文档库 最新最全的文档下载
当前位置:文档库 › 高等数学思想方法

高等数学思想方法

高等数学思想方法
高等数学思想方法

高等数学思想方法

第一章函数与极限

主要的思想方法:

(1)函数的思想

高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。

(2)极限的思想

极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。

第二章导数与微分

主要的思想方法:

(1)微分的思想

微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。

(2)数形结合的思想

书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。

(3)极限的思想

不难发现导数概念的引入与定义深刻地体现了极限的思想。

(4)逻辑思维方法

在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。

第三章中值定理与导数的应用

主要的思想方法:

导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

导数是一种工具,而中值定理(微分基本定理)则是微分学的理论基础,它更加深刻地揭示了可导函数的性质。一方面,在中值定理及其推导过程中,不仅用到了演绎,分析,分类等数理逻辑方法(锻炼提升逻辑思维能力),而且包含了一些具体的数学方法,如辅助函数的构造(凑导数法,几何直观解题法,常数替代法,倒推法,乘积因子法),这就要求我们要培养直觉思维,发散思维等创新思维;另一方面,导数在解决实际问题中的应用广泛,这要求我们要有应用数学的意识。

第四章不定积分

主要的思想方法:

积分法是微分法的逆运算,即已知函数的导数,求原函数问题(由一个函数的导数求这个函数)。

不定积分的积分法:

(1)直接积分法:直接或将被积函数恒等变形后利用基本积分公式和不定积分的性质求积分;

(2)换元积分法:1.第一类换元法(凑微分法);2.第二类换元法(主要有三角代换,根代换,倒代换);

(3)分部积分法;

(4)几种特殊类型函数的积分:有理函数的积分,三角函数有理式的积分,简单无理函数的积分;

(5)其它常见的积分方法:拆项法,加减项法,同乘以(或除以)一因式法,降次法,先凑微分后化为同名函数法等。

第五章定积分

主要的思想方法:

定积分的几何意义是函数f(x)在区间[a,b]的图形与x轴所界定区域的面积。定积分完整地体现了积分思想——一种认识问题,分析问题,解决问题的思想方法,定积分的概念借助极限工具,以一种结构式的形式严格定义,理解掌握这种通过“分割”,“近似”。“求和”,“取极限”的数学思想对后面重积分,曲线积分与曲面积分的学习有重要作用。定积分与微分学不仅是高等数学的重要内容,也是研究科学技术问题的数学工具。

“分割”,“近似”,“求和”,“取极限”所反映出来的积分思想是微积分的核心思想。

第六章定积分的应用

主要的思想方法:

定积分的应用实质上是运用定积分理论来分析与解决一些几何与物理学中的问题。

定积分解决实际问题的方法:

(1)根据定积分的定义,利用分割,近似替代,求和,取极限这四个步骤来推导出所求量的积分表达式;

(2)“元素法”:将实际问题(几何,物理)转化为定积分,如计算平面区域的面积,平面曲线的弧长,用截面面积计算体积,计算旋转体的体积,计算变力做功等。

在本章的学习中可以增强我们的应用数学的意识并且有助于我们提高我们应用定积分解决实际问题的能力。

第七章空间解析几何与向量代数

主要的思想方法:

空间解析几何借助于空间坐标,建立空间的曲面曲线方程,利用代数方法研究图形的几何性质;向量代数在高等数学中为空间解析几何服务,它实质是作为一种研究空间图形性质的重要工具。空间解析几何与向量代数是学习多元函数微积分的基础,学习这部分知识的主要目的是为研究多元函数微积分理论提供一个直观的空间几何图形。

借助向量研究空间图形的性质,建立空间图形的方程,这是本章中体现的一种重要的数学思想方法,我们要树立应用向量这一重要的数学工具研究与解决问题的意识;此外本章中最基本的数学思想是“数形结合”的思想。

第八章多元函数微分学

主要的思想方法:

多元函数微分学是一元函数微分学理论的推广与发展,因此运用类比的思想方法来学习这一章内容会起到事半功倍的作用。我们要培养类比思想这一创新的思维。

第九章重积分

主要的思想方法:

本章中着重讨论的二重积分与三重积分的理论是多元函数积分学的重要内容。重积分与定积分一样,都是某种特殊形式和的极限,基本思想是“分割,近似,求和,取极限”,定积分的被积函数是一元函数,积分区域是一个确定的区间,而二,三重积分的被积函数是二,三元函数,积分区域是一个平面有界闭区域和一个空间有界闭区域,因此重积分是一元函数定积分的推广与发展。

重积分的计算方法中体现的基本思想是:将重积分化为累次积分,而化为累次积分的关键是由被积函数的积分区域的特性来确定定积分的次序和积分限。

第十章曲线积分与曲面积分

主要的思想方法:

曲线积分与曲面积分是多元函数积分学的重要组成部分,对弧长的曲线积分和对面积的曲面积分是定积分和二重积分的直接推广,两者又均有物理学背景,因此它们在解决几何与物理学的实际应用问题中有重要作用。在计算上,将平面或空间曲线积分化为定积分的计算,将空间曲面积分化为投影区域上的二重积分的计算;在理论上,建立了平面闭曲线上对坐标的曲线积分与该曲线围成的闭区域上的二重积分的关系,建立了闭曲面上对坐标的曲面积分与该闭曲面围成的空间闭区域上的二重积分的关系。这些就帮助我们更加深刻地掌握高等数学的思想方法。

