文档库 最新最全的文档下载
当前位置:文档库 › 数学建模之微积分的应用

数学建模之微积分的应用

数学建模之微积分的应用
数学建模之微积分的应用

数学建模-微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用

数学建模与计算机关系研究

数学建模与计算机关系研究 【摘要】高等数学与计算机教学具有内在相关性,尤其是在数学建模应用中,根据计算机学科发展来发挥数学建模理论的作用及效果,有助于增强学生对高等数学的理解和应用能力。基于此,本文笔者就从高等数学建模理论与计算机技术的关系研究入手,来阐述建模嵌入在计算机辅助教学中的重要潜力。 【关键词】计算机;高等数学;教学改革;数学建模 1.高等数学与计算机学科发展 有人说,计算机技术的发展可以省去学习数学的麻烦,即便是很多专业计算机教师也抱有同样的想法。然而,对于计算机应用领域及实践中,计算机技术确实给很多从业者带来了便捷与高效,但计算机技术不等于数学,更不能替代数学。从高等数学教学实践来看,对于我们常见的数学概念,如比率、概率、图像、逻辑、误差、机会,以及程序等知识的认识,很多行业都在进行数字化、数量化转变,对数学知识的应用也日益广泛。从这些应用中,数学理论及知识,尤其是数学基本理论研究就显得更为重要。数学,在数学知识的应用中,更需要从练习中来提升对数学知识及概念的理解,也需要通过练习来提升运算能力。如果对数学概念及方法应用的不过,对数学单调性的知识缺乏深刻的认识,就会影响数学知识在实践应用中出现偏差。计算机技术的出现,尤其是程序化语言的应用,使得数学知识在表达与反映中能够依据不同的应用灵活有效、准确的运算,从而减少了不必要的验证,也提升了数学在各行业中的应用效率。 数学软件学科的发展,成为计算机重要的辅助教学的热门领域,也使得计算机技术能够发挥其数学应用能力。在传统的数学教学中,逻辑与直观、抽象与具体始终是研究的矛盾主体,如有些太简单的例子往往无法进行全面的计算;有些复杂的例子又需要更多的计算量。在课堂表现与讲解中,对于理性与感性知识的认知,学生缺乏有效的理解和应用,而强大的计算机运算功能却能够直观的表达和弥补这些缺陷,并依托具体的演示过程中来营造概念间的差异性,帮助学生从中领会知识及方法。在计算机的辅助教学下,教师利用对数学理论课题或应用课题,从鲜活的思维及形象的表达上借助于软件来展现,让学生从失败与成功中得到知识的应用体验,从而将被动的知识学习转变为主动的参与实践,更有助于通过实践来激发学生的创新精神。这种将数学教学思维与逻辑与计算机技术的融合,便于从教学中调整教学目标,依据学生所需知识及专业需求来分配侧重点。数学建模就是从数学学科与计算机学科的融合与实践中帮助学生协作学习,提升自身的能力。 2.信息技术是高等数学应用的产物 现代信息技术的发展及应用无处不在,对数学知识的渗透也是日益深入。当前,各行业在多种协作、多种专业融合中,借助于先进的信息技术都可以实现畅通的表达与物化。如天气预报技术、卫星电视技术、网络通讯技术等都需要从数

微积分方法建模2经济增长模型--数学建模案例分析

§2 经济增长模型 发展经济、增加生产有两个重要因素,一是增加投资(扩大厂房、购买设备、技术革新等), 二是增加劳动力。恰当调节投资增长和劳动力增长的关系,使增加的产量不致被劳动力的增长抵消,劳动生产率才能不断提高,从而真正起到发展经济的作用。为此,需要分析产量、劳动力和投资之间变化规律,从而保证经济正常发展。 记 )(t Q —某地区、部门或企业在t 时刻的产量 )(t L —某地区、部门或企业在t 时刻的劳动力 )(t K ?某地区、部门或企业在t 时刻的资金 )(t Z —每个劳动力在t 时刻占有的产量(劳动生产率) 一、道格拉斯(Douglas )生产函数 由于现在关心的是产量、劳动力、投资的相对增长量,不是绝对量, 所以定义 ,)0()()(Q t Q t i Q =)0()()(L t L t i L = ,)0()()(K t K t i K = (1) 分别称为产量指数、劳动力指数和投资指数。 在正常的经济发展过程中这三个指数都是随时间增长的,但它们之间的关系难以从机理分析 得到,只能求助统计资料.Douglas 从大量统计数据中发现下面的规律: 如果令 )()(ln )(t i t i t K L =ξ,) ()(ln )(t i t i t K Q =ψ (2) 则散点),(ψξ在ψξ~平面直角坐标系上的图象大致如下

