文档库 最新最全的文档下载
当前位置:文档库 › 二次函数的图像与系数的关系

二次函数的图像与系数的关系

二次函数的图像与系数的关系
二次函数的图像与系数的关系

二次函数的图像与系数的关系

1.已知二次函数y=ax 2

+bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c

>0;③4a+2b+c >0;④2a+b=0;⑤b 2

>4ac.其中正确的结论的有( )

A. 1个

B. 2个

C. 3个

D. 4个

2.如图,二次函数y =ax 2

+bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( )

A. a >0,b <0,c >0

B. b 2

﹣4ac <0

C. 当﹣1<x <2时,y >0

D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数

图象,过点A (3,0),二次函数图象的对称轴是直线

x=1,下列结论正确的是( )

A. 2a+b=0

B. ac>0

C.

D.

4.已知函数y=mx 2

-6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( )

A. 9

B. 0

C. 9或0

D. 9或1

5.如图,二次函数2

y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <,

0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大

而减小,其中正确的是().

A. ①②③

B. ②③④

C. ③④⑤

D. ①③④

6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是()

A. B. C. D.

7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论:

①4a+b=0;

②9a+c<3b;

③25a+5b+c=0;

④当x>2时,y随x的增大而减小.

其中正确的结论有()

A. 1个

B. 2个

C. 3个

D. 4个

8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,?③当-2<x<0时,y<0.正确的个数是()

A. 0个

B. 1个

C. 2个

D. 3个 9.二次函数

与一次函数y=ax+c 在同一直角坐标系的大致图象是( )

A. B. C. D.

10.如图是二次函数()2

0y ax bx c a =++≠图象的一部分,对称轴为1

2

x =

,且经过点()2,0,有下列说法:①0abc <;②0a b +=;③420a b c ++<;④若()()120,,1,y y 是抛物线上的两点,则12y y =,上述说确的是( )

A. ①②④

B. ③④

C. ①③④

D. ①②

11.在同一坐标系中,一次函数2y ax =+与二次函数2

y x a =+的图象可能是( )

A. B. C. D.

12.如图是二次函数y =ax 2

+bx +c 的图象,则点(a , bc )在( )

A. 第一象限

B. 第二象限

C. 第三象限

D. 第四象限

13.二次函数y =ax 2

+bx +c (a ≠0)图象上部分点的对应值如下表:

x -3 -2 -1 0 1 2 3 4 y

6

-4

-6

-6

-4

6

则使y <0的x 的取值围为_____________________________.

14.已知二次函数2

y ax bx c =++的图象与x 轴交于点()20-,,

()10x ,

,且112x << ,与y 轴的正半轴的交点在()02,的下方.下列结论:① 420a b c -+=;

② 0a b <<;③ 20a c +>;④ 210a b -+<.其中正确结论有_______________.(填序号)

15.已知二次函数2

y ax bx c =++的图象如图所示,有以下结论:①0a b c ++>;②1a b c -+>;③0abc >;④420a b c -+<;⑤20b a -=其中所有正确结论的序号是__________(填序号)

16.如图,二次函数2

y ax bx c =++的图象开口向上,图象经过点(-1,2)和(1,0),且与y

轴相交于负半轴。给出四个结论:①0abc <;②20a b +>;③1a c +=;④1a > ,其中正确结论的序 号是___________

参考答案

1.D

【解析】由题意得:则: .

得故①正确;3a+c=<0, 故②错误;

当x=2时,即4a+2b+c>0 ,故正确;

由于,即2a+b=0,故④正确;

由于函数图像与x轴有两个交点,即b2>4ac,故⑤正确.

综上所述,故选D.

2.D

【解析】试题分析:由抛物线开口方向得a>0,由抛物线的对称轴位置得b<0,由抛物线与y轴的交点位置得c<0,于是可对A选项进行判断;根据抛物线与x轴的交点个数可对B选项进行判断;根据函数图象,利用函数图象在x轴上方所对应的自变量的取值围对C选项进行判断;根据二次函数的增减性可对D选项进行判断.

解:∵抛物线开口向上,

∴a>0,

∵抛物线的对称轴在y轴的右侧,

∴b<0,

∵抛物线与y轴的交点在x轴下方,

∴c<0,所以A选项错误;

∵抛物线与x轴有2个交点,

∴△=b2?4ac>0,所以B选项错误;

∵抛物线与x轴交于点(?1,0)、(2,0),

∴当?1

∵x>2在对称轴的右侧,

∴y随x的增大而增大,所以D选项正确。

故选D.

点睛:本题主要考查二次函数图象与系数符号的关系及二次函数的增减性.通过分析函数图象得出相关结论是解题的关键.

3.A

【解析】由图象可知,抛物线开口向下,a<0;对称轴为直线=1,则b>0,抛物线与y

轴的交点在x轴上方,c>0,即得ac<0,选项B错误;由对称轴为直线=1,可得2a+b=0,

选项A正确;由对称轴为x=1,抛物线与x轴的一个交点坐标为(3,0),则,抛物线与x 轴的另一个交点坐标为(-1,0),所以x=-1时,y=a-b+c=0,选项C不正确.由图象可知,

抛物线与x轴有两个交点,可得,即,选项D不正确,故选A.

点睛:二次函数y=ax 2

+bx+c (a ≠0)图象与系数的关系: ①二次项系数a 决定抛物线的开口方向和大小.

当a >0时,抛物线向上开口;当a <0时,抛物线向下开口.

②一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异) ③常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).

④抛物线与x 轴交点个数,△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2

-4ac=0时,

抛物线与x 轴有1个交点;△=b 2

-4ac <0时,抛物线与x 轴没有交点. 4.C

【解析】①当m=0时,函数y=mx 2

?6x+1的图象与x 轴只有一个交点;

②当m ≠0时,若函数y=mx 2?6x+1的图象与x 轴只有一个交点,则方程mx 2

?6x+1=0有两个相等的实数根,

所以△=(?6)2

?4m=0,m=9.

