文档库 最新最全的文档下载
当前位置:文档库 › 梁单元的分析

梁单元的分析

梁单元的分析
梁单元的分析

梁单元有限元法分析

关键词:梁单元有限元分析

1.摘要:二维平面梁单元是梁单元中最简单的单元之一,这次作业旨在学习如何运用有限元分析法分析梁单元。

2.目的:运用MATLAB软件分析二维梁单元。

3.题目:设一方形的截面梁,截面每边长为5cm,长度为10m,在左端约束固定,在右端施以一个沿y方向的集中力ω=100N,求其挠度与转角。

3.建立有限元分析模型:

(1).结构离散化:

单元的选择:由于为悬臂梁,且横向的长度远远小于轴向的长度,所以在这选择平面梁单元;

单元的数量:将这个梁从中间划分为两个单元;

建立坐标系,坐标系包括结构的整体坐标系与单元的局部坐标系;

(2.)建立平面梁单元的位移模式:

建立整体坐标系:

建立一个有两个单元组成的模型,由于X方向的位移U1,U2,U3太小所以我们略去这三个自由度的变化;节点坐标码:

单元编码:

同样出1号单元,建立局部坐标系:

4.具体的MATLAB求解过程与结果:>> clear

x1=0;

x2=sym('L');

x=sym('x');

j=0:3;

v=x.^j

v =

[ 1, x, x^2, x^3]

>> %计算形函数矩阵

m=...

[1 x1 x1^2 x1^3

0 1 2*x1 3*x1^2

1 x

2 x2^2 x2^3

0 1 2*x2 3*x2^2]

m =

[ 1, 0, 0, 0]

[ 0, 1, 0, 0]

[ 1, L, L^2, L^3]

[ 0, 1, 2*L, 3*L^2]

>> mm=inv(m)

mm =

[ 1, 0, 0, 0] [ 0, 1, 0, 0] [ -3/L^2, -2/L, 3/L^2, -1/L]

[ 2/L^3, 1/L^2, -2/L^3, 1/L^2]

>> mm=inv(m);

N =

[ (2*x^3)/L^3 - (3*x^2)/L^2 + 1, x - (2*x^2)/L + x^3/L^2, (3*x^2)/L^2 - (2*x^3)/L^3, x^3/L^2 - x^2/L]

>> %N=[1 x x^2 x^3]*(inv(m))

%由最小势能原理导出刚度矩阵ke

B=diff(N,2) %梁单元的单元应变矩阵是形函数矩阵的2介导数(由梁的应变能得出)

B =

[ (12*x)/L^3 - 6/L^2, (6*x)/L^2 - 4/L, 6/L^2 - (12*x)/L^3, (6*x)/L^2 - 2/L]

>> k=transpose(B)*(B);

ke=int(k,0,'L') %从0到L上积分k矩阵

ke =

[ 12/L^3, 6/L^2, -12/L^3, 6/L^2]

[ 6/L^2, 4/L, -6/L^2, 2/L]

[ -12/L^3, -6/L^2, 12/L^3, -6/L^2]

[ 6/L^2, 2/L, -6/L^2, 4/L]

>> %Element1:E=4.0e11,I=bh^3/12=5.2e-7

EI=4.0e11*5.2e-7

EI =

208000

>> ke1=EI*subs(ke,'L',5)

ke1 =

19968 49920 -19968 49920

49920 166400 -49920 83200

-19968 -49920 19968 -49920

49920 83200 -49920 166400

>> %由上市我们就计算出了1号单元刚度矩阵ke,由于分成两个单元,所以L=10/2=5

>> %同理,我们运用上述办法得到2号单元的刚度矩阵ke2

>> clear

x2=5;

x=sym('x');

j=0:3;

v=x.^j

v =

[ 1, x, x^2, x^3]

>> m=...

[1 x2 x2^2 x2^3

0 1 2*x2 3*x2^2

1 x3 x3^

2 x3^3

0 1 2*x3 3*x3^2]

m =

[ 1, 5, 25, 125]

[ 0, 1, 10, 75]

[ 1, L, L^2, L^3]

[ 0, 1, 2*L, 3*L^2]

>> mm=inv(m);

N=v*mm

N =

[ (2*x^3)/(L - 5)^3 + (30*L*x)/(L - 5)^3 - (x^2*(3*L + 15))/(L - 5)^3 + (L^2*(L - 15))/(L - 5)^3, x^3/(L - 5)^2 -

(5*L^2)/(L - 5)^2 - (x^2*(2*L + 5))/(L - 5)^2 + (L*x*(L + 10))/(L - 5)^2, (75*L - 125)/(L - 5)^3 - (2*x^3)/(L - 5)^3 - (30*L*x)/(L - 5)^3 + (x^2*(3*L + 15))/(L - 5)^3, x^3/(L - 5)^2 - (25*L)/(L - 5)^2 + (x*(10*L + 25))/(L - 5)^2 - (x^2*(L + 10))/(L - 5)^2]

>> B=diff(N,2)

B =

[ (12*x)/(L - 5)^3 - (2*(3*L + 15))/(L - 5)^3, (6*x)/(L - 5)^2 - (2*(2*L + 5))/(L - 5)^2, (2*(3*L + 15))/(L - 5)^3 -

(12*x)/(L - 5)^3, (6*x)/(L - 5)^2 - (2*(L + 10))/(L - 5)^2]