即大多数点靠近一条过原点的直线,这提示ξ和ψ的关系为 )10(<<=γγξ ψ (3) 上式代入得 )()()(1t i t i t i K L Q γγ-= (4) 记)0()0()0(1--=γγK L Q a ,则由(1)、(4),可得 )0,10(),()()(1><<=-a t K t aL t Q γγγ (5) 这就是经济学中著名的Douglas 生产函数,它表明产量与劳动力、投资之间的关系。由(5)有 K K L L Q Q )1(γγ-+= (6) (6)表明年相对增长量Q Q 、L L 、K K 之间呈线性关系。且1→γ说明产量增长主要靠劳动力的增长;0→γ说明产量增长主要靠投资的增长。称γ是产量对劳动力的弹性系数。 二、劳动生产率增长的条件 定义 )()()(t L t Q t Z =—劳动生产率,则L L Q Q Z Z -=,由(6)代入 则 ))(1(L L K K Z Z --=γ (7) 可见,只要L L K K >,就能保证0>Z Z ,即劳动生产率的提高需要由投资的相对增长大于劳动力的相对增长为前提条件。 问题:考虑到物价上升因素我们记物价上升指数为)((t P 设)1)0(=P ,则产品的表面价值)(t y 、实际价值)(t Q 和物价指数)(t P 之间满足)(t y )()(t P t Q =。 (1)导出)(t y 、)(t Q 、)(t P 的相对增长率之间的关系,并作解释。 (2)设雇佣工人数目为)(t L ,每个工人工资为),(t W 企业的利润简化为产品的收入)(t y 中扣除工人的工资和固定成本,企业应雇佣多少工人能使利润最大。

数学模型课后答案

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1.学校共1000名学生,235人住在A宿舍,333人住在B宿舍,432人住在C宿舍.学生们要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q值方法; (3).d’Hondt方法:将A、B、C各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表:

将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, , 432 ,333 ,235321 ===p p p ∑==3 1 . 1000i i p 方法一(按比例分配) , 35.23 1 11 == ∑=i i p N p q , 33.33 1 22 == ∑=i i p N p q 32 .43 1 33 == ∑=i i p N p q 分配结果为: 4 ,3 ,3321 ===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分 配)为: 4 ,3 ,2321===n n n 第10个席位:计算Q 值为

2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ??+=n t dn wkn r k vdt 0 )(2π ) 2 2 2 n wk k(r n πvt +=∴ . 2 2 2n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日) 1. 在 3.1节存贮模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量.证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少.

清华大学微积分习题(有答案版)

第十二周习题课 一.关于积分的不等式 1. 离散变量的不等式 (1) Jensen 不等式:设 )(x f 为],[b a 上的下凸函数,则 1),,,2,1),1,0(],,[1 ==∈?∈?∑=n k k k k n k b a x λλΛ,有 2),(1 1≥≤??? ??∑∑==n x f x f k n k k k n k k λλ (2) 广义AG 不等式:记x x f ln )(=为),0(+∞上的上凸函数,由Jesen 不等式可得 1),,,2,1),1,0(,01 ==∈?>∑=n k k k k n k x λλΛ,有 ∑==≤∏n k k k k n k x x k 1 1 λλ 当),2,1(1 n k n k Λ==λ时,就是AG 不等式。 (3) Young 不等式:由(2)可得 设111,1,,0,=+>>q p q p y x ,q y p x y x q p +≤1 1 。 (4) Holder 不等式:设11 1, 1,),,,2,1(0,=+>=≥q p q p n k y x k k Λ,则有 q n k q k p n k p k n k k k y x y x 111 11?? ? ????? ??≤∑∑∑=== 在(3)中,令∑∑======n k q k n k p k p k p k y Y x X Y y y X x x 1 1,,,即可。 (5) Schwarz 不等式: 2 1122 1 121?? ? ????? ??≤∑∑∑===n k k n k k n k k k y x y x 。 (6) Minkowski 不等式:设1),,,2,1(0,>=≥p n k y x k k Λ,则有 ()p n k p k p n k p k p n k p k k y x y x 11111 1?? ? ??+??? ??≤??????+∑∑∑=== 证明: ()()() () () ∑∑∑∑=-=-=-=+++=+?+=+n k p k k k n k p k k k n k p k k k k n k p k k y x y y x x y x y x y x 1 1 1 1 1 1 1

数学模型课后答案

《数学模型》作业答案 第二章(1)(2012年12月21日) 1. 学校共1000名学生,235人住在A 宿舍,333人住在B 宿舍,432人住在C 宿舍.学生们 要组织一个10人的委员会,试用下列办法分配各宿舍的委员数: (1). 按比例分配取整数的名额后,剩下的名额按惯例分给小数部分较大者; (2). §1中的Q 值方法; (3).d ’Hondt 方法:将A 、B 、C 各宿舍的人数用正整数n=1,2,3,……相除,其商数如下表: 将所得商数从大到小取前10个(10为席位数),在数字下标以横线,表中A 、B 、C 行有横线的数分别为2,3,5,这就是3个宿舍分配的席位.你能解释这种方法的道理吗? 如果委员会从10个人增至15人,用以上3种方法再分配名额,将3种方法两次分配的结果列表比较. 解:先考虑N=10的分配方案, ,432 ,333 ,235321===p p p ∑==3 1 .1000i i p 方法一(按比例分配) ,35.23 1 11== ∑=i i p N p q ,33.33 1 22== ∑=i i p N p q 32.43 1 33== ∑=i i p N p q 分配结果为: 4 ,3 ,3321===n n n 方法二(Q 值方法) 9个席位的分配结果(可用按比例分配)为: 4 ,3 ,2321===n n n