综上,若函数y=mx 2

?6x+1的图象与x 轴只有一个交点,则m 的值为0或9. 故选:C

点睛:此题考查了抛物线与x 轴的交点或一次函数与x 轴的交点,是典型的分类讨论思想的应用. 5.C 【解析】①根据抛物线开口向下即可得出a<0,结合抛物线的对称轴为x=1可得出b=-2a>0,①错误;②由①得出b=-2a ,将其代入2a-b 可得出2a-b=4a<0,②错误;③根据函数图象可知当x=1时y>0,将x=1代入抛物线解析式即可得出a+b+c>0,③正确;④根据函数图象可知当x=-1时,y<0,将x=-1代入抛物线解析式即可得出a-b+c<0,④正确;⑤根据函数图象即可得出x>1时y 随x 的增大而增大,⑤正确. 综上即可得出结论. 解:∵0a <, 0b >,∴①错误. 又∵12b

a

-

=,∴2b a =-, 240a b a -=<.∴②错误. 又∵当1x =时0y >,∴0a b c ++>,∴③正确 当1x =-时0y <,∴0a b c -+<,∴④正确. 又∵当1x >时y 随x 的增大而减小.∴⑤是正确.

6.D

【解析】试题解析:∵y=ax+b 的图象过第一、三、四象限, ∴a >0,b <0,

对于y=ax 2

+bx 的图象, ∵a >0,

∴抛物线开口向上, ∵x=-

2b

a

>0, ∴抛物线的对称轴在y 轴的右侧, ∵c=0,

∴抛物线过原点. 故选D .

7.D

【解析】已知抛物线的对称轴为直线x==2,可得b=-4a ,即4a+b=0,①正确;由图象

可知当x=-3时,y <0,所以9a-3b+c <0,即9a+c <3b ,②正确;已知抛物线与x 轴的一个交点为(-1,0),对称轴为直线x=2可得抛物线与x 轴的另一个交点为(5,0),所以25a+5b+c=0,③正确;观察图象可知当x >2时,y 随x 的增大而减小,④正确.故选D . 点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a ≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点. 8.D

【解析】

. , , ,故①正确;

∵当 时,

,故②正确;

∵对称轴是直线x =﹣1,x 1=0, ∴x 2=-2, ∴当﹣2<x <0时,y <0,故③正确;

故选D. 9.D

【解析】A. 由抛物线知,a<0,c>0;由直线知a>0,c<0,a 的值矛盾,故本选项错误; B. 由抛物线知,a>0,c<0;由直线知a>0,c>0,c 的值矛盾,故本选项错误; C. 由抛物线知,a>0,c>0;由直线知a<0,c<0,a 的值矛盾,故本选项错误; D. 由抛物线知,a<0,c>0;由直线知a<0,c>0,两结论一致,故本选项正确。 故选D. 10.A

【解析】①∵二次函数的图象开口向下, ∴a <0,

∵二次函数的图象交y 轴的正半轴于一点, ∴c >0,

∵对称轴是直线x =12

, ∴?

2b a =12

, ∴b =?a >0, ∴abc <0. 故①正确;

②∵由①中知b =?a , ∴a +b =0, 故②正确;

③把x =2代入y =ax 2+bx +c 得:y =4a +2b +c ,

∵抛物线经过点(2,0),

∴当x=2时,y=0,即4a+2b+c=0.故③错误;

④∵(0,y ?)关于直线x=1

2

的对称点的坐标是(1,y ?),

∴y?=y?.

故④正确;

综上所述,正确的结论是①②④.

故选:A.

点睛: 本题考查了二次函数的图象和系数的关系的应用,注意:当a>0时,二次函数的图象开口向上,当a<0时,二次函数的图象开口向下.

11.D

【解析】∵二次函数y=x2+a

∴抛物线开口向上,

∴排除B,

∵一次函数y=ax+2,

∴直线与y轴的正半轴相交,

∴排除A;

∵抛物线得a<0,

∴排除C;

故选D.

12.D

【解析】试题分析:根据二次函数的图象判断a、b、c的符号,再判断点(a, bc)所在的象限.

解:∵抛物线开口向上,

∴a>0,

∵抛物线对称轴y=<0,且a>0,

∴b>0,

∵抛物线与y轴交于负半轴,

∴c<0,

∴bc<0,

∴点(a,bc)在第四象限。

故选D.

13.-2<x<3

【解析】试题解析:由表中数据可知抛物线y=ax2+bx+c与x轴的交点为(-2,0)、(3,0),画出草图,可知使y<0的x的取值围为-2<x<3.

【方法点睛】由表中数据可知抛物线y=ax 2

+bx+c 与x 轴的交点为(-2,0)、(3,0),然后画出草图即可确定y <0的是x 的取值围.观察二次函数的对应值的表格,关键是寻找对称点,顶点坐标及对称轴,利用对称性解答. 14.①②③

【解析】①由二次函数y=ax 2+bx+c 的图象与x 轴交于点(?2,0),4a ?2b+c=0,故①正确; ②因为图象与x 轴两交点为(?2,0),( 1x ,0),且1<1x <2,对称轴x=1222x b

a

-+=-

,则对称轴?

12<2b

a

-<0,且a<0,∴a0,即a

a

∴2a+c>0,4a+c<0,故③正确;④c<2,4a ?2b+c=0,4a ?2b+2>0,2a ?b+1>0,故④错误;

故答案为:①②③。 15.②③⑤

【解析】∵x =1时,y <0, ∴a +b +c <0,①错误; ∵x =?1时,y >1, ∴a ?b +c >1,②正确; ∵抛物线开口向下, ∴a <0,

∵抛物线与y 轴的交点为(0,1), ∴c >0,

∵对称轴在y 轴的左侧, ∴b <0,

∴abc >0,③正确; ∵x =?2时,y >0,

∴4a ?2b +c >0,④错误; ∵?b2a =?1,

∴2a ?b =0,⑤正确, 故答案为:②③⑤.

点睛: 本题考查的是二次函数图象与系数的关系,二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口; a 还可以决定开口大小,一次项系数b 和二次项系数a 共同决定对称轴的位置.

16.②③④. 【解析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 解:(1)①由抛物线的开口方向向上可推出a >0,正确; ②因为对称轴在y 轴右侧,对称轴为x=-

2b

a

>0,又因为a >0,∴b <0,错误; ③由抛物线与y 轴的交点在y 轴的负半轴上,∴c <0,错误; ④由图象可知:当x=1时y=0,∴a+b+c=0,正确. 故(1)中,正确结论的序号是①④.