>> k=transpose(B)*(B);

ke =

[ 12/(L - 5)^3, 6/(L - 5)^2, -12/(L - 5)^3, 6/(L - 5)^2]

[ 6/(L - 5)^2, 4/(L - 5), -6/(L - 5)^2, 2/(L - 5)]

[ -12/(L - 5)^3, -6/(L - 5)^2, 12/(L - 5)^3, -6/(L - 5)^2]

[ 6/(L - 5)^2, 2/(L - 5), -6/(L - 5)^2, 4/(L - 5)]

>> %Element1:E=4.0e11,I=bh^3/12=5.2e-7

EI=4.0e11*5.2e-7

EI =

208000

>> ke2=EI*subs(ke,'L',10)

ke2 =

19968 49920 -19968 49920

49920 166400 -49920 83200

-19968 -49920 19968 -49920

49920 83200 -49920 166400

>> %由此我们也得到了2号单元的刚度矩阵ke2

>> %由于ke1,ke2都是在各自的局部坐标下得到的,所以我们必须把他们向整体坐标系做变换>> %局部坐标系想整体坐标系的转换

>> T=eye(4,4) %定义坐标变换矩阵

T =

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

>> %由于局部坐标系与整体坐标系的的夹角为零度,所以得到的T矩阵是一个4行4列的单位阵>> ke1=ke2

ke1 =

19968 49920 -19968 49920

49920 166400 -49920 83200

-19968 -49920 19968 -49920

49920 83200 -49920 166400

>> %由于运算问题,这里必须再次,定义ke1,而我们得到的ke2恰好等于之前的ke1 >> ke1=T*ke1*T';

>> ke2=T*ke2*T';

>> %系统分析F=[K]u

>> %首先我们要在这里对整体刚度矩阵组集:直接法

>> G1=...

[1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0];

>> G2=...

[0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1];

>> K1=G1'*ke1*G1

K1 =

19968 49920 -19968 49920 0 0

49920 166400 -49920 83200 0 0

-19968 -49920 19968 -49920 0 0

49920 83200 -49920 166400 0 0

0 0 0 0 0 0

0 0 0 0 0 0 >> K2=G2'*ke2*G2

K2 =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 19968 49920 -19968 49920

0 0 49920 166400 -49920 83200

0 0 -19968 -49920 19968 -49920

0 0 49920 83200 -49920 166400 >> K=K1+K2

K =

19968 49920 -19968 49920 0 0

49920 166400 -49920 83200 0 0 -19968 -49920 39936 0 -19968 49920

49920 83200 0 332800 -49920 83200

0 0 -19968 -49920 19968 -49920

0 0 49920 83200 -49920 166400

>> %引入约束条件

>> %v1=0,xta1=0相当于

>> K(1,:)=0;K(:,1)=0;

>> K

K =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 39936 0 -19968 49920

0 0 0 332800 -49920 83200

0 0 -19968 -49920 19968 -49920

0 0 49920 83200 -49920 166400 >>F=[0 0 0 0 -100 0]' %节点外载荷

F =

-100

>>%求解系统方程,得到所有节点的位移

>>%排除V1,与Xta1的影响

>> KX=K(3:6,3:6)

KX =

39936 0 -19968 49920

0 332800 -49920 83200

-19968 -49920 19968 -49920

49920 83200 -49920 166400

>> FX=F(3:6,1)

FX =

-100

>> u=inv(KX)*FX

u =

-0.0501

-0.0180

-0.1603

-0.0240

>>%上述得到了2,3节点的挠曲与转角

其中中间点(2)的挠曲与转角位:-0.1603 -0.0240

右端点(3)的挠曲与转角位:-0.0501 -0.0180

5.参考文献:

1.弹性力学与及有限元法基础教程韩清凯孙伟编著东北大学出版社2009.06

2.百度文库https://www.wendangku.net/doc/2810656541.html,

魏磊

学号:20081893

2011.04~05

MIDAS例题---连续梁要点

4×30m连续梁结构分析 对4*30m结构进行分析的第一步工作是对结构进行分析,确定结构的有限元离散,确定各项参数和结构的情况,并在此基础上进行建模和结构计算。 建立斜连续梁结构模型的详细步骤如下。 1. 设定建模环境 2. 设置结构类型 3. 定义材料和截面特性值 4. 建立结构梁单元模型 5. 定义结构组 6. 定义边界组 7.定义荷载组 8.定义移动荷载 9. 定义施工阶段 10. 运行结构分析 11. 查看结果 设计 13. 取一个单元做横向分析

概要: 在城市桥梁建设由于受到地形、美观等诸多方面的限制,连续梁结构成为其中应用的最多的桥梁形式。同时,随着现代科技的发展,连续梁结构也变得越来越轻盈,更能满足城市对桥梁的景观要求。 本文中的例子采用一座4×30m的连续梁结构(如图1所示)。 1、桥梁基本数据 桥梁跨径布置:4×30m=120; 桥梁宽度:(栏杆)+(人行道)+(机动车道)+(人行道)+(栏杆)=; 主梁高度:;支座处实体段为; 行车道数:双向四车道+2人行道 桥梁横坡:机动车道向外%,人行道向内%; 施工方法:满堂支架施工; 图1 1/2全桥立面图和标准断面