第10个席位:计算Q 值为 ,17.92043223521=?=Q ,75.92404333322=?=Q 2.9331544322 3=?=Q 3Q 最大,第10个席位应给C.分配结果为 5 ,3 ,2321===n n n 方法三(d ’Hondt 方法) 此方法的分配结果为:5 ,3 ,2321===n n n 此方法的道理是:记i p 和i n 为各宿舍的人数和席位(i=1,2,3代表A 、B 、C 宿舍). i i n p 是每席位代表的人数,取,,2,1 =i n 从而得到的i i n p 中选较大者,可使对所有的,i i i n p 尽量接近. 再考虑15=N 的分配方案,类似地可得名额分配结果.现将3种方法两次分配的结果列表如下: 2. 试用微积分方法,建立录像带记数器读数n 与转过时间的数学模型. 解: 设录像带记数器读数为n 时,录像带转过时间为t.其模型的假设见课本. 考虑t 到t t ?+时间内录像带缠绕在右轮盘上的长度,可得,2)(kdn wkn r vdt π+=两边积分,得 ?? +=n t dn wkn r k vdt 0 )(2π )22 2 n wk k(r n πvt +=∴ .2 22n v k w n v rk t ππ+=∴ 《数学模型》作业解答 第三章1(2008年10月14日)

微积分习题讲解与答案

习题8.1 1?指出下列微分方程的阶数,并指出哪些方程是线性微分方程: (3) x 2 y 4y (sin x)y = 0 ⑷^P p= sin 2 r d6 解(1)1阶非线性 (2) 1阶线性 (3) 3阶线性 (4) 1阶线性 2?验证下列函数是否是所给微分方程的解 /八 、亠 sinx (1) xy y = cosx, y = x (2) (4 - x 2)y ' xy = 2x,y = 2 ? C" - x 2 (C 为任意常数) (3) y 2y : y = 0, y 二 Ce x (C 为任意常数) (4) y" — (X , + 丸2 )y ' +餌丸2 y = 0, y = C 4e" + C 2e'2 x (C 1 ? 为任意常数) (5) (x -2y)y" =2x - y, x 2 - xy ? y 2 =C (C 为任意常数) (6) (xy -x)y xy 2 yy 1 -2y = 0, y = ln( xy) xcosx — sinx sin x 亠 解⑴是,左=x 2 cosx =右 x x (2) 是,左=(4 — X 2 )-^= + x(2 +C 訥—X 2) = 2x =右 訥-x 2 (3) 是,左=Ce x -2Ce x Ce x =0 =右 (4) 是,左= G :e i x C 2 2e 2 x )-(「-g re 4 x C 2 -e 2 x ) i 2(Se 4 x C 2e?0 =右 2x — y (5) 是,左=(x - 2y) 2x - y 二右 2 ⑴ x(y ) -2yy xy = 0 2 (2) x y - xy y = 0

数学建模微积分模型

第四章 微积分模型 今天人们不论从事什么活动都讲究高效益,即希望所采取的策略使某个或某些指标达到最优。商店订货要使订货、存贮等费用最小,体育比赛运动员要创造最好的成绩,工程设计要追求最佳方案。普遍存在的优化问题经常成为人们研究的对象,建立这类问题的模型,我们称为优化模型。 建立优化模型首先要确定所关心的优化指标的数量描述,然后构造包括这个指标及各种限制条件的模型,通过模型求解给出达到优化指标的所谓策略。本章仅考虑定常情况(即所给的策略不随时间改变)。 4.1 不允许缺货模型 某配送中心为所属的几个超市送配某种小电器,假设超市每天对这种小电器的需求量是稳定的,订货费与每个产品每天的存贮费都是常数。如果超市对这种小家电的需求是不可缺货的,试制定最优的存贮策略(即多长时间订一次货,一次订多少货)。 如果日需求量价值100元,一次订货费用为 5000元,每件电器每天的贮存费1元,请给出最 优结果。 模型假设: (1)每天的需求量为常数r ; (2)每次的订货费用为c 1,每天每件产品的存贮费为c 2 ; (3)T 天订一次货,每次订Q 件,且当存贮量 为0时,立即补充,补充是瞬时完成的; (4)为方便起见,将r ,Q 都视为连续量。 模型建立 将存贮量表示为时间的函数(),0q t t =时,进货Q 件这类小电器,储存量(0),()q Q q t =以需求r 的速率递减,直到q (T )=0。 易见 Q=rT (4.1) 一个周期的存贮费用 C 2= A c ds s q T 20 )(=? 一个周期的总费用 C =2 2 21rT c c + 每天平均费用 2 )(21rT c T c T c += (4.2) 模型求解 求T ,使)(T c 取最小值。 由 0=dT dc ,得 2 12 1 2,2c r c Q rc c T = = (4.3)