(2)①∵a >0,b <0,c <0,∴abc >0,错误; ②由图象可知:对称轴x=-

2b a >0且对称轴x=-2b a

<1,∴2a+b >0,正确;

③由图象可知:当x=-1时y=2,∴a-b+c=2,当x=1时y=0,∴a+b+c=0;

a-b+c=2与a+b+c=0相加得2a+2c=2,解得a+c=1,正确; ④∵a+c=1,移项得a=1-c ,又∵c <0,∴a >1,正确. 故(2)中,正确结论的序号是②③④.

“点睛”二次函数y=ax 2

+bx+c 系数符号的确定:(1)a 由抛物线开口方向确定:开口方向向上,则a >0;否则a <0.(2)b 由对称轴和a 的符号确定:由对称轴公式x=-

2b

a

判断符号.(3)c 由抛物线与y 轴的交点确定:交点在y 轴正半轴,则c >0;否则c <0.(4)b 2

-4ac

由抛物线与x 轴交点的个数确定:2个交点,b 2-4ac >0;1个交点,b 2

-4ac=0;没有交点,b 2

-4ac <0.

二次函数与根与系数关系综合运用(可编辑修改word版)

中考压轴题之——二次函数与根与系数关系 (黄冈市 2011)24.(14 分)如图所示,过点 F (0,1)的直线 y =kx +b 与抛物线 y = 1 x 2 4 交于 M (x 1,y 1)和 N (x 2,y 2)两点(其中 x 1<0,x 2<0). ⑴求 b 的值. ⑵求 x 1?x 2 的值 ⑶分别过 M 、N 作直线 l :y =-1 的垂线,垂足分别是 M 1、N 1,判断△M 1FN 1 的形状,并证明你的结论. ⑷对于过点 F 的任意直线 MN ,是否存在一条定直线 m ,使 m 与以MN 为直径的圆相切.如果有,请法度出这条直线m 的解析式;如果没有,请说明理由. 第 22 题图 (株洲市 2011 年)24.(本题满分 10 分)孔明是一个喜欢探究钻研的同学,他在和同学 们一起研究某条抛物线 y = ax 2 (a < 0) 的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O ,两直角边与该抛物线交于 A 、 B 两点,请解答以下问题: (1) 若测得OA = OB = 2 (如图 1) ,求 a 的值; (2) 对同一条抛物线,孔明将三角板绕点O 旋转到如图 2 所示位置时,过 B 作 BF ⊥ x 轴于点 F ,测得OF = 1,写出此时点 B 的坐标,并求点 A 的横坐标; (3) 对该抛物线,孔明将三角板绕点O 旋转任意角度时惊奇地发现,交点 A 、 B 的连 线段总经过一个固定的点,试说明理由并求出该点的坐标. 图 1 2 y F N M x l M 1 F 1 N 1 O 图 2

1、如图,已知抛物线 y=-x2+3x+6 交 y 轴于 A 点,点 C(4,k)在抛物线上,将抛物线向右平移 n 个单位长度后与直线 AC 交于心对称,求 n 的值。 3、如图,已知抛物线 y=x2-4x+3,过点 D(0, 的直线与抛物线交于点 M 、N , - ) 2 与 x 轴交于点 E ,且点 M 、N 与 X 轴交于 E 点,且 M 、N 关于点 E 对称, 求直线 MN 的解析式。 * 例 7 如图,在平面直角坐标系中,抛物线 y =- 2 x 2 + b x + c 经过 A (0,-4)、 3 B ( x 1 ,0)、 C ( x 2 ,0)三点,且 x 2 - x 1 =5. (1) 求b 、c 的值; (2) 在抛物线上求一点 D ,使得四边形 BDCE 是以 BC 为对角线的菱形; (3) 在抛物线上是否存在一点 P ,使得四边形 B P O H 是以 OB 为对角线的菱形?若存在,求

二次函数图像与系数关系

二次函数图象与系数的关系 知识点 一、二次函数错误!未找到引用源。的图象与性质 二次函数错误!未找到引用源。图象可由抛物线错误!未找到引用源。平移个单位,再平移个单位而得到. 平移规律如下: (1)平移时与上、下、左、右平移的先后顺,既可以先左右移再上下移,也可以先上下移再左右移; (2)抛物线的移动主要看的移动,即在平移时只要抓住的位置变化就可以了; (3)平移规律:“上加下减,左加右减”. (4)抛物线错误!未找到引用源。经过反向平移也可以得到错误!未找到引用源。; (5)抛物线错误!未找到引用源。的对称轴是直线,顶点坐标是. 二次函数错误!未找到引用源。的性质列表如下: 函数 错误!未找到引 用源。的符号 错误!未找到引用源。错误! 未找到引用源。 错误!未找到引用源。错误! 未找到引用源。 图象 开口方向 对称轴 顶点坐标 最值

函数的增减性 二、错误!未找到引用源。与错误!未找到引用源。的互相转化 1.通过、可以将错误!未找到引用源。化为错误!未找到引用源。. 2.利用可以将错误!未找到引用源。转化为错误!未找到引用源。.简记为“一提,二配,三计算”.即错误!未找到引用源。错误!未找到引用源。. 因此,二次函数错误!未找到引用源。的图象是一条抛物线,它的对称轴是直线,顶点坐标 是. 三、二次函数错误!未找到引用源。的图象及性质 函数 错误!未找到引用源。的符号错误!未找到引用源。错误!未找 到引用源。 错误!未找到引用源。错误!未找 到引用源。 图象 开口方向 对称轴 顶点坐标 增减性 最值 拓展:对于抛物线错误!未找到引用源。. (1)若已知在直线错误!未找到引用源。的一侧,图象上升或下降,(能/不能)确定直线错误!未找到引用源。是该抛物线的对称轴. (2)若已知在直线错误!未找到引用源。的两侧,图象一侧上升而另一侧下降,则(能/不能)确定该直线

二次函数和根与系数的关系

精心整理 1:已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A(x )、B(x2,y2);(x1<x2) 1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明猜想. 平面内两点间的距离公式 得 AB=AC=|x|==;同理,当 AB=.理由如下: ,得 AB=AC=|x|==; ,得

