫。不同植物及品种对水分胁迫的敏感性不同,影响不一。在淹水条件下,有氧呼吸受抑制,影响水分吸收,也会导致细胞缺水失去膨压,冰冻引起细胞间隙结冰,特别是在严重冰冻后遇晴天,细胞间隙的冰晶体融化后又因燕腾大量失水,易引起水分失去平衡而姜蔫。高温及盐演条件下亦易引起植物水分代谢失去平衡,发生水分胁迫。干旱缺水引起的水分胁迫是最常见的,也是对植物产量影响最大的。水分胁迫对植物祝谢的影响在植物水分亏缺时,反应最快的是细胞伸长生长受抑制,因为细胞膨压降低就使细胞伸长生长受阻,因而叶片较小,光合面积减小;随着胁迫程度的增高,水势明显降低,且细胞内脱落酸(ABA)含量增高,使净光合率亦随之下降,另一方面,水分亏缺时细胞合成过程减弱而水解过程加强,淀粉水解为糖,蛋白质水解形成氨基酸,水解产物又在呼吸中消耗;水分亏缺初期由于细胞内淀粉、蛋白质等水解产物增亥,吸呼底物增加,促进了呼吸,时间稍长,呼吸底物减少,呼吸速度即降低,且因氧化碑酸化解联,形成无效呼吸,导致正常代谢进程紊乱,代谢失调。水分胁迫对植物的严重影:由于水分胁迫引起植物脱水,导致细胞膜结构破坏。在正常情况下,由于细胞膜结构的存在,植物细胞内有一定的区域化(compartmentation),不同的代谢过程在

缺磷对植物生长的影响

缺磷对植物生长的影响 Revised by BLUE on the afternoon of December 12,2020.

磷 元 素 对 植 物 生 长 的 影 响 磷元素对植物生长的影响 摘要:应用溶液培养技术,对番茄幼苗进行缺磷培养,溶液中磷元素的多少必然使植物发生相应的生理生化反应并影响其生长发育而产生相应症状。记录植株的生长情况,元素缺乏症的症状及出现的部位。测量植株的根茎长度、叶子数目及大小。结果显示:磷元素在在植物生长过程中是必不可少的,能促进植物的正常健壮生长,在缺磷的营养液中培养的番茄幼苗,老叶受影响,植株深绿色并出现红或紫色,叶柄短而且纤弱。

关键词:溶液培养,番茄苗,缺磷,红紫色,株高 引言 目前世界上已有许多国家把溶液培养应用到生产上,应用溶液培养进行无污染蔬菜的栽培生产。我国有些单位已将这些方法应用于水稻育苗、花卉栽培和蔬菜生产,同时溶液培养是研究植物矿质营养最基本和最有用的方法,它在阐明植物的必须元素以及奠定施肥的理论基础方面起着重要的作用。在发育过程中,各个营养元素执行一定的生理功能,当植物长期缺少某种元素时,相应地要在形态结构与生理功能等方面发生反应,出现症状。 一、实验目的:熟悉植物的林元素缺乏症的典型症状以及掌握溶液培养技术。 二、实验原理:植物的生长发育,除需要充足的阳光和水分外,还需要矿质元素,否则植物就不能很好地生长发育甚至死亡。应用溶液培养技术,可以观察矿质元素对植物生长的必需性;用溶液培养做植物的营养实验,可以避免土壤里的各种复杂因素。 另外,生物膜结构的组成成分磷脂中含有磷元素,磷元素是DNA和RNA的组成成分,磷元素又是ATP和NADPH的组成元素。磷元素还直接参与糖类的合成和分解,如果植株缺磷后会表现出相应的症状。 三、器材与试剂 1、实验仪器:分析天平、培养缸(瓷质)、移液管、烧杯、量筒 2、实验试剂:按下表分别配置的贮备液(所用药品均须分析试剂级)。 3、实验材料:番茄种子 四、实验步骤

二氧化硫对植物的影响 word (1)