经济类微积分课后习题答案解析

一.教材和大纲(3--6月) 教材往往容易被很多同学忽略,其实教材真的很重要,除非你的基础很好,比如我今年,就只看了一遍陈文灯复习指南,600题都没有做完。 就做了些模拟题。然后就上考场。但是同学们必须知道我08年是怎么复习的。我大概在6月份之前把4本教材和教材的课后习题全部都做了。其实 我想说,很多同学都说自己看了多少书,做了多少题为什么最后考得还是不好。我希望大家能够做到,不是你做了多少题,但是我们做题不能只 做不想,不懂脑。当然做题还是要一定的量,人家政治不也说“量变引起质变”吗。 我想说的是,大家如果有资源的话尽量用起来,有那种数学强人的话,尽量让他们给你们答疑。把你们不会的,全部问清楚,这一点真的很重要。 我男朋友是数学系的,我可以说即使计算不会都问他,因为说不定他们就能说出怎么样计算更简单,更不容易出错。 二。复习指南(7--10月) 其实我觉得复习指南的话,用谁的吧,我不细说,因为每个人的情况不一样,而且基础不同吧。但是还是给个建议吧,如果你的基础还可以的话 ,个人建议用陈文灯的,如果你觉得你的基础一般的话,那还是用李永乐的吧。 我的好多学弟学妹们常问我怎么用复习指南。我个人觉得复习指南吧,一般要看2遍吧。第一遍和第二遍,有一定的笔记差距。我看的时候一般是: 首先,我想说,同学们请你不要看一个题目是怎么做的,而是要你自己去做,因为咱们已经看过一遍教材了,所以我们看书时,把答案先盖住,然后 自己做,做完后看和答案有什么差距,然后调整下自己的思维,希望你在第二次或第三次的时候能会。 第一遍:如果这个题基本不怎么会的话,就用红色笔打上大大的问号,以便第二次的时候可以重点看看。如果是计算错误的话,还是用蓝色的笔标记吧。 也许很多同学都觉得我方法都对了,计算是小问题。那我告诉你,你错了。像我09年数学考134,就是因为忽略了计算。说实话,一般来说, 130和150的区别也许就是谁细心了,实力差距个人觉得不是很大,所以希望同学们不要忽略计算问题。 第二遍:其实做题还是和第一遍一样,盖住答案,多注意下第一遍画红色的部分。蓝色笔的部分,希望大家不要再计算错了。 三。600题和模拟题(11--12月) 希望大家买的600题是那种答案和题目分开比较远那种,不要前面是题,下面就是答案,这样的书不便于同学们去发现自己的弱点。 咱们怎么用这个600题呢,首先,咱们每天规定做30题吧,但是不是连续20天都做题。这里有个建议必须说一下,希望同学们,在做600题的时候, 不要再去翻复习指南了。如果你不会,说明这就是你的弱点了,你是不是该好好地补习下这部分呢。比如说,我先做的60题,发现我自己对间断点的类型 不是很清楚。咱们不会,没有关系,我用红笔在这页的上面写上,间断点的类型。说明这是你的弱点,然后你自己在第二天再看看,做点别的练习,然后 再继续600题。 其实是模拟题。我一般都是采取考试的形式来要求自己,我自己对自己的要求比较高,我

微积分课后题答案高等教育出版社

习 题 六 (A ) 1.根据定积分的几何意义说明下列各式的正确性 (1)0d cos 20=? x x π (2) x x x x d )1(2d )1(22 22 2+=+? ? - (3) 0d 3 1 1 =?-x x (3)x x dx x d 4 21 1 1 ?? == 解:(1)该定积分的几何意义如右图所示阴影部分面积的代数和,由对称性可知正确. (2)该定积分的几何意义如右图所示阴影部分面积的代数和,且在) 2 , 2(-范围内对称,所以是正确的. (3)该定积分的几何意义如右图所示阴影部分面积的代数和,且关于原点对称,所以正确. (4)原式dx x ? -=1 1 2 等式左边的定积分的几何意义是右边图形阴影部分面积的代数和的2倍,且又因为阴影部分在1) , 1(-范围内关于轴对称,所以等式两边相等. 2.不计算积分,比较下列积分值的大小 (1)x x d 2 10?与x x d 3 10? (2)x x d 2 3 1?与x x d 3 3 1 ? (2)x x d ln 4 3 ? 与 x x d )(ln 2 4 3 ? (4)x x d sin 2 ? π 与 x x d 2 ? π 解:(1)由定积分的比较性可知在1) , 0(范围内32x x >,所以前者大于后者. (2)由定积分的比较性可知在3) , 1(范围内32x x <,所以前者小于后者. (3)由定积分的比较性可知在4) , 3(范围内2)(ln ln x x <,所以前者小于后者.1=a (4)由定积分的比较性可知在)2 , 0(π 范围x x