格林公式的思想方法:格林公式实现了闭区域上的二重积分与区域的边界曲线上的曲线积分的相互转化,它可视作是定积分中的牛顿-莱布尼茨公式的一个推广。

高斯公式的思想方法:高斯公式描述了在空间立体上的三重积分与其边界曲面上的曲面积分之间的关系,它可视作是牛顿-莱布尼茨公式和格林公式的推广,同时它还是计算曲面积分的一个重要手段。注意在曲面不封闭的情况下,应先添补曲面构成封闭曲面,再利用高斯公式,这是计算曲面积分的常用方法。

第十一章无穷级数

主要的思想方法:

无穷级数是一种研究与表示函数及数值计算的专门工具与重要方法,是高等数学的一个重要组成部分。

在本章中,收敛与发散及其重要理论是建立在极限的基础之上的,函数展开成幂级数的主要依据是微分学中的泰勒定理,幂级数的运算中要用到求导数与定积分的计算,由此可见,无穷级数与微积分的其它内容之间有非常紧密的联系。

第十二章常微分方程

主要的思想方法:

常微分方程是指含有一元未知函数及其导数或微分的方程,它是研究函数的重要工具。

建立常微分方程要用到导数的概念,而解常微分方程则要用到积分法,因此常微分方程是在微积分基础上的发展与应用。

每种类型的常微分方程都有广泛的实际背景,因此我们要有应用数学的意识,通过建立数学模型来求解实际问题中的微分方程,在求解前需要分析与明确常微分方程的类型,并在掌握各种微分方程的相应的解法的基础上求解答案,同时掌握变量替换法,常数变易法,待定系数法等具体的数学方法对求解微分方程有重要的作用。

七大基本数学思想方法

学习数学可以简要地分为三个层次(或称境界):第一层次,深刻和熟练地掌握基础知识和基本概念及其本质并且初步拥有运用数学思想方法的意识,明确各类基础题型的解题方法与步骤,在不断的练习中锻炼与加强自己的准确的抽象运算能力和严谨的逻辑推理能力;第二层次,在进一步加深对数学思想方法的理解的基础上,进行专题性质的知识总结从中发现各部分数学内容内在的紧密联系并逐渐做到掌握与运用,与此同时,加强数学建模的意识与应用能力,能够发现实际问题中的数学模型并凭此解决联系生产生活实际的应用问题;第三层次,深刻地理解与把握各类数学思想方法,对某一具体问题有更加深层的研究(譬如求极限的方法的归纳总结,涉及绝对值的问题,高等数学中应用微积分证明不等式的探讨等等),在面对新情境新背景下的理论或实际问题时,既能快速明确问题中的知识载体,也能在数学解题能力得到提升与强化的基础上,能够综合运用基础知识与数学思想方法,分析与解决具有综合性的新数学问题(平时就需要加强这一方面的能力)或更高知识层次的数学问题(为此可略览硕士阶段数学知识做个大概的了解)。以此提高数学思维品质(想象力,创新思维,抽象性,灵活性,深刻性)。

基本概念与基础知识是“载体”,解题方法是“手段”,数学思想才是“深化与核心”,是分析与解决问题的“灵魂”,深刻理解与熟练运用数学思想有助于我们锻炼与形成高层次的数学思维,高水平的数学素质。

数学思想是指人们对数学理论与内容的本质的认识,而数学方法则是数学思想的具体化形式,两者本质相同,因此通常混称为“数学思想方法”。下面是七大基本的数学思想方法(前四个为常用的思想方法):

一.函数与方程思想

1.函数思想是对函数内容在更高层次的抽象,概括与提炼,它要求我们要用函数的概念与性质去分析问题,转化问题和解决问题;在实际问题中,

函数思想通过提出该问题中的数学特征,建立与构造函数关系型的数学模型(方程,不等式或方程与不等式的混合组)并利用函数的性质,最后通过求解函数解析式来解决问题。

2.方程思想:实际问题~数学问题~代数问题~方程问题;方程思想

是解决各类计算问题的基本思想,也是运算能力的基础。

二.数形结合思想

1.数学研究的对象是数量关系与空间形式,即数与形两个方面,在

高等数学中,关于空间解析几何的内容就是数形结合思想的体现。

2.数形结合思想的实质:将抽象的数学语言与直观的几何图形有机

结合;关键在于代数问题与几何图形之间的转化,而代数问题几何化(数到形的转化)相对简便,几何问题代数化则需要严密的推理论证,它考察我们的逻辑推理能力的高低。

3.运用数形结合思想分析与解决问题的三点注意:掌握相关概念与

运算的几何意义及几何图形(曲线,曲面)的代数特征,对具体题目而言,要分析条件与结论的几何意义和代数意义;恰当设参,合理用参,建立关系,由数思形,以形想数,完成数与形的转化;正确确定参数的取值范围。

三.分类讨论思想

1.分类是自然科学研究中的一种逻辑方法,是一种重要的数学思想,

也是一种重要的解题策略,它体现了化整为零,积零为整的思想与归类整理的方法。

2.分类讨论分为三种情形:问题涉及的数学概念是分类进行定义

的,如绝对值问题,此为概念型分类讨论题型;问题所涉及的数学定理,公式与运算性质,法则有范围或有条件限制抑或是分类给出的,此为性质型分类讨论题型;问题中含字母参数,这需要根据参数的不同取值范围进行讨论,此为含参型分类讨论题型。