2、主要材料及其参数 混凝土各项力学指标见表1 表1 低松弛钢绞线(主要用于钢筋混凝土预应力构件) 直径: 弹性模量:195000 MPa 标准强度:1860 MPa 抗拉强度设计值:1260 MPa 抗压强度设计值: 390 MPa 张拉控制应力:1395 MPa 热膨胀系数: 普通钢筋 采用R235、HRB335钢筋,直径:8~32mm 弹性模量:R235 210000 MPa / HRB335 200000 MPa

第9章 桁架和梁的有限元分析

第9章桁架和梁的有限元分析 第1节基本知识 一、桁架和梁的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中最常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表9-1。 通过对桁架和梁进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位

移动画等结果。 第2节桁架的有限元分析实例 一、案例1——2D桁架的有限元分析 图9-1 人字形屋架的示意图 问题 人字形屋架的几何尺寸如图9-1所示。杆件截面尺寸为0.01m2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0×1011 N/m2,泊松比为0.3。 解题过程 制定分析方案。材料弹性材料,结构静力分析,属2D桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图9-1所示,边界条件为1点和5点固定,6、7、8点各受1000 N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility>Menu>File>Clear & Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility>Menu> File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Utility>Menu>File>Change Title,弹出Change Title对话框,在Enter New Title项输入标题名,本例中输入“2D-spar problem”为标题名,然

钢混组合连续梁桥顶推施工受力特性分析

钢混组合连续梁桥顶推施工受力特性分析 钢混组合梁因其受力性能好,预制化程度高而得到广泛应用,国家在“十三五”期间大力提倡钢桥的应用,因此该桥在我国又迎来了新的历史机遇。在钢混组合梁的施工中,主梁与桥面板往往是分开施工的,组合梁的钢主梁因为其自重轻、几乎是等截面的优点,通常采用顶推法进行施工,而桥面板通常采用预制形式,安装方法上采用间断施工法来改善支点处桥面板受力。 鉴于组合梁的应用前景,对于分析组合梁在施工过程的受力,模拟其在施工 中的受力状态,显得十分有必要。本文选择钢板组合梁进行研究,希望能为同类桥梁的施工与设计提供帮助。 本文主要进行了以下几个方面的研究:(1)回顾了钢混组合梁与顶推施工法 的发展历程,就顶推施工法的分类与与发展特点进行了详细阐述,展望了顶推施 工法需要关注的问题,对组合梁的结构特征以及顶推法的发展历程有了全方位的了解与认识。(2)简化导主梁模型,采用位移法分析了顶推过程主梁的受力。 获得了顶推过程中主梁内力与支点反力的解析表达式,确定了顶推过程主梁的控制截面与时间节点。分析了导梁长度、自重集度以及刚度对主梁受力的影响,确定了导主梁顶推过程最佳的长度比α,自重集度比β以及刚度比γ。 (3)采用杆系有限元分析了某钢板组合梁顶推施工过程,确定了导梁的合理 设计参数与截面形式,得到了有限元仿真模拟下导梁前端的挠度变化情况以及主梁的内力与支反力,验证了导梁设置的合理性和有效性。(4)采用有限元软件中的施工阶段联合截面分析了桥面板的施工过程,比较了桥面板在间断施工法与顺序施工法下施工顺序的差异,比较了在两种施工法下支点处桥面板的受力状态,验 证了间断施工法的可靠。

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

不同支座刚度对宽支座连续梁受力特性影响

724 第十二届中国海岸工程学术讨论会论文集 不同支座刚度对宽支座连续梁受力特性影响 吉 明1,陶桂兰1,陈奉琦2 (1.河海大学 交通学院,江苏 南京 210098;2.第三航务工程勘察设计院,上海 200032) 摘要:通过ANSYS软件的建模分析,模拟宽支座连续梁在支座刚度变化时内力分布情况,并通过模型试验对其计算结果进行验证,同时将宽支座连续梁的计算结果与按弹性支承连续梁计算结果进行比较,从而得出宽支座连续梁在支座刚度不同时的一些受力特性。 关键词:ANSYS建模;连续梁;宽支座;刚度;模型试验 随着码头使用要求和自然条件的变化,码头结构较以往有较大变化,使得码头的排架间距和支座处桩帽的宽度越来越大,有些码头轨道梁、横梁处的支座宽度甚至超过梁的计算跨度的一半。由于桩帽的相对尺寸逐渐变大,纵梁、横梁搁置的宽度也逐渐加大。在纵梁、横梁的计算中,按《高桩码头设计与施工规范》(JTJ267-98),把纵梁、横梁简化为弹性支承连续梁进行计算,但由于宽支座的影响,支座弯矩及支座反力的确定与规范计算结果存在较大差异,给工程设计带来了较大的困难。因此有必要对其计算方法进行研究,以解决工程设计中的困难。 1 模型试验概况 模型试验在河海大学港工实验室进行。模型比例尺采用1︰5,梁体混凝土采用C25,梁的各部分尺寸如图1所示(单位:cm)。 图1 模型梁尺寸(支座宽度120cm) 为分析宽支座梁在相同支座宽度条件下(本文考虑的支座宽度是1.20 m),不同的支座刚度对其内力和支座反力的影响,在对每组梁进行试验时,通过改变支座下橡皮的块数来模拟梁下部刚度的变化,支座橡皮的布置分别为两块橡皮两层,两块橡皮四层(橡皮的压缩性指标见图2)。 支座反力由搁置在桩帽处的反力计测得,作用荷载为作用于跨中的集中荷载及作用于CD跨的均布荷载。 图2 橡皮压缩曲线 2 计算模式 本文以分析梁的支座反力为出发点,采用ANSYS建模分析和弹性支承连续梁方法。 2.1 ANSYS建模分析[1] ANSYS分析是根据试验模型的尺寸(图1)进行建模,选用BEAM3单元对梁进行模拟,支座处的橡皮则用弹簧单元COMBIN14模拟。 建立梁的模型。梁体部分由BEAM3梁单元组成,在桩帽处的支座截面单元通过改变实常数(截面惯性