二氧化硫对植物的影响 张涛 20135937 摘要:近年来SO2污染比较严重,它对植物有着多方面的影响。植物既受到SO2污染的影响,又对SO2的影响具有一定程度的修复能力。本文总结了关于SO2单一污染物对植物生理生化的直接影响以及其适应机制,并提出对这方面研究的展望。 关键词:二氧化硫;植物;抗氧化酶 我国是以煤为主要能源的国家,所以我国的大气污染主要是以SO 2 污染为主。特别是近30年来我国经济的高速发展,更使煤炭以及石油的消耗量达到 了一个前所未有的高度,加剧了SO 2的排放污染。SO 2 是我国当前最主要 的大气污染物,在个别地区污染相当严重。SO 2 可通过气孔进入植物叶片细 胞后快速溶于细胞中,在细胞内释放出H+、HSO 3-和SO 3 2-等,从而对细 胞产生直接或间接的伤害。也可与其它大气污染物进行化学反应,生成各种硫酸盐,这些成分随雨水共同降落成为“酸雨”,能够导致土壤和水系的酸化,干扰植物的代谢,对生态系统有很大的破坏作用,从而间接地危害人类健康。关 于SO 2 污染环境对植物生理生化及生长发育的影响已引起了众多学者的关 注,并己取得了长足的进展。近年来,在SO 2 的植物伤害症状、伤害机理、对生理生化指标、植物组织结构影响等方面取的研究得了许多进展。 1.二氧化硫对植物形态的影响 李利红,仪慧兰[1]等采用室内培养及密闭箱静态熏气方法,研究了不同浓 度SO 2暴露对拟南芥叶片形态的影响,结果显示:SO 2 暴露对拟南芥成熟 叶片的伤害主要是叶面伤害斑的出现和叶片枯死,伤

害程度与暴露浓度和时间呈正相关,暴露于低浓度SO 2 时叶面无伤害斑,随 时间推移有少数叶片边缘卷曲,但在停止暴露后恢复正常;中浓度时暴露的植株叶片出现大小不等的透明斑,随着暴露时间的延长,伤害症状发展为坏死斑, 暴露于高浓度SO 2 的植株,叶片很快出现不规则形的黄色坏死斑,坏 死斑的面积随暴露时间的延长而扩大,之后叶片大量枯死。但在脱离高浓度S O 2 后伤害性斑点不再增加,并能继续生长发育。 SO 2暴露对拟南芥植株的生长发育具有双向作用,较低浓度SO 2 暴露 对植株的生长发育有一定的促进作用,高浓度SO 2 暴露会抑制植株的生长发育,使株高、单株叶片数和单叶面积呈浓度依赖性减少。 2二氧化硫对植物生理生化的影响 2.1二氧化硫对植物气孔的影响 气孔是植物与外界环境间气体交换的主要通道,气体污染物主要通过气孔进入叶组织,因此气孔在大气污染物对植物的影响中占有相当重要的地位。高吉喜 [2]通过试验表明:通常情况下 SO2 促使植物气孔关闭,但也有某些植物经S O 2熏气后气孔关闭。气孔对SO 2 浓度的反应通常是SO 2 浓度越大,气孔 反应越快。 2.2二氧化硫对植物细胞膜的影响 细胞膜是植物细胞的重要组成部分,起着调节控制细胞内外物质交流的屏障作用,当植物处在不利环境条件下时,刺激首先作用于细胞膜。大量观察研 究表明,细胞膜也是SO 2作用的最初部位,在植物接触高浓度SO 2 后,膜 首先受到损伤,继而膜透性发生改变。植物膜透性对SO 2 的反应差异通常与 植物的抗性有关,抗SO 2强的植物,细胞膜对SO 2 的反应不敏感,反之则很

干旱胁迫对植物的影响

干旱胁迫对植物影响 摘要:胁迫严重影响着植物的生长发育,如干旱胁迫,可造成经济作物产量的逐年大幅下降[1],它们不能逃避不利的环境变化, 它 们需要快速的感应胁迫刺激进而适应各种环境胁迫。大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。我们都知道 ,水分在植物的生命活动中起着重要的作用,不仅是光合作用的原料之一,而且还维持着植物的正常体态。因此,我们要用各种预防途径来减少干旱对植物的影响。 关键词:干旱胁迫植物影响 Drought stress impact on plants Abstract : stress seriously influence the plant growth and development, such as drought stress, which can cause economic crop production has fallen dramatically year by year [1], they cannot escape from adverse environmental change, they need fast induction stress stimulation and adapt to various environmental stresses. Most plants by drought adversity after various physiological processes are subject to the influence of different level. As we all know, water in the plant life activities play an important role, not only is one of the raw material of photosynthesis, but also maintains the normal posture of plants. Therefore, we want to use a variety of preventive ways to minimize the effects of drought on plant.