3.进行科学划分(不漏不重)是解决问题的手段,分类研究才是根本目的。

4.解决分类讨论问题的基本方法与步骤为:首先确定讨论对象及所

要讨论对象的全体的范围;其次具体问题具体分析,选取适当的分类标准,合理分类;对所分类逐步进行讨论,分级进行,获得阶段性结果;最后进行归纳总结,综合得出结论。

四.化归与转化思想

1.化归与转化的目的:将复杂问题化归为简单问题,将较难问题化

为较易问题,将未解决的新背景下的陌生问题转化为已解决的熟悉问题。

2.此数学思想灵活度高,具有多样性,无统一模式,我们要用动态思维来寻找有利于解决问题的变换(转化)途径与方法。

3.常用的变换方法:一般与特殊的转化,繁与简的转化,灵活巧妙地构造转化,命题的等价转化。

4.等价转化思想方法:它可以实现数与数,形与形,数与形的相互

转换;在分析与解决实际问题的过程中,实现普通语言向数学语言的翻译;函数,方程,不等式之间的恒等变形。消去法,换元法,数形结合法,求值求范围问题都体现了等价转化思想。

五.特殊与一般思想

1.特殊到一般的本质:通过对个例的认识与研究,形成对事物本质的

认知;这是一个由浅入深,由现象到本质,由局部到整体,由实践到理论的过程。

2.该思想的具体应用:构造特殊函数,特殊数列;寻找特殊点,确立

特殊位置;利用特殊值,特殊方程。

六.有限与无限的思想

1.解决无限问题:将无限问题转化为有限问题。

2.实例:利用定积分的定义求曲边梯形的面积,先进行有限次分割,

再取近似,最后求和取极限,这是典型的有限与无限这一数学思想的应用。

七.或然与必然的思想

1.随机现象两个最基本的特征:结果的随机性和频率的稳定性。

2.从偶然中寻找必然,再用必然规律解决偶然。

3.等可能性事件的概率;

互斥事件中有一个发生的概率;

相互独立事件同时发生的概率;

独立重复试验+随机事件的分布列+数学期望。

高等数学证明方法

(3)反证法 这种证法是从反面考虑问题。先假设在已知条件成立的情况下,要证的结论不成立,而后从已知条件出发,运用基本概念和基本定理,通过逻辑推理导出矛盾(或与已知条件矛盾;或与某一已知概念、公式、公理、定理等矛盾;或自相矛盾等),这样则否定假设,从而肯定原结论正确。 例如,证明不是的多项式. 事实上,利用反证法,设是的多项式,不妨记此多项式为次多项式,即,则有 于是次多项式有无穷多个不同实根,这与次多项式最多只有个不同实根相矛盾,由此证明了不是的多项式. 又如,证明不存在(为自然数). 事实上,利用反证法,假设存在且设,则有 又因为 所以有 故 这与产生矛盾,因此不存在. (2)分析法 这种方法基本思路是逆着想。先假设结论正确,运用已有的定义、定理、公式、性质,从后向前一步一步地分析,直至推出已知条件,即由结论找需知,再找需知,……,直至已知。这种“执果溯因”的方法,叫做分析法。 分析法是探求证题途径的重要方法之一。它的优点在于思考过程比较自然,目的明确,较为容易找到证明的思路,但缺点是分析的过程叙述起来往往比较繁琐,因而过程多在草稿纸上进行,不正式写出。在实际解题时,特别对于一些较难的问题,常常先用分析法寻找解题的途径,然后再用综合法叙述解题过程,这种方法也可叫做分析综合法。 例如,设在时连续,且;而在时有单调递增导数,试证在时是单调递增的。 事实上,欲证为单调递增,只需证明就行了,而由于 因此就归结为证明. 利用拉格朗日中值定理及已知条件,有 单调递增 因此在时是单调递增的. 又如,用极限定义证明一数列或函数有已知极限时,多采用分析综合法证明。比如证明,其方法如下: ,欲使不等式成立, 由 所以只需,即成立. 取,于是当时,就有,从而保证了希望的不等式成立. 综合以上分析,就有 ,当时,,根据极限定义,有