微积分方法建模如何预报人口的增长--数学建模案例分析

§9 如何预报人口的增长 人口的增长是当前世界上引起普遍关注的问题,我们常在报刊上看见关于人口增长的预报,而且你可能注意到不同的报刊对同一时间同一国家或地区的人口预报在数字上常有较大的差别,这其实是由于使用了不同的人口模型计算的结果.建立人口模型的意义在于利用模型中的参数及时控制人口的增长. 模型一 Malthus 指数增长模型 英国人口学家malthus 根据百余年的人口统计资料,于1787年提出著名的指数增长模型. 假设 1、某国家或地区在时刻t 的人口)(t x 为连续可微函数; 2、人口的增长率r 是常数,或者说,单位时间人口的增长量与当时的人口成正比. 建模 记0x 为初始时刻)0(=t 的人口,由假设2,t 到t t ?+时间内的人口增量为 t t rx t x t t x ?=-?+)()()( 易导出下面的微分方程 ?????==0 )0(x x rx dt dx 求解 易解出)0()(0>=r e x t x rt 分析 模型与19世纪以前欧洲一些地区和国家的人口增长率长期稳定不变的人口统计数据可以很 好地吻合,但是与19世纪以后许多国家的人口统计资料却有很大差异.出现这种差异的原因是19世纪以后人口的增长率已不再是常数.比如美国19世纪100年的10年增长率0.266,20世纪80年的10年增长率0.137,而1970至1980年的10年增长率为0.0307. 模型二 Logistic 阻滞增长模型 假设 1、同模型一; 2、当人口增加到一定数量后,增长率随着人口的继续增加而逐渐减少,且)(x r 为x 的线性函数sx r x r -=)()0,(>s r ,其中r 相当于0=x 时的增长率,称固有增长率; 3、自然资源和环境条件所能容纳的最大人口数量m x ,称最大人口容量. 建模 当m x x =时增长率应为0,即0)(=m x r ,从而m x r s = ,于是)1()(m x x r x r - =,其中r ,m x 是根据人口统计数据确定的常数.m x 常由经验确定.仿模型一同样得 ?? ???=-=0)0()1(x x x x x r dt dx m

微积分方法建模--数学建模案例分析13习题二

习题二 1、由实验知,细菌繁殖的速度在培养基充足等条件满足时与当时已有的数量0A 成正比,即0kA V =(0>k 为比例常数),问经过时间t 以后细菌的数量是多少? 2、一盘标有180分钟的录像带,实际上能走5.183分钟。现已走完大半,计数器从0000走到4580,问剩下的带子还能录下一小时的节目吗? 3、一张正方形椅子,它的四条腿一样长,四脚呈正方形,放在连续变化的地面上时,在任何位置都至少有三只脚同时着地。是否可以经过稍挪动几下,就能四只脚同时着地? 4、微型计算机把数据存储在磁盘上。磁盘使用前由操作系统将其格式化成磁道和扇区。磁道是指不同半径构成的同心圆轨道,扇区是指被圆心角分隔所成的扇形区域。磁道上的定长弧段作为基本存储单元,根据其磁化与否可分别记录数据“0”或“1 ”,这个基本单元称为bit 。为保障磁盘的分辨率,磁道宽t ρ>,每bit 占用的磁道长b ρ>。为数据检索的便利,格式化时要求所有磁道具有相同的bit 数。现有一张半径为R 的磁盘,它的存储区是半径介于r 和R 之间的环形区域,试确定r ,使磁盘具有最大的存储量。 5、有一机械挂钟,钟摆的周期为1秒,在冬季,摆长缩短了0.01厘米,这只钟每天大约快多少? 6、在离水面高度为)(m h 的岸上,用绳子拉船靠岸。绳子长)(m l , 船位于离岸壁)(m s 处,当收绳速度为)/(0s m v 时,船的速度和加速度怎么变化呢? 7、肺部压力的增加可以引起咳嗽,而肺部压力的增加伴随着气管半径的缩小,实验证明:当压力压轮