最新多跨静定连续梁受力分析

多跨静定连续梁受力 分析

多跨铰接连续静定梁内力分析 第1跨内力分析: R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=1 M i=qL i2*[1-(A i/L i)2]2/8,i=1 第2跨内力分析: P i=R Bi-1,i=2 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=2 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=2 M A2=-(P i*A i+qA i2/2),(i=2) 第3跨内力分析: P i=R Bi-1,i=3 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=3 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=3 M A3=-(P i*A i+qA i2/2),(i=3) 第4跨内力分析: P i=R Bi-1,i=4 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=4 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=4 M A4=-(P i*A i+qA i2/2),(i=4) 第5跨内力分析: P i=R Bi-1,i=5 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=5

M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=5 M A5=-(P i*A i+qA i2/2),(i=5) 第6跨内力分析: P i=R Bi-1,i=6 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=6 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=6 M A6=-(P i*A i+qA i2/2),(i=6) 第7跨内力分析: P i=R Bi-1,i=7 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=7 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=7 M A7=-(P i*A i+qA i2/2),(i=7) 第8跨内力分析: P i=R Bi-1,i=8 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=8 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=8 M A8=-(P i*A i+qA i2/2),(i=8) 第9跨内力分析: P i=R Bi-1,i=9 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=9 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=9 M A9=-(P i*A i+qA i2/2),(i=9) 第10跨内力分析: P i=R Bi-1,i=10 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=10 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=10 M A10=-(P i*A i+qA i2/2),(i=10)

地梁受力与顶板梁受力分析

地梁受力与顶板梁受力相反是吗地梁受力与顶板梁受力相反是吗,,,,板梁是下部筋受力下部钢筋大板梁是下部筋受力下部钢筋大,,,,地梁受力与顶板梁受力相反是吗,板梁是下部筋受力下部钢筋大,而上部主要是支座筋,而地梁相反正确,地梁(基础梁)受力与普通梁正好相反,所以受力筋与支座筋位置也正好相反。地梁受力与框架梁梁受力相反,支座负筋位置也相反是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别: 当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算 是的。有梁式筏板基础中的梁(JZL、JCL)与楼层框架梁(KL)及屋面框架梁(WKL)的受力方向是相反的。好像是倒盖楼。但有区别: 当承受地震横向作用时,柱是第一道防线,楼盖梁是耗能构件,所以要做到”强柱弱梁“”强剪弱弯“,梁要考虑箍筋加密区、塑性铰等问题;但筏形基础的基础梁通常不考虑参与抵抗地震作用计算。是不同的,因为他们的受力是相反的地梁承受基础的反作用力,荷载是向上的,而板顶梁承受的是向下的荷载,两者受力是相反的地梁承受地基反力方向向上,顶梁承受荷载向下,所以受力相反,至于钢筋上部大或下部大那就不一定,要作受力分析.基础梁是基础的一种型式,是结构的一部份,用于承受上部负荷及调整各基础内力,使各基础处于轴心受压或小偏心受压,改善基础受力的连续基础,它一般与桩基、条基、筏基共同受力,单一的基础梁受力已很少见。条基、筏基中的梁应该叫肋梁,肋梁和条基翼板或筏基板共同组成条基或筏基。基础拉梁是为了减少不均匀沉降,防止形变的拉压杆传力构件,它把水平荷载均匀地传给各个基础,有时充当上部墙体的基础。 拉梁顾名思义是连接和协调了两端的独基、承台或基础梁,许多拉梁共同起作用,把整个建筑物基础联合成刚度协调、变形一致的基础。基础梁的作用:1.提高结构整体性;2.抵抗柱底弯矩及剪力;3.调节沉降;4.承受底层填充墙荷载等。基础梁分为:

梁单元的分析

梁单元有限元法分析 关键词:梁单元有限元分析 1.摘要:二维平面梁单元是梁单元中最简单的单元之一,这次作业旨在学习如何运用有限元分析法分析梁单元。 2.目的:运用MATLAB软件分析二维梁单元。 3.题目:设一方形的截面梁,截面每边长为5cm,长度为10m,在左端约束固定,在右端施以一个沿y方向的集中力ω=100N,求其挠度与转角。 3.建立有限元分析模型: (1).结构离散化: 单元的选择:由于为悬臂梁,且横向的长度远远小于轴向的长度,所以在这选择平面梁单元; 单元的数量:将这个梁从中间划分为两个单元; 建立坐标系,坐标系包括结构的整体坐标系与单元的局部坐标系; (2.)建立平面梁单元的位移模式: 建立整体坐标系: 建立一个有两个单元组成的模型,由于X方向的位移U1,U2,U3太小所以我们略去这三个自由度的变化;节点坐标码: 单元编码: 同样出1号单元,建立局部坐标系:

4.具体的MATLAB求解过程与结果:>> clear x1=0; x2=sym('L'); x=sym('x'); j=0:3; v=x.^j v = [ 1, x, x^2, x^3] >> %计算形函数矩阵 m=... [1 x1 x1^2 x1^3 0 1 2*x1 3*x1^2 1 x 2 x2^2 x2^3 0 1 2*x2 3*x2^2] m = [ 1, 0, 0, 0] [ 0, 1, 0, 0] [ 1, L, L^2, L^3] [ 0, 1, 2*L, 3*L^2] >> mm=inv(m) mm = [ 1, 0, 0, 0] [ 0, 1, 0, 0] [ -3/L^2, -2/L, 3/L^2, -1/L] [ 2/L^3, 1/L^2, -2/L^3, 1/L^2] >> mm=inv(m);

梁受力计算

第5章 受弯构件斜截面承载力计算 1.何谓无腹筋梁?简述无腹筋梁斜裂缝形成的过程。 答:不配置腹筋或不按计算配置腹筋的梁称为无腹筋梁。 无腹筋梁的斜截面破坏发生在剪力和弯矩共同作用的区段。只配置受拉主筋的混凝土简支梁在集中荷载作用下。当荷载较小,裂缝出现以前,可以把钢筋混凝土梁看作匀质弹性体,按材料力学的方法进行分析。随着荷载增加,当主拉应力值超过复合受力下混凝土抗拉极限强度时,首先在梁的剪拉区底部出现垂直裂缝,而后在垂直裂缝的顶部沿着与主拉应力垂直的方向向集中荷载作用点发展并形成几条斜裂缝,当荷载增加到一定程度时,在几条斜裂缝中形成一条主斜裂缝。此后,随荷载继续增加,剪压区高度不断减小,剪压区的混凝土在剪应力和压应力的共同作用下达到复合应力状态下的极限强度,导致梁失去承载能力而破坏。 2.无腹筋梁斜截面受剪破坏的主要形态有哪几种?破坏发生的条件及特点如何? 答:无腹筋梁斜截面受剪破坏的主要形态有斜压破坏、剪压破坏和斜拉破坏三种类型。如图题2所示。 (1)斜压破坏 这种破坏多发生在集中荷载距支座较近,且剪力大而弯矩小的区段,即剪跨比比较小(1<λ)时,或者剪跨比适中,但腹筋配置量过多,以及腹板宽度较窄的T 形或I 形梁。由于剪应力起主要作用,破坏过程中,先是在梁腹部出现多条密集而大体平行的斜裂缝(称为腹剪裂缝)。随着荷载增加,梁腹部被这些斜裂缝分割成若干个斜向短柱,当混凝土中的压应力超过其抗压强度时,发生类似受压短柱的破坏,此时箍筋应力一般达不到屈服强度。 (2)剪压破坏 这种破坏常发生在剪跨比适中(31<<λ),且腹筋配置量适当时,是最典型的斜截面受剪破坏。这种破坏过程是,首先在剪弯区出现弯曲垂直裂缝,然后斜向延伸,形成较宽的主裂缝—临界斜裂缝,随着荷载的增大,斜裂缝向荷载作用点缓慢发展,剪压区高度不断减小,斜裂缝的宽度逐渐加宽,与斜裂缝相交的箍筋应力也随之增大,破坏时,受压区混凝土在正应力和剪应力的共同作用下被压碎,且受压区混凝土有明显的压坏现象,此时箍筋的应力到达屈服强度。 (3)斜拉破坏 题图2(a) 破坏形态(b) 荷载-挠度曲线

实验一梁结构静力有限元分析(精)

实验一 梁结构静力有限元分析 一、实验目的: 1、 加深有限元理论关于网格划分概念、划分原则等的理解。 2、 熟悉有限元建模、求解及结果分析步骤和方法。 3、 能利用ANSYS 软件对梁结构进行静力有限元分析。 二、实验设备: 微机,ANSYS 软件(教学版)。 三、实验内容: 利用ANSYS 软件对图示由工字钢组成的梁结构进行静力学分析,以获得其应力分布情况。 A-A B-B 四、实验步骤: 1、建立有限元模型: (1) 建立工作文件夹: 在运行ANSYS 之前,在默认工作目录下建立一个文件夹,名称为beam ,在随后的分析过程中所生成的所有文件都将保存在这个文件夹中。 启动ANSYS 后,使用菜单“File ”——“Change Directory …”将工作目录指向beam 文件夹;使用“Change Jobname …”输入beam 为初始文件名,使分析过程中生成的文件均以beam 为前缀。 选择结构分析,操作如下: GUI: Main Menu > Preferences > Structural (2) 选择单元: 操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add > Structural Beam >3D 3 node 189 然后关闭Element Types 对话框。 (3) 定义材料属性: 定义弹性模量和泊松比,操作如下: GUI: Main Menu > Preprocessor > Material Props > Material Models > Structural > linear > Elastic > Isotropic 在弹出的对话框中输入材料参数: 杨氏模量(EX): 2.06e11 泊松比(PRXY): 0.3 (4) 定义梁的截面类型和尺寸: 操作如下: GUI: Main Menu > Preprocessor > Sections > Beam > Common Sections 选择“工”字型,W1=W2=0.4,W3=0.6,t1=t2=t3=0.015 (5)创建实体模型: F=10000N 6m 6m A A B B

midas连续梁分析实例

1. 连续梁分析概述 比较连续梁和多跨静定梁受均布荷载和温度荷载(上下面的温差)下的反力、位移、 内力。 3跨连续两次超静定 3跨静定 3跨连续1次超静定 图 1.1 分析模型 15