高等数学的数学思想方法研究.doc

讲座题目高等数学的数学思想方法研究所属学科数学教育学 讲座时间2007年5月持续时间 最后学历研究生最后学位硕士 研究方向数学教育研究专长教育管理职称教授职务 学术特长及成果简介: 学术特长是数学教育学有关的课题和教育管理有关的课题。主要研究成果如下: 1、2006年9月完成了2004——2005年度中国职业技术教育学会科研规划项目《高职院校推进 学分制管理的研究与实践》,并获得结题证书。 2、论文《完善选课制是实行学分制的精髓》2005年12月发表在《长春教育学院学报》上。 3、论文《专升本院校实行学分制的几点思考》2006年10月发表在《中国育人杂志》上。 讲座内容介绍:(包括:选题意义和价值、研究现状、主要内容、观点和创新之处、主要 参考文献等。限2000字以内。) 一、选题意义和价值 为适应二十一世纪科技与社经的发展,培养大批具有高综合素质的创新型人才,我国正在进行从 应试教育向素质教育转轨的伟大改革,并提出在素质教育中着重培养学生的创新精神和实践能力的现 代教育目标。为实现这一目标,自九十年代初以来,高等数学教育也和其它学科教育一样,从教学思 想、教学内容、课程设置、教学方法和教学手段等方面进行了一系列的改革试验,并取得了初步的成 效。例如随着人们愈来愈认识到高等数学在大学人文素质教育中不可或缺的普遍和重要的作用,我国 许多重点的文史、外语和艺术等文科专业都开设了《大学数学》这一课程,又如为了加强教学建模和 运用计算机解决实际问题的能力,有些院校在高等数学中开设了《数学实验》或《数学建模》的课程,这是可喜的试验,但是高等数学的教育改革涉及面广,内容庞杂,矛盾和问题都较多,因此它的改革 是一项复杂的系统工程。当前如何把高等数学教育改革有序和有效地深入下去?当然这有许多方面的 工作要协同配合去做,我们认为其中根本的一项就是要改革在高等数学教学中相当普遍存在的形式主 义弊端——只注重纯数学知识与技能的传授而忽视对蕴涵于其中的数学思想方法的教学。为此必须认 真研究在高等数学教学全过程中,如何有效地加强数学思想方法教学的问题,提升一点来说,就是要 在所有数学教学活动中,结合具体的数学内容和活动形式,适当进行数学方法论的教育。 二、研究现状及主要内容 著名数学家和数学教育家徐利治教授认为“数学方法论主要是研究和讨论数学的发展规律、数学思想方法以及数学中的发现发明与创新法则的一门学问”。[1]自80年代初,徐教授倡导数学方法论以来,这一学科在国内至今已有了很大发展,取得了不少理论成果,出版了许多有关的著作,特别自90年代以来,不少数学教育工作者把它应用于指导中学数学教育改革的具体实践,取得了很大的成效[2]。至于应用数学方法论指导高校数学教育改革的研究与实践至今只看到少量个别的报导,看来这方面还 未引起高校广大数学教育工作者足够的重视,本讲座试图对高等数学加强数学思想方法教学的意义, 它包含那些基本的数学思想方法以及如何加强这方面的教学作一初步阐述。 三、观点和创新之处 1.首先,各方在思想上要真正重视,尽快把数学思想方法的教学正式纳入高等数学教学大纲。 要在大纲中明确规定数学思想方法的教学目标、基本教学内容和具体的要求。这是落实加强数学思想

高等数学基本知识点大全

高等数学基本知识点

一、函数与极限 1、集合的概念 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 ⑶、邻域:设α与δ是两个实数,且δ>0.满足不等式│x-α│<δ的实数x的全体称为点α的δ邻域,点α称为此邻域的中心,δ称为此邻域的半径。 2、函数 ⑴、函数的定义:如果当变量x在其变化范围内任意取定一个数值时,量y按照一定的法则f总有确定的数值与它对应,则称y是x的函数。变量x的变化范围叫做这个函数的定义域。通常x叫做自变量,y 叫做函数值(或因变量),变量y的变化范围叫做这个函数的值域。注:为了表明y是x的函数,我们用记号y=f(x)、y=F(x)等等来表示。这里的字母"f"、"F"表示y与x之间的对应法则即函数关系,它们是可以任意采用不同的字母来表示的。如果自变量在定义域内任取一个确定的值时,函数只有一个确定的值和它对应,这种函数叫做单值函数,否则叫做多值函数。这里我们只讨论单值函数。 ⑵、函数相等 由函数的定义可知,一个函数的构成要素为:定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,我们就称两个函数相等。 ⑶、域函数的表示方法 a):解析法:用数学式子表示自变量和因变量之间的对应关系的方法即是解析法。例:直角坐标系中,半径为r、圆心在原点的圆的方程是:x2+y2=r2 b):表格法:将一系列的自变量值与对应的函数值列成表来表示函数关系的方法即是表格法。例:在实际应用中,我们经常会用到的平方表,三角函数表等都是用表格法表示的函数。 c):图示法:用坐标平面上曲线来表示函数的方法即是图示法。一般用横坐标表示自变量,纵坐标表示因变量。例:直角坐标系中,半径为r、圆心在原点的圆用图示法表示为: 3、函数的简单性态 ⑴、函数的有界性:如果对属于某一区间I的所有x值总有│f(x)│≤M成立,其中M是一个与x无关的常数,那么我们就称f(x)在区间I有界,否则便称无界。 注:一个函数,如果在其整个定义域内有界,则称为有界函数 例题:函数cosx在(-∞,+∞)内是有界的. ⑵、函数的单调性:如果函数在区间(a,b)内随着x增大而增大,即:对于(a,b)内任意两点x1

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.wendangku.net/doc/2612477141.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.wendangku.net/doc/2612477141.html,) 原文地址: https://www.wendangku.net/doc/2612477141.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

高等数学思想方法

高等数学思想方法 第一章函数与极限 主要的思想方法: (1)函数的思想 高等数学的核心内容是微积分,而函数是微积分的主要研究对象。我们在运用微积分解决实际问题时,首先就要从实际问题中抽象出变量与变量之间的函数关系,这是一个通过现象抽象出本质特征的思维过程,体现的是科学的抽象是数学的一个思维方法和主要特征。 (2)极限的思想 极限的思想方法是微积分的基础。极限是变量在无限变化过程中的变化趋势,是一个确定的数值。把一些实际问题的确定结果视为一系列的无限近似数值的变化趋势,即函数或者数列的极限,这是一种重要的数学思想方法。 第二章导数与微分 主要的思想方法: (1)微分的思想 微分表示自变量有微小变化时函数的近似变化,一般地,求导的过程就称为微分;导数则反映函数相对于自变量的瞬时变化率。从导数与微分的概念中可看出,在局部的“以直代曲”的微分思想得到了充分的体现,而这也是微积分的一个基本思想。 (2)数形结合的思想 书本中在引入导数与微分概念时,也讨论了它们的几何意义,这显然更好地帮助我们理解这两个概念。通过几何图形来直观地理解概念以及定理的证明等等内容是高等数学中常用的方法,这是抽象思维与现象思维有机结合的典型体现。 (3)极限的思想 不难发现导数概念的引入与定义深刻地体现了极限的思想。 (4)逻辑思维方法 在本章中,归纳法(从特殊到一般),分类(整合)法等逻辑思维方法都得到了充分的体现,理解与掌握此类思维方法有助于良好的理性思维的形成。 第三章中值定理与导数的应用 主要的思想方法: 导数本质上是一种刻画函数在某一点处变化率的数学模型,它实质上反映了函数在该点处的局部变化性态;而中值定理则是联系函数局部性质与整体性质的“桥梁”,利用中值定理我们就能够从函数的局部性质推断函数的整体性质,具体表现为在理论和实际问题中可利用中值定理把握函数在某区间内一点处的导数与函数在该区间整体性质的关系。