,得B= AC= |x |= = ,∴,得(k x 1+2kx 1+1)+(k x 2+2kx 2+1)=(1+k +2x =-b a =4+k m y + n y =0=k(4+k) k=1或-5(舍) 直线MN 的解析式为y=x- 2 5

如图,抛物线y=x 2 ﹣2x ﹣3与坐标轴交于A 、B 、三点,直线y=kx-1与抛物线交于P 、Q 两点,且y 轴平分△ 的面积,求k 的值。(答案:k=-2) 已知:二次函数m x m x y ++-=)1(2的图象交x 轴于)0,(1x A 、)0,(2x B 两点, 轴正半轴于点C ,且102 2 21=+x x 。 (1)求此二次函数的解析式; (2)是否存在过点D (0,2 5)的直线与抛物线交于点M 、N ,与x 轴交于点 明理由。 2向上平 抛物线于M 图,抛物线P ,当S △PE ,求E 、F 图,抛物线C ,抛物线的顶M A1B1≦4,求 的最大距离图,抛物线n 个单位长度后 线AC 交于M :∵点A 、C 抛物线y=-x2+3x+6的顶点G(1.5,8.25) 物线向右平移n 个单位后,G 点对应点G ’坐标为(1.5+n,8.25),设新抛物线解析式 -[x-(1.5+n)]2+8.25 立:2( 1.5)8.256 y x n y x ?=---+?=-+?∴x2-(4+2n)x+n2+3n=0∴M N X X +=4+2n

二次函数和根与系数的关系

二次函数和根与系数的 关系 SANY GROUP system office room 【SANYUA16H-

例1:已知关于x的二次函数y=x2﹣2mx+m2+m的图象与关于x的函数y=kx+1的图象交于两点A (x1,y1)、B(x2,y2);(x1<x2)(1)当k=1,m=0,1时,求AB的长;(2)当k=1,m为任何值时,猜想AB的长是否不变?并证明你的猜想. (3)当m=0,无论k为何值时,猜想△AOB的形状.证明你的猜想. (平面内两点间的距离公式). 解:(1)当k=1,m=0时,如图. 由得x2﹣x﹣1=0,∴x1+x2=1,x1?x2=﹣1, 过点A、B分别作x轴、y轴的平行线,两线交于点C.∵直线AB的解析式为y=x+1, ∴∠BAC=45°,△ABC是等腰直角三角形,∴AB=AC=|x2﹣x1|==;同理,当k=1,m=1时,AB=; (2)猜想:当k=1,m为任何值时,AB的长不变,即AB=.理由如下: 由,得x2﹣(2m+1)x+m2+m﹣1=0, ∴x1+x2=2m+1,x1?x2=m2+m﹣1,∴AB=AC=|x2﹣x1|==; (3)当m=0,k为任意常数时,△AOB为直角三角形,理由如下: ①当k=0时,则函数的图象为直线y=1, 由,得A(﹣1,1),B(1,1),显然△AOB为直角三角形;

②当k=1时,则一次函数为直线y=x+1, 由,得x 2 ﹣x ﹣1=0,∴x 1+x 2=1,x 1?x 2=﹣1, ∴AB= AC= |x 2﹣x 1|= =,∴AB 2 =10, ∵OA 2 +OB 2 =x 12 +y 12 +x 22 +y 22 =x 12 +x 22 +y 12 +y 22 =x 12 +x 22 +(x 1+1)2 +(x 2+1)2 =x 12 +x 22 +(x 12 +2x 1+1)+(x 22 +2x 2+1)=2(x 12 +x 22 ) +2(x 1+x 2)+2=2(1+2)+2×1+2=10,∴AB 2=OA 2+OB 2 ,∴△AOB 是直角三角形; ③当k 为任意实数,△AOB 仍为直角三角形. 由 ,得x 2﹣kx ﹣1=0,∴x 1+x 2=k ,x 1?x 2=﹣1,∴AB 2=(x 1﹣x 2)2+(y 1﹣y 2)2=(x 1﹣x 2)2+(kx 1﹣kx 2)2 = (1+k 2 )(x 1﹣x 2)2 =(1+k 2 )[(x 1+x 2)2 ﹣4x 1?x 2]=(1+k 2 )(4+k 2 )=k 4 +5k 2 +4, ∵OA 2 +OB 2 =x 12 +y 12 +x 22 +y 22 =x 12 +x 22 +y 12 +y 22 =x 12 +x 22 +(kx 1+1)2 +(kx 2+1)2 =x 12 +x 22 +(k 2 x 12 +2kx 1+1)+(k 2 x 22 +2kx 2+1)= (1+k 2)(x 12+x 22)+2k (x 1+x 2)+2=(1+k 2)(k 2+2)+2k?k+2=k 4+5k 2 +4, ∴AB 2 =OA 2 +OB 2 , ∴△AOB 为直角三角形. 如图,已知抛物线y=x2-4x+3,过点D(0,- 2 5 )的直线与抛物线交于点M 、N ,与x 轴交于点E ,且点M 、N 与X 轴交于E 点,且M 、N 关于点E 对称,求直线MN 的解析式。 解:∵D (0,- 2 5) ∴设直线MN 的解析式为y=kx-2 5 ∴252 43 y kx y x x ? =-???=-+? ∴kx-2 5 =x2-4x+3 ∴x2-(4+k)x+11 2=0 1x +2x =-b a =4+k 4 2 2 5 E M N D O