差p 增加,且在?????? a r 2,00范围内,半径r 按照方程ap r r -=0减少,其中0r 为无压力时的管半径,a 为正常数。那末较小半径是促进了还是阻碍了空气在气管里的流动? 提示:我们把气管理想化为一个圆柱形的管子,半径为r ,管长为l ,两端压力差为p ,流体的粘 滞度为η 。由物理学知识,单位时间内流过管子的气体的体积为l pr V ηπ84 =。 8、现有一个椭圆柱油罐,其长度为l ,两底面是长轴为 ,短轴为b 2的椭圆,问当油罐中油面 高度为h 时,油量是多少? 9、某航空公司需增加5架波音747客机.如果购买一架客机需要一次支付5000万美金,客机的使用寿命为15年。如果租用一架客机,每年需要支付600万美金的租金,租金以均匀货币流的方式支付。若银行的年利率为%12,问购买客机与租用客机哪种方案为佳?如果年利率为%6呢? 10、一颗地球同步轨道通信卫星的轨道位于地球的赤道平面内,且可近似认为是圆。通信卫星运行的角速率与地球自转的角速率相同,即人们看到它在天空不动。若地球半径R=6400公里,问卫星距地面的高度h 应为多少?计算通信卫星的覆盖面积。 11、一工厂有x 名技术工人和y 名非技术工人,每天可生产的产品产量y x y x f 2),(=(件)。现有16名技术工人和32名非技术工人,而计划再雇佣1名技术工人,试问如何调整非技术工人的人数,可保证产品量不变? 12、如果在存储模型的总费用中增加购买货物本身的费用,重新确定最优订货周期和订货批量。证明在不允许缺货模型中结果与原来的一样,而在允许缺货模型中最优订货周期和订货批量都比原来结果减少。 13、在考虑最优价格问题时,设销售期为T ,由于商品的损耗,成本q 随时间增长。设β为增长率,t q q β+=0。又设单位时间内的销售量为bp a x -=,p 为价格。今将销售期分为T t T T t ≤<≤≤2/2/0和两段,每段的价格固定,记作21,p p 。求21,p p 的最优值使销售期内的总利润最大。如果要求销售期内的总售量为0Q ,再求21,p p 的最优值。 14、在B A ,两种物质的溶液中,提取出物质A ,可以采取这样的方法:在B A ,的溶液中加入第三种物质C ,利用C 与B 不互溶,而A 在C 中溶解度较大的特点,将A 提取出来。这种方法就是化工中的萃取过程。现有稀水溶液的醋酸,利用苯作为溶剂,进行3次萃取来回收醋酸,共有苯体积m 。每次应取多少苯量,方使从水溶液中萃取出的醋酸最多? 15、若流入污水的浓度比湖水浓度高,湖水便会受到污染,而当清水注入时,可使湖水净化. 假设:1.蒸发量与降雨量相等,流入与流出平均速度相等,即湖水总量不变;2.湖水不发生化学变化, (12222=+b y a x )

微积分习题讲解与答案

微积分习题讲解与答案Last updated on the afternoon of January 3, 2021

1?指出下列微分方程的阶数,并指出哪些方程是线性微分方程: (1)心)2-2少 + 和=0 (2) x2y-xy f + y = 0 (3)x2+ 4y n + (sinx)y = 0 (4) —+ P =sin26 de 解⑴1阶非线性 (2)1阶线性 ⑶3阶线性 (4)1阶线性 2.验证下列函数是否是所给微分方程的解 (1)xy f + y = cosx,j = ----------- x ⑵(l-x2)y f + xy = 2x,y = 2 + C^l-x2 (C 为任意常数) (3)y n-2y, + y=09y=Ce x (C 为任意常数) (4)y n-(^ + A2)j r += 0,J =+C2e^x (CiQ为任意常数) ⑸(x - 2y)y f = 2x-y9x2-xy + y2=C (C 为任意常数) (6) (xy-x)y H + xy f2 + = = ln(xj) xcosx-sinx sinx 解(1)是, = cosx 二右 左二X -- ;---- + X X (2)是,^=(l-x2) t X +x(2 + Cyll-x2 ) = 2x=右y/l-x2 ⑶是‘左=Ce x— 2Ce x +Ce x =0=右(4)是,左二

=右 2x — V ⑸是,左*-2刃口^2一尸右 ,+兀-^ +〉,亠_2亠 (xj-x) (xy-x) xy — x xy- x 二比二'尹+亠厶+(宀2丿)5—)“ (xy-x) (xy-x) (xy-x) 二右 3 ?求下列微分方程的解 (3) (l + y)dx —(1 一 y)dy = 0 (2) | = Jcosxdx,j r = 5111^ + ^ ⑶圧^訂张j%严峡皿 即一y + 21nll + y l=x + C ⑷估心侖必 解得 ln(l + j 2) = ln(l + x 2) + C^ 4?已知曲线y = f(x)经过原点,并且它在点(X 』)处的切线的斜率等于2,, 试求这条 曲线的方程。 解已知y f = 2x 2 ⑹是,左 ⑴加2; ⑵ 4-0SX ; (be