材料 钢材: Grade3 截面 数值 : 箱形截面 400×200×12 mm 荷载 1. 均布荷载 : 1.0 tonf/m 2. 温度荷载 : ΔT = 5 ℃ (上下面的温度差) 设定基本环境 打开新文件,以‘连续梁分析.mgb’为名存档。单位体系设定为‘m’和‘tonf’。 文件/ 新文件 文件/ 存档(连续梁分析 ) 工具 / 单位体系 长度> m ; 力 > tonf 图 1.2 设定单位体系 16

17 设定结构类型为 X-Z 平面。 模型 / 结构类型 结构类型> X-Z 平面 ? 设定材料以及截面 材料选择钢材GB (S )(中国标准规格),定义截面。 模型 / 材料和截面特性 / 材料 名称( Grade3) 设计类型 > 钢材 规范> GB(S) ; 数据库> Grade3 ? 模型 / 材料和截面特性 / 截面 截面数据 截面号 ( 1 ) ; 截面形状 > 箱形截面 ; 用户:如图输入 ; 名称> 400×200×12 ? 图 1.3 定义材料 图 1.4 定义截面 选择“数据库”中的任 意材料,材料的基本特性值(弹性模量、泊松比、线膨胀系数、容重)将自动输出。

建立节点和单元 为了生成连续梁单元,首先输入节点。 正面, 捕捉点 (关 ), 捕捉轴线 (关 ) 捕捉节点 (开 ), 捕捉单元 (开), 自动对齐 模型 / 节点 / 建立节点 坐标 ( x, y, z ) ( 0, 0, 0 ) 图 1.5 建立节点 参照用户手册的“输 入单元时主要考虑事 项” 18

ansys桁架和梁的有限元分析

桁架和梁的有限元分析 第一节基本知识 一、桁架和粱的有限元分析概要 1.桁架杆系的有限元分析概要 桁架杆系系统的有限元分析问题是工程中晕常见的结构形式之一,常用在建筑的屋顶、机械的机架及各类空间网架结构等多种场合。 桁架结构的特点是,所有杆件仅承受轴向力,所有载荷集中作用于节点上。由于桁架结构具有自然离散的特点,因此可以将其每一根杆件视为一个单元,各杆件之间的交点视为一个节点。 2.梁的有限元分析概要 梁的有限元分析问题也是是工程中最常见的结构形式之一,常用在建筑、机械、汽车、工程机械、冶金等多种场合。 梁结构的特点是,梁的横截面均一致,可承受轴向、切向、弯矩等载荷。根据梁的特点,等截面的梁在进行有限元分析时,需要定义梁的截面形状和尺寸,用创建的直线代替梁,在划分网格结束后,可以显示其实际形状。 二、桁架和梁的常用单元 桁架和梁常用的单元类型和用途见表7-1。 通过对桁架和粱进行有限元分析,可得到其在各个方向的位移、应力并可得到应力、位移动画等结果。 第128页

第二节桁架的有限元分析实例案例1--2D桁架的有限元分析 问题 人字形屋架的几何尺寸如图7—1所示。杆件截面尺寸为0.01m^2,试进行静力分析,对人字形屋架进行静力分析,给出变形图和各点的位移及轴向力、轴力图。 条件 人字形屋架两端固定,弹性模量为2.0x10^11N/m^2,泊松比为0.3。 解题过程 制定分析方案。材料为弹性材料,结构静力分析,属21)桁架的静力分析问题,选用Link1单元。建立坐标系及各节点定义如图7-1所示,边界条件为1点和5点固定,6、7、8点各受1000N的力作用。 1.ANSYS分析开始准备工作 (1)清空数据库并开始一个新的分析选取Utility Menu>File>Clear&Start New,弹出Clears database and Start New对话框,单击OK按钮,弹出Verify对话框,单击OK按钮完成清空数据库。 (2)指定新的工作文件名指定工作文件名。选取Utility Menu>File>Change Jobname,弹出Change Jobname对话框,在Enter New Jobname项输入工作文件名,本例中输入的工作文件名为“2D-spar”,单击OK按钮完成工作文件名的定义。 (3)指定新的标题指定分析标题。选取Ufility Menu>File>Change Title,弹出ChangeTitle对话框,在Enter New Tifie项输入标题名,本例中输入“2D-spar problem'’为标题名,然后单击OK按钮完成分析标题的定义。 (4)重新刷新图形窗9 选取Utility Menu>Plot>Replot,定义的信息显示在图形窗口中。 (5)定义结构分析运行主菜单Main Menu>Preferences,出现偏好设置对话框,赋值分析模块为Structure结构分析,单击OK按钮完成分析类型的定义。 2.定义单元类型 运行主菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete命令,弹出Element Types对话框,单击Add按钮新建单元类型,弹出Library of Element Types对话框,先选择