二次函数中各项系数abc与图像的关系

二次函数中各项系数a ,b ,c 与图像的关系 一、首先就y=ax 2+bx+c (a≠0)中的a ,b ,c 对图像的作用归纳如下: 1 a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:∣a ∣越大,抛物线的张口越小. 2 b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明02<- a b ,则对称轴在y 轴的左边; b 与a 异号,说明?b 2a >0,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴. 3 c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0 抛物线与y 轴的交点在y 轴的正半轴; c < 0 抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0,抛物线过原点. 4 a,b,c 共同决定判别式?=b 2?4ac 的符号进而决定图象与x 轴的交点 b 2?4a c >0 与x 轴两个交点 b 2?4a c =0 与x 轴一个交点 b 2?4a c <0 与x 轴没有交点 5 几种特殊情况:x=1时,y=a + b + c ; x= -1时,y=a - b + c . 当x = 1时,① 若y > 0,则a + b + c >0;② 若y < 时0,则a + b + c < 0 当x = -1时,① 若y > 0,则a - b + c >0;② 若y < 0,则a - b + c < 0. 扩:x=2, y=4a + 2b + c ;x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c ;x= -3, y=9a -3b + c 。 一.选择题(共8小题) 1.已知二次函数y=ax 2+bx +c 的图象大致如图所示,则下列关系式中成立的是( ) A .a >0 B .b <0 C .c <0 D .b +2a >0 2.如果二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,那么下列不等式成立的是( ) A .a >0 B .b <0 C .ac <0 D .bc <0. 3.已知二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,有下列4个结论:① abc >0;②b <a +c ;③4a +2b +c >0;④b 2﹣4ac >0;其中正确的结论有 ( ) A .1个 B .2个 C .3个 D .4个 4.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,对于下列结论:①a <0; ②b <0;③c >0;④2a +b=0;⑤a ﹣b +c <0,其中正确的个数是( ) A .4个 B .3个 C .2个 D .1个 第3题图 第4题图 第5题图 第6题图 5.二次函数y=ax 2+bx +c (a ≠0)的图象如图,给出下列四个结论::①a <0; ②b >0;③b 2﹣4ac >0;④a +b +c <0;其中结论正确的个数有( ) A .1个 B .2个 C .3个 D .4个 6.如图所示,抛物线y=ax 2+bx +c 的顶点为(﹣1,3),以下结论:①b 2﹣4ac <0;②4a ﹣2b +c <0;

二次函数根系数关系

一元二次方程的根与系数的关系也称为韦达定理,其逆定理也成立,它是由16世纪的法国数学家韦达发现的.它揭示了实系数一元二次方程的根与系数的关系,它形式简单但内涵丰富,在数学解题中有着广泛的应用. 【知识要点】 1.如果方程(a≠O)的两根为,,那么,, 这就是一元二次方程的根与系数的关系. 2.如果两个数的和为m,积为n,则以这两个数为根的一元二次方程为.3.若已知一元二次方程的一个根,可不直接解原方程,利用根与系数关系,求出另一根.4.求一元二次方程根的对称式的值,关键在于利用两根和及两根积表示所给对称式. 5.当一元二次方程(a≠O)有两根,时:(1)若,则方 程有一正一负根;(2)若,,则方程有两个正根;(3)若 ,,则方程有两个负根. 【趋势预测】 利用根与系数关系,可以解决许多有关方程的问题,有些非方程类的问题我们也可以通过根与系数关系构造一元二次方程,然后用一元二次方程的知识来解.因此预测以后竞赛的重点在以下几个方面: ①求方程中字母系数的值或取值范围; ②求代数式的值; ③结合根的判别式,判断根的符号特征;

④构造一元二次方程解题; ⑤证明代数等式,不等式; ⑥与一元二次方程的整数根有关的问题. 【范例解读】 题1(1997·陕西)已知二次方程(ac≠0)有两异号实根m和n,且m0,从而,. 方程的判别式: ,故方程 必有两实根. 设这两个实根为,,则由根与系数关系得 ,,可知,均为负数,故选(A). 题2(1997·上海)若a和b是方程的两个实根,c和d是方程 的两个实根,e和f是方程的两个实根,则

二次函数图像与系数的关系

二次函数图像与系数的关系 1. 如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A. 个 B. 个 C. 个 D. 个 2. 小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A. 个 B. 个 C. 个 D. 个 3. 设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4. 如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A. ①② B. ③④ C. ①④ D. ①③ 5. 已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6. 已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7. 如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A. 个 B. 个 C. 个 D. 个 8. 二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A. 个 B. 个 C. 个 D. 个 9. 如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A. ①③④ B. ①②③ C. ①②④ D. ①②③④ 10. 已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

二次函数的图像与系数的关系

二次函数的图像与系数的关系 1.已知二次函数y=ax 2 +bx+c (a ≠0)的图象如图,有下列5个结论:①abc <0;②3a+c >0;③4a+2b+c >0;④2a+b=0;⑤b 2 >4ac.其中正确的结论的有( ) A. 1个 B. 2个 C. 3个 D. 4个 2.如图,二次函数y =ax 2 +bx +c (a ≠0)的大致图象,关于该二次函数下列说确的是( ) A. a >0,b <0,c >0 B. b 2 ﹣4ac <0 C. 当﹣1<x <2时,y >0 D. 当x >2时,y 随x 的增大而增大 3.如图,二次函数 图象,过点A (3,0),二次函数图象的对称轴是直线 x=1,下列结论正确的是( ) A. 2a+b=0 B. ac>0 C. D. 4.已知函数y=mx 2 -6x+1(m 是常数),若该函数的图象与x 轴只有一个交点,则m 的值为( ) A. 9 B. 0 C. 9或0 D. 9或1 5.如图,二次函数2 y ax bx c =++的图象的对称轴是直线1x =,则下列理论:①0a <, 0b <②20a b ->,③0a b c ++>,④0a b c -+<,⑤当1x >时, y 随x 的增大

而减小,其中正确的是(). A. ①②③ B. ②③④ C. ③④⑤ D. ①③④ 6.已知y=ax+b的图象如图所示,则y=ax2+bx的图象有可能是() A. B. C. D. 7.二次函数y=ax2+bx+c(a≠0)的部分图象如图,图象过点(﹣1,0),对称轴为直线x=2,下列结论: ①4a+b=0; ②9a+c<3b; ③25a+5b+c=0; ④当x>2时,y随x的增大而减小. 其中正确的结论有() A. 1个 B. 2个 C. 3个 D. 4个 8.如下图,已知经过原点的抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,下列结论中①ab>0,②a+b+c>0,?③当-2<x<0时,y<0.正确的个数是()