高数中需要掌握证明过程的定理

高数中的重要定理与公式及其证明(一) 考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都是应该掌握的。但考研数学毕竟不是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。 应深受大家敬佩的静水深流力邀,也为了方便各位师弟师妹复习,不才凭借自己对考研数学的一点了解,总结了高数上册中需要掌握证明过程的公式定理。这些证明过程,或是直接的考点,或是蕴含了重要的解题思想方法,从长远来看都是应当熟练掌握的。 由于水平有限,总结不是很全面,但大家在复习之初,先掌握这些公式定理证明过程是必要的。 1)常用的极限 0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想 过它们的由来呢?事实上,这几个公式都是两个重要极限1 lim (1 )x x x e →+=与0sin lim 1x x x →=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技 巧。 证明: 0ln(1)lim 1x x x →+=:由极限1 0lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x →+=。 01 lim 1x x e x →-=:在等式0ln(1)lim 1x x x →+=中,令ln(1)x t +=,则1t x e =-。由于极限过程是0x →,此时也有0t →,因此有0 lim 11 t t t e →=-。极限的值与取极限的符号是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01 lim 1x x e x →-=。 01lim ln x x a a x →-=:利用对数恒等式得ln 0011 lim lim x x a x x a e x x →→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01 lim ln x x a a x →-=。

大学高数学习方法总结

2014年大学高数学习方法总结 一提起“数学”课,大家都会觉得再熟悉不过了,从小学一直到高中,它几乎就是一门陪伴着我们成长的学科。然而即使有着大学之前近xx年的数学学习生涯,仍然会有很多同学在初学大学数学时遇到很多困惑与疑问,更可能会有一种摸不着头脑的感觉。那么,究竟应该如何在大学中学好高数呢? 在中学的时候,可能许多同学都比较喜欢学习数学,而且数学成绩也很优秀,因而这时是处于一种良性循环的状态,不会有太多的挫败感,因而也就不会太在意勇于面对的重要性。而刚一进入大学,由于理论体系的截然不同,我们会在学习开始阶段遇到不小的麻烦,甚至会有不如意的结果出现,这时就一定得坚持住,能够知难而进,继续跟随老师学习。 很多同学在刚入学不久,就是一直感觉很晕。对于上课老师所讲的知识,虽然表面上能听懂,但却不明白知识背后的真正原因,所以总是感觉学到的东西不实在。至于做题就更差劲了,“吉米多维奇”上的习题根本不敢去看,因为书上的课后习题都没几个会做的。这确实与高中的情形相差太大了,香港浸会大学的杨涛教授曾经在一次讲座中讲过:“在初学高数时感觉晕是很正常的,而且还得再晕几个月可能就好了。”所以关键是不要放弃,初学者必须要克服这个困难才能学好大学理论知识。除了要坚持外,还要注意不要在某些问题的解决上花费过多的时间。因为大学数学理论十分严谨,教科书在讲解初步知识时,有时会不可避免地用到一些以后才能学到的理论思想,因而在初步学习时就对着这种问题不放是十分不划算的。 所以,在开始学习数学时,可以考虑采取迂回的学习方式。先把那些一时难以想通的问题记下,转而继续学习后续知识,然后不时地回头复习,在复习时由于后面知识的积累就可能会想通以前遗留的问题,进而又能促进后面知识的深刻理解。这种迂回式的学习方法,使得温故不但能知新,而且还能更好地知故。篇二:高等数学学习方法及经验总结高等数学学习方法及经验总结 大学生学习高等数学要掌握合适的学习方法,因人而异,这里我只是结合我自己的一些学习方法和经验供大家参考。 高等数学作为高等教育的一门基础学科,几乎对所有的专业的学习都有帮助,对于我们飞行器动力工程专业,高等数学是联系物理,力学,以及贯穿于专业基础课的一把刃剑和纽带,对于大一这一年的学习尤为重要,只有打下坚实的基础,对于之后学习其他的学科,包括选修课中的工程数学的分支(复变函数,数理方程等),都有很大的帮助。 首先了解高等数学的组织结构,大一上学期主要学习极限,函数,以及微分和积分,(空间几何在下学期学),在期末考试中大多数都集中在积分和微分这部分。极限是积分和微分的基础,重要的概念和思想在学习极限这部分就会体现出来,有些问题运用基本定义就会迎刃而解,在掌握了基本概念和常用的解题方法后,学习起来就会很轻松;下学期比较重要,相对于上学期的内容也较丰富和复杂;对于偏导数和曲线积分、曲面积分,需要扎实的微积分思想,此外就是级数和微分方程;总之,高等数学可以说是积分,微分占据主要地位。 (一)做题的方法和技巧 学习高等数学的过程中必不可少的就是学习方法的及时总结,理想的情况下就是保证每个人手中都有一本课外的教辅书(个人推荐吉米多维奇),在平时做作业和做课外题目的过程中,自己会做的题目也要做到自己的思想和答案的思想进行比较,互相补充,遇到好的解题方法要记下来,要记的内容是题目,方法和自己的感受;遇到不明白的题目时不要浮躁,也不要着急先看答案,首先进行冷静的思考,要知道考的内容是什么,要用到什么知识点,然后一步一步看答案,这里我的意思是先看答案的第一步求解的问题是什么,然后停止看答案,想一想答案的这一步对你是否有启示作用,接下来自己试一试能不能继续独立往下做,如果不行的话继续往下看答案,直到做出来为止,做完后一定做好笔记。 (二)考试后的反思