最新吊装平衡梁受力计算

回转半径i =√J/F =√1295.69/40.3=5.67 cm 其长细比λ=μl/ i =1*340/5.67=59.9 查取折减系数为φ=0.842,钢管允许应力【σ】=155MN/m2 压应力为P/F=Q/2/F=21.5*9.8*103/40.3*10-4 =52.3 MN/m2<φ【σ】=0.842*155=130.5 MN/m2 扁担压杆稳定校核 选用φ168*8钢管长4米. 其截面积F=40.3cm2惯性距J=1295.69 cm4 回转半径i =√J/F =√1295.69/40.3=5.67 cm 其长细比λ=μl/ i =1*400/5.67=70.6 查取折减系数为φ=0.842,钢管允许应力【σ】=155MN/m2 压应力为P/F=Q/2/F=34//2*9.8*103/40.3*10-4 =52.3 MN/m2<φ【σ】=0.842*155=130.5 MN/m2 2016年10月高等教育自学考试全国统一命题考试 学前比较教育试卷 (课程代码00401)

精品好文档,推荐学习交流 本试卷共4页,满分l00分,考试时间l50分钟。 考生答题注意事项: 1.本卷所有试题必须在答题卡上作答。答在试卷上无效,试卷空白处和背面均可作草稿纸。2.第一部分为选择题。必须对应试卷上的题号使用2B铅笔将“答题卡”的相应代码涂黑o 3.第二部分为非选择题。必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。 4.合理安排答题空间,超出答题区域无效。 第一部分选择题 一、单项选择题(本大题共30小题,每小题l分。共30分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出并将“答题卡” 的相应代码涂黑。未涂、错涂或多涂均无分。 1.最早提出比较教育术语的教育家是 A.萨德勒 B.康德尔 C.汉斯 D.朱利安 2.通过运用因素分析、质量分析、数量统计等方法,对比较研究的结果进行分析、说明和概括,达到对所研究问题的实质性认识从而得出有价值的结论的方法是 A.分析法 B.文献法 C.比较法 D.调查法 3.把各国、各地区同一类学前教育问题放在一起进行比较分析,从中找出各国、各地区学前教育特点和共同趋势的研究方法是 A.综合比较研究 B.专题比较研究 C.影响比较研究 D.问题比较研究 4.标志着日本保育所制度得到进一步充实和完善,对促进日本保育所的发展发挥了重要的指 导作用的是 A.《法制令》 B.《幼儿园保育及设备规程》 C.《保育所保育指南》 D.《幼儿园令》 5.日本提出了振兴幼儿教育的“七大政策支柱”的是 A.第一个幼儿园教育振兴计划 B.第二个幼儿园教育振兴计划 C.第三个幼儿园教育振兴计划 D.幼儿园教育振兴计划(2006-2010) 6.将“神学/懊悔教育/伦理学”纳入学前教师职前培养课程体系的国家是 A.法国 B.日本 C.德国 D.俄罗斯 7.日本经“教员检定考试”合格的高中毕业生,可以获得 A.一种资格证书 B.二种资格证书 C.专修资格证书 D.临时资格证书 8.1913年,英国的戴普福特建立了一所保育学校,主要招收被排斥在幼儿学校以外的5岁以 下的儿童,这所保育学校的创立者是 A.福禄培尔 B.欧文 C.麦克米伦姐妹 D.费舍尔 9.英国19世纪80年代颁布并落实了义务教育的规定,确定了儿童从5岁开始进行初等义务 教育的是 A.《费舍尔法案》 B.《初等教育法》 C.《哈多报告》 D.《巴特勒法案》

悬臂梁ansys有限元分析求最大挠度

(一) 悬臂梁ansys 有限元分析求最大挠度 问题:悬臂梁长1000mm ,宽50mm ,高10mm ,左端固定,求其在自重作用下的最大挠度? 解:弯矩方程: 221) ()(x l q x M --= 微分方程: 22 1'')(x l q y EI z -= 积分求解:D Cx qx qlx x ql y EI C qx qlx x ql y EI z z +++-=++-=4322322'24 1 6125.06 1 5.05.0 由边界条件:0; 0, 0' ' ====A A A y y x θ 得:C=0, D=0 I=1/12*h^3*b,h 为梁截面的高,b 为梁截面的宽。 q=ρ*g*a*h*l 材料力学公式求:Y=EI 85 gahl^ρ=5.733mm L

ANSYS 模拟求:Y=5.5392mm,详细见下步骤 ANSYS 软件设置及其具体过程如下: 步骤1:建立一个模型,在model下creat一个长1,宽0.05,高0.01的长方体实体。(单位默认为m) 步骤2:材料属性设置。密度:7800,杨氏模量:2E11,泊松比0.3。

步骤3:划分网格。设置网格单元为structure solid brick 8node 185,mesh tool中设置网格大小为0.002,HEX下点击mesh。

步骤4:施加载荷;在preprocessor中inertia中设置重力加速度Y方向为9.8。在左面施加固定约束(三个方向固定)

步骤5::求解。在solve下solve current LS。 步骤6:后处理查看。在result中plot result,查看nodes displacement。List查看文本,观察nodes的最大位移点。