微积分方法建模飞机的降落曲线数学建模案例分析

第二章 微积分方法建模 现实对象涉及的变量多是连续的,所以建立连续模型是很自然的,而连续模型一般可以用微积分为工具求解,得到的解析解便于进行理论分析,于是有些离散对象,如人口的演变过程,也可以构造连续模型.当我们描述实际对象的某些特性随时间(或空间)而演变的过程,分析它的变化规律,预测它的未来性态时,通常要建立对象的动态模型.建模时首先要根据建模目的和对问题的具体分析作出简化假设,然后按照对象内在的或可以类比的其它对象的规律列出微分方程,求出方程的解并将结果翻译回实际对象,就可以进行描述、分析或预测了. §1 飞机的降落曲线 根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线(如图).在整个降落过程中,飞机的水平速度保持为常数u ,出于安全考虑,飞机垂直加速度的最大绝对值不得超过10/g (这里g 是重力加速度).已知飞机飞行高度h (飞临机场上空时),要在跑道上O 点着陆,应找出开始下降点0x 所能允许的最小值. 一、 由题设有 .将上述的四个条件代入y 的 表达式 ??? ????=++='=+++==='==023)()(0)0(0)0(020*******c bx ax x y h d cx bx ax x y c y d y 得 ,0,0,3,22030===-=d c x h b x h a 飞机的降落曲线为 )32(230 20x x x x h y --= 二、 找出最佳着陆点 飞机的垂直速度是y 关于时间t 的导数,故

dt dx x x x x h dt dy )66(20 20--= 其中dt dx 是飞机的水平速度,,u dt dx = 因此 )(60 2 20x x x x hu dt dy --= 垂直加速度为 )12(6)12(6020 202022--=--=x x x hu dt dx x x x hu dt y d 记 ,)(22dt y d x a =则126)(0 202-=x x x hu x a ,[]0,0x x ∈ 因此,垂直加速度的最大绝对值为 202 6)(max x hu x a = []0,0x x ∈ 设计要求 106202 g x hu ≤,所以g h u x 600?≥ (允许的最小值) 例如:小时/540km u =,m h 1000=,则0x 应满足: )(117378 .9100060360010005400m x =??≥ 即飞机所需的降落距离不得小于11737米.

微积分课后题答案习题详解

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明上 述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞2221 11(1)(2)n n n ??+++ ?+?? L =0; (2) lim n →∞2!n n =0. 证:(1)因为 222222111112(1)(2)n n n n n n n n n n ++≤+++≤≤=+L 而且 21lim 0n n →∞=,2lim 0n n →∞=, 所以由夹逼定理,得 222111lim 0(1)(2)n n n n →∞?? +++= ?+? ?L . (2)因为22222240!1231n n n n n < =<-g g g L g g ,而且4lim 0n n →∞=, 所以,由夹逼定理得

微积分模型

第一篇 微积分模型 在微积分部分的应用实例中,通过对应用问题建模主要培养应用极限、连续、相对变化率、微元、无穷级数、最优化和微分与差分方程等思想解决实际应用问题的能力。 函数的性质包括分段性质、单调性、奇偶性等,由函数的基本性质可以产生对函数进行分类的方法。与函数基本特性相关的应用实例有:市话费是降了还是升了,外币兑换与股票交易中的涨跌停板,库存问题与库存曲线,“另类”的常量函数,蠓虫分类的初等数学模型,核军备竞赛问题等。 数列与函数的极限和函数连续性质是处理变量变化过程的工具,应用重要极限计算连续复利利率的计算,应用函数的连续性和介值定理解决特殊的应用问题。与极限和连续等内容相关的应用实例有:从科赫雪花谈起,复利、连续复利与贴现,出售相同产品的公司为什么喜欢扎堆,椅子为什么能放稳等。 导数、微分是函数的相对变化的极限过程,函数的特性和极值理论可以解决经济管理中的实际应用问题,导数、微分在经济管理中的应用反映为边际、弹性等。相关的应用实例有:影子为什么那么长,边际是什么?弹性是什么?商家应该怎样制定自己的价格策略?不同消费群体的需求弹性问题,机械与人工的调配问题,易拉罐的形状,这批酒什么时候出售最好,该不该接受供货商的优惠条件,作者与出版商的利益冲突等。 微元分析是微积分中一种重要的分析方法,特别是函数的连续求和归结为该函数的积分。与积分和微元分析内容相关的应用实例有:洛伦兹曲线与基尼系数,均匀货币流的总价值与投资回收期的计算,下雪时间的确定,第二宇宙速度是怎样计算出来的等。 离散变量的求和可以用无穷级数来表达,无穷级数的求和是一个极限过程。与无穷级数内容相关的应用实例有:最大货币供应量的计算,政府支出的乘数效应,运用现值计算进行投资项目的评估,谈谈龟兔赛跑悖论 等。 如果影响研究问题的主要因素有两个或者两个以上,则要用多元函数的微积分学来处理,涉及到多元函数偏导数、偏边际、偏弹性和交叉弹性、条件极值等内容。相关的应用实例有:空调销售量的预测,相互关联商品的需求分析,衣物怎样漂洗最干净,拉格朗日乘数与影子价格等。 变量的变化过程可以用微分方程或差分方程来描述,通过对微分方程或差分方程的建立与求解,可以研究变量的形态和变化规律。与微分方程和差分方程相关的应用实例有:人口模型,单种群动物模型,相对封闭环境中的传染病模型,江河污染物的降解系数,怎样计算固定资产的折旧,放射性元素衰变模型,市场上的商品价格是怎样波动的,再谈下雪时间的确定,溶液浓度模型,饲养物的最佳销售时机,信贷消费中每月还款金额的确定,资源的合理开发与利用,从诺贝尔奖谈起,蛛网模型,梵塔问题,平面内直线交点的个数,菲波那契数列的通项公式等。 1