高等数学基本知识

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A ∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A ∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

高等数学常见中值定理证明及应用

中值定理 首先我们来看看几大定理: 1、介值定理:设函数f(x)在闭区间[a,b]上连续,且在该区间的端点取不同的函数值f(a)=A及f(b)=B,那么对于A与B之间的任意一个数C,在开区间(a,b)内至少有一点ξ使得f(ξ)=C(a<ξ

(完整版)高数中需要掌握证明过程的定理(二)

高数中的重要定理与公式及其证明(二) 在第一期的资料内我们总结了高数前半部分需要掌握证明过程的定理,由于最近比较忙,所以一直没来得及写。现将后半部分补上。希望对大家有所帮助。 1)泰勒公式(皮亚诺余项) 设函数()f x 在点0x 处存在n 阶导数,则在0x 的某一邻域内成立 () ()()()2 00' '' ()000 00()()()()...()2! ! n n n x x x x f x f x x x f x f x f x o x x n --??=+-+ ++ +-?? 【点评】:泰勒公式在计算极限、高阶导数及证明题中有很重要的应用。对于它们,我们首要的任务是记住常见函数(sin ,cos ,ln(1),,(1)x a x x x e x ++)在0x =处的泰勒公式,并能利用它们计算其它一些简单函数的泰勒公式,然后在解题过程中加以应用。在复习的前期, 如果基础不是很好的话,两种不同形式的泰勒公式的证明可以先不看。但由于证明过程中所用到的方法还是很常用的。因此把它写在这里。 证明: 令()()()200'''() 00000()()()()()...()2!!n n x x x x R x f x f x x x f x f x f x n ??--=-+-+ ++?????? 则我们要证明()0()n R x o x x ??=-?? 。 由高阶无穷小量的定义可知,需要证明() 0() lim 0n x x R x x x →=-。 这个极限式的分子分母都趋于零,并且都是可导的, 因此用洛必达法则得 () ()()()() 1 ''''()0 0000100()()()...()1!() lim lim n n n n x x x x x x f x f x x x f x f x n R x x x n x x --→→??--+-++?? -????=-- 再次注意到该极限式的分子分母仍趋于零,并且也都是可导的,因此可以再次运用洛必达法则。 不难验证该过程可以一直进行下去, 运用过1n -次洛必达法则后我们可以得到 () ()() ()0 00 (1)(1)()00000(1) (1) () 000()()()() lim lim !()()() lim !! n n n n x x x x n n n x x f x f x x x f x R x n x x x x f x f x f x n x x n --→→--→---=---=- - 由于()f x 在点0x 处存在n 阶导数,由导数的定义可知() (1)(1)()000()() lim ()n n n x x f x f x f x x x --→-=-

高等数学积分思想

【总结2】定积分与不定积分 1.有关三角函数的不定积分的凑微分法 (1)??=);(sin )(sin cos )(sin x d x f xdx x f (2)??-=);(cos )(cos sin )(cos x d x f xdx x f (3);)(tan )(tan sec )(tan cos ) (tan 22???==x d x f xdx x f x dx x f (4);)(cot )(cot csc )cot (sin )(cot 22???-==x d x f xdx x f x dx x f (5)??=);(sec )(sec tan sec )(sec x d x f xdx x x f (6)??-=).(csc )(csc cot csc )(csc x d x f xdx x x f 2.利用下列微分关系式凑微分,求不定积分 (1))cos (sin 2cos x x d xdx = (2)?????-=-===) (cos )(cos cos 2)(sin )(sin sin 2cos sin 22sin 22x d x xd x d x xd xdx x xdx (3))()'()1()]([)](')([x x x xe d dx xe dx x e x xu d dx x xu x u ==+=+特别地,有 (4))1(122x d dx x x ±±=± (5))ln ()ln (x e d dx x e x e x x x =+ (6))ln ()ln 1(x x d dx x =+ (7) |)tan sec |(ln sec sin x x d xdx x dx +== (8)|)cot csc |(ln csc cos x x d xdx x dx -==

高等数学基本知识大全

高等数学

一、函数与极限 1、集合的概念 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说 A、B有包含关系,称集合A为集合B的子集,记作A B(或B A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集: ①全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集。通常记作U。