关于环境因素对植物生长影响或者作用的论文

第一节植物分类概述(1 学时)一、分类原则1.人为分类2.自然分类3.细胞遗传学——物种生物学4.化学分类学5.数量分类学二、分类单位和命名1.植物分类的基本单位2.命名原则三、界和门的划分1.界的划分:二界说、新二界说、三界说、五界说、六界说2.植物门的划分:菌藻植物、苔藓植物、蕨类植物、种子植物 第二节原核生物 (1 学时)一、细菌门1.细菌的主要特征2.细菌的分类3.细菌的繁殖方式二、蓝藻门1.蓝藻与细菌的区别2.蓝藻的主要特征3.原核生物的生活史第三节真核藻类和真菌、地衣(1 学时)一、藻类(Algae) 1.藻类的主要特征2.藻类的种类、门类3.藻类的繁殖方式二、真菌(Fungi) 1.真菌的主要特征2.真菌的种类3.真菌的繁殖方式4.真菌的演化历史三、地衣

1.地衣的主要特征:形态、结构、繁殖等特点2.地衣的种类3.地衣的生境与分布第四节苔藓和蕨类植物(1 学时)一、苔藓植物1.苔藓植物的主要特征2.苔藓植物的分类3.苔藓植物的繁殖方式4.苔藓植物的分布与生境二、蕨类植物1.蕨类植物的主要特征2.蕨类植物的分类概况3.蕨类植物的繁殖方式4.蕨类植物的生境与分布第五节种子植物(1 学时)一、裸子植物1.裸子植物的生活史2.裸子植物的主要特征3.裸子植物的分类及主要代表类型二、被子植物1.被子植物的生活史2.被子植物的的主要特征3.被子植物的主要分类系统 第二章植物生活和环境(9 学时)——植物生态类群的分化本章的教学目的与要求:掌握植物个体与环境条件之间的相互关系,掌握环境和生态因素的概念,了解生态因素对植物作用的特点;掌握各生态因素对植物的影响以及植物对生态因素生态适应特点。重点:环境与生态因素的概念、植物对各生态因子的生态适应特征。难点:植物适应性的形成。第一节概述(1 学时)一、环境与生态因子1.基本概念:环境、环境因子、生态因子、非生态因子、生态环境、小生境、

氮磷钾对植物作用

目录 1. 1 氮 2. 2 磷 3. 3 钾 氮磷钾氮 编辑 是植物生长的必需养分,它是每个活细胞的组成部分。植物需要大量氮。 氮素是植物体内蛋白质、核酸和叶绿素的组成成分[1],叶绿素a和叶绿素b;都是含氮化合物。绿色植物进行光合作用,使光能转变为化学能,把无机物(二氧化碳和水)转变为有机物(葡萄糖)和氧气,是借助于叶绿素的作用。葡萄糖是植物体内合成各种有机物的原料,而叶绿素则是植物叶子制造“粮食”的工厂。氮也是植物体内维生素和能量系统的组成部分。 氮素对植物生长发育的影响是十分明显的。当氮素充足时,植物可合成较多的蛋白质,促进细胞的分裂和增长,因此植物叶面积增长快,能有更多的叶面积用来进行光合作用。 此外,氮素的丰缺与叶子中叶绿素含量有密切的关系。这就使得我们能从叶面积的大小和叶色深浅上来判断氮素营养的供应状况。在苗期,一般植物缺氮往往表现为生长缓慢,植株矮小,叶片薄而小,叶色缺绿发黄。禾本科作物则表现为分孽少。生长后期严重缺氮时,则表现为穗短小,籽粒不饱满。在增施氮肥以后,对促进植物生长健壮有明显的作用。往往施用后,叶色很快转绿,生长量增加。但是氮肥用量不宜过多,过量施用氮素时,叶绿素数量增多,能使叶子更长久地保持绿色,以致有延长生育期、贪青晚熟的趋势。对一些块根、块茎作物,如糖用甜菜,氮素过多时,有时表现为叶子的生长量显著增加,但具有经济价值的块根产量却少得使人失望。 我国土壤全氮含量的分布 植物养分的主要来源是土壤。我国土壤全氮含量的基本分布特点是:东北平原较高,黄淮海平原、西北高原、蒙新地区较低,华东、华南、中南、西南地区中等。大体呈现南北较高,中部略低的分布。但南方略高主要指水稻土,旱地含氮量很低。 一般认为土壤全氮含量<0.2%即有可能缺氮,我国大部分耕地的土壤全氮含量都在 0.2%以下,这就是为什么我国几乎所有农田都需要施用化学氮肥的原因。 我国农田相对严重缺氮的土壤主要分布在我国的西北和华北地区。如果把土壤全氮含量等于0.075% 作为严重缺氮的界限,严重缺氮耕地超过面积一半的有山东、河北、河南、陕西、新疆等五个省区。 氮磷钾磷 编辑