二次函数图像与系数的关系

教学设计—— 二次函数的系数与图像 长葛六中刘晓金 目标:1、通过观察二次函数的图像的形成过程,导出二次函数的图像与系数的关系。 2、理解和探索相关二次函数的图像之间的关系。 3、会用学习的知识判断相关二次函数的图像之间的关系。 4、运用相关知识解决平移、对称、翻转图像的抛物线解析式。 重点:1、探索和总结二次函数的图像与系数之间的关系。 2、运用相关知识解决问题。 难点:运用相关知识解决问题。 学法:1、通过观察发现相关知识。 2、通过合作探索知识的运用。 教法:运用课件对知识由浅入深地进行展示,不断引导学生观察、探索、总结和应用。 教学过程 一、课堂导入 1、导言:不同的二次函数,图像也不相同,即使有时形状相同,在坐标系中的位置也不尽相同。你知道这是为什么吗?本节我们就一起来探讨一下。 (展示幻灯片1) 2、展示本节教学主要过程。 (展示幻灯片2) 二、师生互动过程 1、a的符号与抛物线开口方向

①、学生在练习本上画出y=x2,y=-x2的草图,观察抛物线的开口方向。 ②、(展示幻灯片3) ③、学生对着幻灯片,检查自己的发现。 ④、总结出:a>0时抛物线开口方向向上,a<0时抛物线开口方向向下。 ⑤、练习在抛物线y=(k-1)x2+x+1中k 时开口向上,k 时开口向下。 2、a的绝对值与图像开口的大小 ①、导言:我们知道二次函数的图像虽然是抛物线,但是形状却不尽相同,这究竟是为什么呢? ②、(展示幻灯片4)引导学生认真观察不同函数图像的形状(开口大小)与什么相关联? ③、引导学生总结出:a的绝对值相等,抛物线开口方向不同,大小相同。 ④、练习k取时,抛物线y=(k+3)x2-x+6可以由抛物线y=2x2变化而来。 3、C与图像和y轴的交点位置 ①、(展示幻灯片5) ②、通过引导学生,使学生总结出:C=0时抛物线与y轴相交于原点;C >0时抛物线与y轴相交于X轴上方;C<0时抛物线与y轴相交于x轴下方。 (C的值决定抛物线与y轴相交的位置) 4、a.b与对称轴的位置 ①、学生写出y=x2, y=x2+2x, y=x2-2x, y=-x2+2x, y=-x2-2x 中各个式子中a、b的值,并计算出ab 的值。 ②、(展示幻灯片6) ③、引导学生探讨幻灯片中各个图像的形成过程,总结出:ab=0时对称轴与y 轴重合;ab>0时对称轴在y轴的左边;ab<0时对称轴在y轴的右边。

二次函数图像和系数的关系

二次函数图像与系数的关系 1.如图,是二次函数图象的一部分,图象过点,对称轴为,给出四个结论:① ;②;③;④。其中正确结论的个数是()。 A.个 B.个 C.个 D.个 2.小轩从如图所示的二次函数()的图象中,观察得出了下面五条信息:①;② ;③;④;⑤。你认为其中正确信息的个数有()。 A.个 B.个 C.个 D.个 3.设二次函数,当时,,当时,,那么的取值范围是()。 A. B. C. D. 4.如图,抛物线与轴交于点,顶点坐标为,与轴的交点在,之间 (包含端点),则下列结论:①当时,;②;③;④中,正确的是()。 A.①② B.③④ C.①④ D.①③ 5.已知二次函数的图象如图所示。下列结论:①;②;③;④ ,其中正确的个数有()。 A. B. C. D.

6.已知二次函数()的图象如图所示,有下列结论: ①;②;③;④。其中,正确结论的个数是()。 A. B. C. D. 7.如图所示,二次函数的图象中,王刚同学观察得出了下面四条信息:(1) ;(2);(3);(4),其中错误的有()。 A.个 B.个 C.个 D.个 8.二次函数()的图象如图所示,若,,。则 ,,中,值小于的数有()。 A.个 B.个 C.个 D.个 9.如图,已知二次函数()的图象与轴交于点,对称轴为直线,与轴 的交点在和之间(包括这两点),下列结论:①当时,;②; ③;④。其中正确的结论是()。 A.①③④ B.①②③ C.①②④ D.①②③④ 10.已知二次函数()的图象如图所示,下列结论错误的是()。 A. B. C. (为任意实数) D.

11. 已知二次函数()的图象如图所示,对称轴为。下列结论中,正确的是 ()。 A. B. C. D. 12. 如图,二次函数()的图象经过点和,下列结论中正确的是()。 A. B. C. D. 13. 如图,二次函数的图象与轴正半轴相交,其顶点的坐标为,下列结论: ①;② ;③;④。其中错误的是()。 A.① B.② C.③ D.④ 14. 如图,抛物线()过点和点,且顶点在第四象限,设, 则的取值范围是()。 A. B. C. D. 15. 已知二次函数的图象如图,则下列叙述正确的是()。 A. B. C. D.将该函数图象向左平移个单位后所得到抛物线的解析式为

二次函数图像与系数关系含答案

二次函数图像与系数关系 一.选择题(共9小题) 1.(2013?义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中, 正确的是() A.①②B.③④C.①④D.①③ 考点:二次函数图象与系数的关系. 专题:计算题;压轴题. 分析:①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断; ②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入 (3a+b),并判定其符号; ③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值 范围; ④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.解答:解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0), ∴根据图示知,当x>3时,y<0. 故①正确; ②根据图示知,抛物线开口方向向下,则a<0. ∵对称轴x=﹣=1, ∴b=﹣2a, ∴3a+b=3a﹣2a=a<0,即3a+b<0. 故②错误; ③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0), ∴﹣1×3=﹣3, ∴=﹣3,则a=﹣. ∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点), ∴2≤c≤3, ∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣. 故③正确;

④根据题意知,a=﹣,﹣=1, ∴b=﹣2a=, ∴n=a+b+c=c. ∵2≤c≤3, ∴≤c≤4,即≤n≤4. 故④错误. 综上所述,正确的说法有①③. 故选D. 点评:本题考查了二次函数图象与系数的关系.二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定. 2.(2013?烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() A.①②B.②③C.①②④D.②③④ 考点:二次函数图象与系数的关系. 专题:压轴题. 分析:根据图象得出a>0,b=2a>0,c<0,即可判断①②;把x=2代入抛物线的解析式即可判断 ③,求出点(﹣5,y1)关于对称轴的对称点的坐标是(3,y1),根据当x>﹣1时,y随x的 增大而增大即可判断④. 解答:解:∵二次函数的图象的开口向上, ∴a>0, ∵二次函数的图象y轴的交点在y轴的负半轴上, ∴c<0, ∵二次函数图象的对称轴是直线x=﹣1, ∴﹣=﹣1, ∴b=2a>0,