用微积分理论证明不等式的方法

用微积分理论证明不等式的方法 高等数学中所涉及到的不等式,大致可分为两种:函数不等式(含变量)和数值不等式(不含变量).对于前者,一般可直接或稍加变形构造一函数,从而可通过研究所构造函数的性质,进而证明不等式;对于后者,我们也可根据数值不等式的特点,巧妙的构造辅助函数,从而将数值不等式问题转化为函数的问题,研究方法正好与前者相似. 微积分是高等数学中的重要内容,以它为工具能较好的研究函数的形态,有些常规方法难于证明的不等式,若能根据不等式的结构特征,巧妙的构造函数,将不等式问题转化为函数的问题,利用微积分理论研究函数的性质,应用函数的性质证明不等式. 一、用导数定义证明不等式法 1.证明方法根据-导数定义 导数定义:设函数)(x f y =在点。0x 的某个邻域内有定义,若极限 x y x x x x x x f x f ??→?→=--lim lim 0) ()(0 存在,则称函数)(x f 在0x 可导,称这极限为函数)(x f y =在点0 x 的导数,记作)(0x f y '=. 2.证明方法: (1)找出0x ,使得)(0x f y '=恰为结论中不等式的一边;(2)利用导数的定义并结合已知条件去研究. 3.例 例1:设函数nx a x a x a x f n sin 2sin sin )(21+++= ,其中n a a a ,,21都为实数, n 为正整数,已知对于一切实数x ,有x x f sin )(≤,试证:1221≤+++n na a a . 证 明 : 因 nx na x a x a x f n cos 2cos 2cos )(21+++=' .则 n na a a f +++=' 212)0(. 得:x x f x x f x f x f f x x x ) ()(lim 0)0()()0(lim lim 00 →→→==--= '.由于x x f sin )(≤. 所以1sin )0(lim =≤ '→x x f x .即1221≤+++n na a a . 4.适用范围 用导数定义证明不等式,此方法得适用范围不广,我们应仔细观察问题中的条件与结论之间的关系.有些不等式符合导数的定义,因此可利用导数的定义将其形式转化,以达到化繁为简的目的. 二.用可导函数的单调性证明不等式法

高等数学中的重要思想方法

高等数学中的几种重要思想方法 中国地质大学(武汉)徐达 摘要:高等数学是工科类本科学生重要的基础课程,对同学们今后的学习、工作有极大帮助。本文通过列举并分析高等数学学习中的几种重要思想方法,并从这几种方法的原理、应用实例和适用条件等方面入手进行阐释,使高等数学的学习更科学、规范、高效。 关键词:高等数学;思想方法 Several important thinking methods of advanced mathematics XU Da Abstract: Advanced mathematics is an important basis course of engineering courses, which will be helpful for our study and work a lot in future. This article lists and analyzes several important thinking methods of mathematics learning and interprets some aspects of these methods including principles, using examples and suitable conditions. These will make advanced mathematics learning more scientific, normal and concentrated. Key words: advanced mathematics; important thinking methods 引言 高等数学的学习有着独特的复杂性。一方面,作为一门基础学科,高等数学在工科课程中有着无法替代的重要地位。另一方面,高等数学的内容较为繁多复杂,对学习者知识掌握的熟练性和知识运用的灵活性有很高要求,往往令很多同学感到困难或不易接受。因此,要想将高等数学学好,除了用功稳固知识的掌握,更要能学习这门学科的一些重要思想方法,以此为突破口,才能对课程内容及其延伸有更深的理解,才能将各部分的知识灵活运用,以达到事半功倍的效果。 本文着重总结了在高等数学中运用广泛,对学习者要求较高的四种思想方法,分别是函数与方程的思想、数形结合思想、分类讨论的思想和转化与化归的思想。如果能将以此为代表的思想方法深入研究、探讨,透彻理解,对高等数学的学习与知识运用有极大帮助。 一、函数与方程的思想 函数与方程的思想自始至终贯穿在高等数学的教材中.很好的掌握这种思想,用函数与方程的方法来解决高等数学中的一些问题,往往可以起到良好的效果.运用函数的方法,引入辅助函数,化静为动,化离散为连续,将所讨论的问题转化为函数与方程的问题加以解决,从而在更“一般”的角度上来解决“特殊”问题.这也正说明了用函数与方程的思想来解决问题,

高等数学各章知识结构

高等数学各章知识结构 一.总结构 数学中研究导数、微分及其应用的部分称为微分学,研究不定积分、定积分及其应用的部分称为积分学.微分学与积分学统称为微积分学. 微积分学是高等数学最基本、最重要的组成部分,是现代数学许多分支的基础,是人类认识客观世界、探索宇宙奥秘乃至人类自身的典型数学模型之一. 恩格斯(1820-1895)曾指出:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发明那样被看作人类精神的最高胜利了”. 微积分的发展历史曲折跌宕,撼人心灵,是培养人们正确世界观、科学方法论和对人们进行文化熏陶的极好素材(本部分内容详见光盘). 微积分是近代数学中最伟大的成就,对它的重要性无论做怎样的估计都不会过分. 冯. 诺伊曼 注:冯. 诺依曼(John von Neumann,1903-1957,匈牙利人),20世纪最杰出的数学家之一,在纯粹数学、应用数学、计算数学等许多分支,从集合论、数学基础到量子理论与算子理论等作多方面,他都作出了重要贡献. 他与经济学家合著的《博弈论与经济行为》奠定了对策论的基础,他发明的“流程图”沟通了数学语言与计算机语言,制造了第一台计算机,被人称为“计算机之父”.