干旱胁迫对小麦幼苗生理生化指标的影响

干旱胁迫对小麦幼苗生理生化指标的影响 摘要:以小麦幼苗为试验材料,研究干旱胁迫对小麦生理生化指标脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)、抗坏血酸(ASA)的含量的影响。试验结果表明:在干旱胁迫下除发芽率下降外,小麦幼苗的脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)的含量都比正常情况下小麦幼苗的含量多。 关键词:干旱胁迫小麦幼苗生理生化指标 引言:植物体生存在自然环境中,其水热条件随时都变化,对植物多少会产生一些影响。凡是对植物产生伤害的环境都被称为逆境,也称胁迫。干旱也属于逆境,水分在植物的生命活动中占主导地位。大多数植物遭受干旱逆境后各个生理过程都会受到不同程度的影响。如生理生化指标脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)等发生变化。小麦的生长不仅受到自身遗传物质的控制,还受到众多环境因子的影响,如光、温、水和土壤营养物质等。世界上约有70%的小麦播种面积分布在干旱、半干旱农业区,干旱对小麦的生理、生化都产生重要的影响,进而影响小麦的生长发育、产量和品质。因此,为了减小环境对小麦生产的影响,有必要从小麦的各项生理生化指标含量的变化,来研究干旱胁迫对小麦的影响。本次实验是研究吸胀12小时萌发一周后,干旱处理一周的小麦其生理生化指标脯氨酸(Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO、POD)、谷胱甘肽(GSH)、抗坏血酸(ASA)含量的变化。

一、材料与方法 1、材料及处理 将吸胀12小时的小麦种子在有6层湿润滤纸的带盖白磁盘 (24cmX16cm )培养基中生长7天,7天后将其中一部分幼苗干旱生长7 天,7天后用相同的方法分别对实验组和对照组的小麦进行脯氨酸 (Pro)、丙二醛(MDA)、过氧化氢(H2O2)、抗氧化酶(PPO 、POD )、谷胱 甘肽(GSH)、抗坏血酸(ASA )的含量的测定。 2、测定方法[1] (1)小麦种子发芽率的测定 各取50粒吸胀的小麦种子→沿胚的中心线切成两半(严格区分两 个半粒),进行下列实验:其中50个半粒进行TTC 染色(30℃水浴 20 min ) ,另50个半粒进行曙红染色(室温染色10 min ) 根据两种方 法的染色情况,分别计算发芽率。 (2)脯氨酸(Pro)含量的测定 ①脯氨酸(Pro)的提取:分别取实验组和对照组的胚芽鞘→加入 3 mL 3%磺基水杨酸(SSA )和少许石英砂→充分研磨→用 2 mL 3% SSA 洗研钵→5000 rpm 离心10 min →上清液定容至5 mL 。 ②脯氨酸(Pro)的测定:上清液各2 mL →分别加入2 mL 冰乙酸和 2 mL 茚三酮试剂→煮沸15 min→冷却后→5000 rpm 离心10 min (若没 沉淀可略此步骤) →分别测定A 520, 将测得的结果用公式 Pro content = 用总显V V V W L A ????ε520计算出正常和干旱生长小麦

相关文档
相关文档 最新文档