微积分与数学建模学习知识情况总结

微积分与数学模型(上册) 任课教师:陈骑兵 小组成员 张程1440610405 王子尧1440610402 李昊奇1440610403 梅良玉1440610426 方旭建1440610406 李柏睿1440610428

第1章 函数,极限与连续 1.1 函数的基本概念 准备知识(掌握集合与区间的相关知识) 函数定义:设x 和y 是两个变量,D 是一个给定的数集。如果对于任意x ∈D , 按照某一法则f ,变量y 都有确定的值和它对应,则称f 为定义在D 上的函数,数集D 称为函数的定义域,x 称为自变量,y 称为因变量。与x 对应的y 的值记做f(x),称为函数f 在x 处的函数值。D 上所有的数值对应的全体函数值的集合称为值域 函数特性: 1:函数的有界性 设f(x)在集合X 上有定义,若存在M>=0,使得对任意x 属于X 都有f(x 的绝 对值<=M, 则称函数f(x 在)X 上有界;否则,称函数f(x)在X 上无界。 2:函数的单调性 3:函数的奇偶性 4:函数的周期性 5:分段函数 6:复合函数 1.2初等函数 常值函数 如:y=C,C 为常数; 幂函数 如:y=x α,α∈R 为常数; 指数函数 如:y=a x ,a>0且a ≠1; 对数函数 如:y=a x log ,a>0且a ≠1; 三角函数 如:y=sinx,y=cosx,y=tanx ; 反三角函数 如:y=arcsinx,y=arccosx,y=arctanx ; 以及双曲函数 1.3 极限的概念 (1) .极限的直观定义:当x 接近于某个常数x 0但不等于x 0时,若f(x)趋向于 常数A ,则 称A 为f(x)当x 趋向于x 0时的极限。 (2) .极限的精确定义:给定函数f(x)和常数A ,若对于?ε>0(无论ε多么小),总彐δ>0,使得当0<|x-x 0|<ε,则称A 为f(x)当x 趋于x 0时的极限,记做

微积分方法建模药物在体内的分布与排除数学建模案例分析

§10 药物在体内的分布与排除 药物进入机体后,在随血液输送到各器官和组织的过程中,不断地被吸收、分布、代谢,最终排出体外.药物在血液中的浓度()mv g μ称血药浓度.血药浓度的大小直接影响到药物的疗效,浓度太低不能达到预期的治疗效果,浓度太高又可能导致中毒、副作用太强或造成浪费.因此研究药物在体内吸收、分布和排除的动态过程,对于新药研制时剂量的确定、给药方案设计等药理学和临床医学的发展具有重要的指导意义和实用价值. 为了研究目的,将一个机体划分成若干个房室,每个房室是机体的一部分,比如中心室和周边室.在一个房室内药物呈均匀分布,而在不同的房室之间按一定规律进行转移.如果要求的精度不是太高的情况下,可以只考虑一室模型. 模型假设 1.药物进入机体后,全部进入中心室(血液较丰富的心、肺、肾等器官和组织), 中心室的容积在给药过程中保持不变. 2.药物从中心室排出体外,与排除的数量相比,药物的吸收可以忽略. 3.药物排除的速率与中心室的血药浓度成正比. 模型构成与求解 记()t f 0 给药速率 ()t c 中心室血药浓度 ()t x 中心室药量 V 中心室容积 k 排除速率系数 一、求解各种给药方式下血药浓度变化情况 上述各量间有关系 ()kx t f x -=? 0 即 ()t f kx x 0=+? 又 ()()t Vc t x = 得方程 ()()() V t f t kc t c 0=+? (1) 1、 快速静脉注射 设给药量D ,则初始条件()V D c =0,()00=t f (1)的解为 ()t k e V D t c -= (2) 2、恒速静脉注射 设持续时间为τ,注射速率为0k ,则有 ()00k t f =,初始条件()00=c ,()τ≤≤t 0 (t c

相关文档
相关文档 最新文档