微积分中重要的思想和方法: 1.“极限”方法,它是贯穿整个《微积分》始终。导数是一种特殊的函数极限;定积分是一种特殊和式的极限;级数归结为数列的极限;广义积分定义为常义积分的极限;各种重积分、曲线积分、曲面积分都分别是某种和式的极限。所以,极限理论是整个《微积分》的基础。尽管上述各种概念都是某种形式的极限,但是它们都有各自独特和十分丰富深刻的内容,这是《微积分》最有魅力的地方之一。 2.“逼近”思想,它在《微积分》处处体现。在近似计算中,用容易求的割线代替切线,用若干个小矩形面积之和代替所求曲边梯形面积;用折线段的长代替所求曲线的长;用多项式代替连续函数等。这种逼近思想在理论和实际中大量运用。 3.“求极限、求导数和求积分”是最基本的方法。熟练掌握求极限、求导数和求积分的方法,学习《微积分》就不会遇到太多困难,甚至能做到得心应手。 4.“特色定理”是《微积分》的支柱。夹逼定理、中值定理、微积分基本定理等是《微积分》中最深刻、最基本、最能体现《微积分》特色的定理,支撑起《微积分》的大厦。 5.“综合运用能力”是《微积分》学习的出发点和归宿。充分注重综合运用极限概念与方法的能力、综合运用导数与积分相结合的各种方法的能力、综合运用定积分思想方法解决问题的能力、综合运用一元和多元相结合方法的能力、综合运用各种方法解决实际问题的能力。

最新高等数学知识点(重点)

高等数学知识点总结 空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量);(填空选择题中考察) ③几种常见的旋转曲面、柱面、二次曲面;(重积分求体积时画图需要) ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角;(一般必考) ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程), 两直线的夹角、直线与平面的夹角;(一般必考) 空间解析几何和向量代数: 。 代表平行六面体的体积为锐角时, 向量的混合积:例:线速度:两向量之间的夹角:是一个数量轴的夹角。 与是向量在轴上的投影:点的距离:空间ααθθθ??,cos )(][..sin ,cos ,,cos Pr Pr )(Pr ,cos Pr )()()(22 2 2 2 2 2 212121*********c b a c c c b b b a a a c b a c b a r w v b a c b b b a a a k j i b a c b b b a a a b a b a b a b a b a b a b a b a a j a j a a j u AB j z z y y x x M M d z y x z y x z y x z y x z y x z y x z y x z z y y x x z z y y x x u u ??==??=?=?==?=++?++++=++=?=?+=+=-+-+-==

(马鞍面)双叶双曲面:单叶双曲面:、双曲面: 同号) (、抛物面:、椭球面:二次曲面: 参数方程:其中空间直线的方程:面的距离:平面外任意一点到该平、截距世方程:、一般方程:,其中、点法式:平面的方程: 1 1 3,,2221 1};,,{,1 302),,(},,,{0)()()(122 222222 22222 222 22220000002 220000000000=+-=-+=+=++??? ??+=+=+===-=-=-+++++= =++=+++==-+-+-c z b y a x c z b y a x q p z q y p x c z b y a x pt z z nt y y mt x x p n m s t p z z n y y m x x C B A D Cz By Ax d c z b y a x D Cz By Ax z y x M C B A n z z C y y B x x A 多元函数微分法及应用 z y z x y x y x y x y x F F y z F F x z z y x F dx dy F F y F F x dx y d F F dx dy y x F dy y v dx x v dv dy y u dx x u du y x v v y x u u x v v z x u u z x z y x v y x u f z t v v z t u u z dt dz t v t u f z y y x f x y x f dz z dz z u dy y u dx x u du dy y z dx x z dz - =??-=??=? -?? -??=-==??+??=??+??===??? ??+?????=??=?????+?????==?+?=≈???+??+??=??+??= , , 隐函数+, , 隐函数隐函数的求导公式:   时, ,当 : 多元复合函数的求导法全微分的近似计算: 全微分:0),,()()(0),(),(),()],(),,([)](),([),(),(22

考研高数不等式证明的方法

考研高数不等式证明的方法 不等式证明是考研数学试卷中的中上等难度题目,我们在复习的时候,一定要掌握好复习的方法。小编为大家精心准备了考研高数的知识点,欢迎大家前来阅读。 考研高数重难点:不等式证明的方法 利用微分中值定理:微分中值定理在高数的证明题中是非常大的,在等式和不等式的证明中都会用到。当不等式或其适当变形中有函数值之差时,一般可考虑用拉格朗日中值定理证明。柯西中值定理是拉格朗日中值定理的一个推广,当不等式或其适当变形中有两个函数在两点的函数值之差的比值时,可考虑用柯西中值定理证明。 利用定积分中值定理:该定理是在处理含有定积分的不等式证明中经常要用到的理论,一般只要求被积函数具有连续性即可。基本思路是通过定积分中值定理消去不等式中的积分号,从而与其他项作大小的比较,进而得出证明。 除此之外,最常用的方法是左右两边相减构造辅助函数,若函数的最小值为0或为常数,则该函数就是大于零的,从而不等式得以证明。 考研数学复习建议

一、打牢基础 “懂”,首先要求同学们对考研数学的形式、考研大纲及考研用书进行全面的分析与深入的了解。这个阶段,要求同学们全身心进行基础阶段的复习。这个阶段同学们一定要认真细致学习课本基本知识点,弄熟定义、公式、定理及相关习题。只有打牢基础,才能决胜千里。最后,要求同学们做好规划,合理安排复习,做好经常性的总结与归纳。 二、踏实前行 数学不像英语和政治科目,能通过一定的背诵、记忆,就能取得可观的成绩。数学必须通过大量的练习,才能得到巩固。不盲目地搞题海战术,要有计划、有针对性地做题,才能将知识领悟得透彻。强化阶段,同学们一定要利用好复习资料,做题的过程中,重点积累技巧与方法,吃透数学的知识点与题型。 三、总结归纳 经过前期基础知识的积累和做题的巩固,同学们对知识点、练习题、真题都有了深刻的认识。这时,要做好归纳与总结,构建整体的知识结构体系,将之前所学的知识点牢牢记

相关文档