一元二次方程的根与系数的关系

一元二次方程的根与系数的关系 教材分析:中学阶段涉及的一元二次内容有函数的二次函数,研究几何图形中的有二次曲线,一元二次方程的求根公式向我们揭示了两根与系数间的的密切关系,而韦达定理介绍的根与系数的关系是在求根公式的基础上,根与系数的进一步发现,这一发现在数学学科中具有较强的实用价值,学生在处理有关一元二次方程的问题时,就会多一些思想和方法,同时,也为今后进一步学习方程理论打下基础. 学情分析:1.学生已学习用求根公式法解一元二次方程,自主探究根与系数的关系是完全可能的。2.学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征,3.向学生渗透认识事物的规律是由特殊到一般,再由一般到特殊,培养学生勇于探索、积极思维的精神. 教学目标 知识目标: 1.经历一元二次方程根与系数关系的探究过程培养学生的观察思考,归纳概括能力 2.掌握一元二次方程的根与系数的关系. 能力目标: 通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。 情感目标: 1.渗透由特殊到一般,再由一般到特殊的认识事物的规律; 2.经历观察、探索、猜想、证明的过程,得出一元二次方程根与系数的关系,让学生经历合情推理到演绎推理的认识事物的模式,培养学生用辨证思想认识事物. 教学重点和难点 重点:一元二次方程根与系数的关系; 难点:如何通过求根公式发现韦达定理,正确理解根与系数的关系.

教学关键:1.激发学生对根与系数关系的求知欲望; 2.引导启发学生来发现如何推导根与系数的关系 教学过程 一、课前游戏环节:你知道陈老师今年多大吗?猜猜,。。。,对于我来说年龄绝对是个秘密,我不能直接告诉你,我们现在在学习一元二次方程,我的年龄是0180272=+-x x 的两根之和,你们猜一猜,不解方程,能不能求出陈老师的年龄。 由求根公式可知,一元二次方程的根仅仅由系数a 、b 、c 确定,换句话,就是说根与系数有密切的关系,当然这种根与系数的关系不容易立刻被发现。我们用配方法、因式分解法等措施求出根。除此之外,一元二次方程的两个根与系数到底还有没有其他关系? 二、探索发现 活动任务:全班同学在课本中找出已经整理成一般式的一元二次方程,并且最好是已经确定两根的方程。一般来说,学生会优先选取一元二次方程系数a 、b 、c 为整数的并且跟也为整数的方程,教师在此进行引导,要求尽可能的找出各种类型的例子,例子包括系数a 、b 、c 为正数、负数、0;根为正数、负数顿好的。学生若没有提出,老师在表格中补充。小组讨论 前后间四人小组合作,老师思路引导:代数学科中数与式的结构编排,让我们想到了两根运算上的最简单的组合:和差积商。刚才所列举的数中,观察这两数的和差积商,思考根与系数还有什么密切关系?

二次函数系数abc与图像的关系28318

二次函数系数a、b、c与图像的关系 知识要点 二次函数y=ax2+bx+c系数符号的确定: (1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0. (2)b由对称轴和a的符号确定:由对称轴公式x=判断符号. (3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0. (4)b2-4ac的符号由抛物线与x轴交点的个数确定:2个交点,b2-4ac>0;1个交点,b2-4ac=0;没有交点,b2-4ac <0. (5)当x=1时,可确定a+b+c的符号,当x=-1时,可确定a-b+c的符号. (6)由对称轴公式x=,可确定2a+b的符号. 一.选择题(共9小题) 1.(2014?威海)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列说法: ①c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am2+bm+a>0 (m≠﹣1). 其中正确的个数是() A.1B.2C.3D.4 2.(2014?仙游县二模)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下 结论:①a+b+c<0;②a﹣b+c<0;③b+2a<0;④abc>0.其中所有正确结论的序号 是() A.③④B.②③C.①④D.①②③3.(2014?南阳二模)二次函数y=ax2+bx+c的图象如图所示,那么关于此二次函数的下 列四个结论: ①a<0;②c>0;③b2﹣4ac>0;④<0中,正确的结论有() A.1个B.2个C.3个D.4个 4.(2014?襄城区模拟)函数y=x2+bx+c与y=x的图象如图,有以下结论: ①b2﹣4c<0;②c﹣b+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0. 其中正确结论的个数为() A.1B.2C.3D.4 5.(2014?宜城市模拟)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1, 且过点(﹣3,0)下列说法: ①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(2,y2)是抛物线上的两点, 则y1>y2. 其中说法正确的是()

二次函数图象特征与系数关系专题

二次函数图象特征与系数关系专题 一、知识要点: 二次函数y=ax2+bx+c(a ≠ 0)系数符号的确定 3、C 由抛物线与y 轴的交点确定:交点在 y 轴的丿正半轴, 则 d 负半轴, 则"O 4、 b2-4ac 的符号由抛物线与 X 轴(或坐标轴)的交点个数确定: 。个交点,b 2-4ac?O ; y = O 时,方程有两个不相等 实数根 ① 与X 轴的交点个数1个交点,b 2-4ac=O ; y =O 时,方程有两个相等实 数根 没有交点,b 2-4ac O; y =O 时,方程无实数根 3个交点,b 2 - 4ac a O ; ② 与坐标轴交点个数 2个交点,b 2 - 4ac = O ; 1 个交点,b 2-4ac O; 5、 根据函数图象的具体情况取特殊值,确定代数式符号: 常见①x=1时,a +b +c 的符号;②x=-1时,a -b+ C 的符号;③x=2时,4a+2b+c 的符号;④ x=-2 时,4a-2b+c 的符号; ......... . K 6、 由对称轴公式X=- 一,可确定2a+b 的符号或对称轴有具体数值是确定相关代数式的符 2a 号;如:X=- =-时,可确定4a-3b 的符号;有时与相关成立的等式或不等式结合,确 2a 3 定运算后代数式的符号。 二、专题练习 ①b 2-4ac >O :② abc >O :③ 8a+c >O ;④ 9a+3b+c V O 2 3、 如图3,二次函数y=ax +bx+c 的图象中,根据图中信息,下列结论正确是( ) 1、a 由抛物线开口方向确定 开口向上=a a O 开口向下=a γ O K 2、b 由对称轴X=-和a 的符号确定 2a So, IaY 0, b 2a Y O 」 a ■ 0, a 0, 2 1.如图1 ,是二次函数y=ax +bx+c ( a ≠0的图象,根据图中信息,下列结论正确是( ) ① a b C >O ; ② b< a+ c ;③2a+b=O :④a +b