梁结构静力有限元分析论文

梁结构静力有限元分析论文 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力 时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立好梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键字:ANSYS ,梁结构,有限元,静力分析。 0引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,且能保证准确性。另外,有限元法分析梁结构时,建模简单,施加应力和约束也相对容易,能分析梁结构应力状况的具体分布、最大变形量以及中性面位置,优势明显。以下介绍一种常见梁的受力状况,并采用有限元法进行静力分析,得出了与手动计算基本吻合的结论。以下为此次分析对象。 梁的截面形状为梯形截面,各个截面尺寸相同。两端受弯矩沿中性面发生弯曲,如图2-1所示。试利用ANSYS 软件对此梯形截面梁进行静力学分析,以获得沿梁AA 截面的应力分布情况。 r θ A A M M A -A 截面 D,B 1#面 2#面 C A B D

C,A 1 有限元模型的建立 首先进入ANSYS中,采用自下而上的建模方式,创建梁结构有限元分析模型,同时定义模型的材料单元为Brick 8-node 45,弹性模量为200e9,泊松比为0.3。由于分析不需要定义实常数,因此可忽略提示,关闭Real Constants菜单。 建立的切片模型如下:

平衡结构的梁受力计算

平衡结构的梁受力计算 在桥梁、房顶、铁塔等建筑结构中, 涉及到各种各样的梁. 对这些梁进行受力分析是设计师、工程师经常做的事情. 图13埃菲尔铁塔全景 图14 埃菲尔铁塔局部 下面以双杆系统的受力分析为例, 说明如何研究梁上各铰接点处的受力情况. 【模型准备】在图15所示的双杆系统中, 已知杆1重G 1 = 200牛顿, 长L 1 = 2米, 与水平方向的夹角为θ1 = π/6, 杆2重G 2 = 100牛顿, 长L 2 = 米, 与水平方向的夹角为θ2 = π/4. 三个铰接点A , B , C 所在平面垂直于水平面. 求杆1, 杆2在铰接点处所受到的力. 图15双杆系统 【模型假设】假设两杆都是均匀的. 在铰接点处的受力情况如图16所示. 【模型建立】对于杆1: 水平方向受到的合力为零, 故N 1 = N 3, 竖直方向受到的合力为零, 故N 2 + N 4 = G 1, 以点A 为支点的合力矩为零, 故(L 1sin θ1)N 3 + (L 1cos θ1)N 4 = (1 2 L 1cos θ1)G 1. 图16 两杆受力情况 对于杆2类似地有 N 5 = N 7, N 6 = N 8 + G 2, (L 2sin θ2)N 7 = (L 2cos θ2)N 8 + (1 2 L 2cos θ2)G 2. 此外还有N 3 = N 7, N 4 = N 8. 于是将上述8个等式联立起来得到关于N 1, N 2, …, N 8的线性方程组: N N 5N 6 C

13241 4800 N N N N G N N -=??+=?? ??-=? 【模型求解】在Matlab 命令窗口输入以下命令 >> G1=200; L1=2; theta1=pi/6; G2=100; L2=sqrt(2); theta2=pi/4; >> A = [1,0,-1,0,0,0,0,0;0,1,0,1,0,0,0,0; 0,0,L1*sin(theta1),L1*cos(theta1),0,0,0,0;0,0,0,0,1,0,-1,0; 0,0,0,0,0,1,0,-1;0,0,0,0,0,0,L2*sin(theta2),-L2*cos(theta2); 0,0,1,0,0,0,-1,0;0,0,0,1,0,0,0,-1]; >> b = [0;G1;0.5*L1*cos(theta1)*G1;0;G2;0.5*L2*cos(theta2)*G2;0;0]; >> x = A\b; x ’ Matlab 执行后得 ans = 95.0962 154.9038 95.0962 45.0962 95.0962 145.0962 95.0962 45.0962 【模型分析】最后的结果没有出现负值, 说明图16中假设的各个力的方向与事实一致. 如果结果中出现负值, 则说明该力的方向与假设的方向相反. 参考文献 陈怀琛, 高淑萍, 杨威, 工程线性代数, 北京: 电子工业出版社, 2007. 页码: 157- 158. Matlab 实验题 有一个平面结构如下所示, 有13条梁(图中标号的线段)和8个铰接点(图中标号的圈)联结在一起. 其中1号铰接点完全固定, 8号铰接点竖直方向固定, 并在2号, 5号和6号铰接点上, 分别有图示的10吨, 15吨和20吨的负载. 在静平衡的条件下,任何一个铰接点上水平和竖直方向受力都是平衡的. 已知每条斜梁的角度都是45o. (1) 列出由各铰接点处受力平衡方程构成的线性方程组. (2) 用Matlab 软件求解该线性方程组, 确定每条梁受力情况. 图17 一个平面结构的梁

abaqus有限元分析报告开裂梁

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

连续梁下部结构计算书

**公路二期工程*大桥 3×30m连续梁下部结构计算书 1.工程概况 桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。 主梁边支点采用普通板式橡胶支座,中墩与主梁固结。 2.设计规范 《城市桥梁设计准则》(CJJ11—93); 《城市桥梁设计荷载标准》(CJJ77—98); 《公路工程技术标准》(JTGB01-2003); 《公路桥涵设计通用规范》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)); 《公路桥涵地基与基础设计规范》(JTG D63—2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路桥涵施工技术规范》(JTJ041-2000); 3.静力计算 3.1 计算模型 由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的内力及变形。桥梁内力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度根据m法计算(m0=1.2×105kN/m4,K水平=2.4×106kN/m,K弯曲=1.1×107kN.m/rad)。 根据桥梁结构受力特点,其计算模型见下图。

相关文档
相关文档 最新文档