二次函数根与系数关系专题

二次函数根与系数关系 【知识归纳】 b c 1.一元二次方程ax2+bx+c= 0的两根与系数之间的关系为:x1 + x2 = - —, x1x2 =—. a a 2.利用跟与系数的关系与方程的两根相关的问题转化为与系数相关的方程或不等式. 3.求出参数的值后,一定要检查其合理性,即是否满足al 0且? 3 0. 4.构建二次项系数为1的一元二次方程的基本方法为:①以x1,x2为根的一元二次方程 为:x? _ %+X2)X+X I X2 = 0 ;②如果a+b = m,ab二n,那么以a, b为根的方程为 2 x - mx+ n = 0? 类型一、求对称式的值 例1、已知X I,X2是方程2x2- 3x-5=0的两个根,不解方程,求下列代数式的值: (1)(X|-X2)2 (2)儿-X2 (3)X;- x/ (4)(X I-2)(X2-2)类型二、已知根求方程中的参数 例1、若方程x2- 4x + c=0的一个根为2+73,求方程的另一根和C的值. 练1、已知关于x的方程x2-13x+ k=0的两根a ,b满足条件a- 3b = 1,求k的值. 类型三、根系关系+根的定义 例1、已知a, b是方程x2+2x-5=0的两个实数根,a2+ ab+2a的值为_____________ 例2、已知X1, X2是方程X2+3X+1=0的两根,求x13+8x2+20的值. 练1、已知a、b是一元二次方程x2-2x-1= 0的两个实根,求x13+ 2x22+ x2- 3的值. 练2、已知x1, x2是方程X2+ X-3=0的两根,求x,3- 4x22+19的值. 类型四、根系关系中的隐含条件 类型五、根系关系求参数 例a, 练1、已知a, b是方程

二次函数图像与系数关系(含答案)

学习必备欢迎下载 二次函数图像与系数关系 一.选择题(共9小题) 1.(2013?义乌市)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y 轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论: ①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中, 正确的是() =,然后根据 n=a+b+c=c =1 . ﹣﹣﹣

﹣,﹣ 2a= n=a+b+c= ≤≤ 2.(2013?烟台)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴为x=﹣1,且过点(﹣3,0).下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1>y2.其中说法正确的是() =

3.(2013?十堰)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是() >

4.(2012?沙坪坝区模拟)二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中,正确的是() ﹣ ﹣ 5.(2013?鄂州)小轩从如图所示的二次函数y=ax2+bx+c(a≠0)的图象中,观察得出了下面五条信息:①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤. 你认为其中正确信息的个数有()

=,∴b= 时,a b+c ﹣﹣,则 6.(2013?德州)函数y=x2+bx+c与y=x的图象如图所示,有以下结论: ①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.

二次函数图象特征与系数关系专题

二次函数图象特征与系数关系专题 一、知识要点: 二次函数y=ax2+bx+c(a ≠0)系数符号的确定 1、a 由抛物线开口方向确定?????00 a a 开口向下开口向上 2、b 由对称轴x= -a 2b 和a 的符号确定??? ???????-???000002000002b - b a b a a b b a b a a ,则,则,则,则 3、c 由抛物线与y 轴的交点确定:交点在y 轴的???00 c c 负半轴,则正半轴,则 4、b2-4ac 的符号由抛物线与x 轴(或坐标轴)的交点个数确定: ①与x 轴的交点个数?? ???=-==-=-时,方程无实数根;没有交点,数根时,方程有两个相等实;个交点,实数根时,方程有两个不相等;个交点,004b 0y 0410042222y ac ac b y ac b ②与坐标轴交点个数?? ???-=--;个交点,;个交点,;个交点,0410******** ac b ac b ac b 5、根据函数图象的具体情况取特殊值,确定代数式符号: 常见①x=1时,a +b +c 的符号;②x=-1时,a -b+ c 的符号;③x=2时,4a+2b+c 的符号;④x=-2时,4a-2b+c 的符号;……. 6、由对称轴公式x= - a 2 b ,可确定2a+b 的符号或对称轴有具体数值是确定相关代数式的符号;如:x= -a 2b =-3 2时,可确定4a-3b 的符号;有时与相关成立的等式或不等式结合,确定运算后代数式的符号。 二、专题练习 1. 如图1,是二次函数y=ax 2+bx+c (a≠0)的图象,根据图中信息,下列结论正确是( ) ① a b c >0; ②b< a+ c ;③2a+b=0;④a +b

二次函数中各项系数a,b,c与图像的关系

二次函数中各项系数 a ,b, c 与图像的关系 一、首先就y=ax 2 +bx+c (a 工0)中的a ,b ,c 对图像的作用归纳如下: a 的作用:决定开口方向:a > 0开口向上;a < 0开口向下; 决定张口的大小:l a I 越大,抛物线的张口越小. b 的作用:b 和a 与抛物线图像的对称轴、顶点横坐标有关. b 与a 同号,说明 _L .. o ,则对称轴在y 轴的左边; 2a b 与a 异号,说明 b -> 0 '口 ,则对称轴在y 轴的右边; 特别的,b = 0,对称轴为y 轴. c 的作用:c 决定了抛物线与y 轴的交点纵坐标.抛物线与y 轴的交点(0,c ) c > 0抛物线与y 轴的交点在y 轴的正半轴; c < 0抛物线与y 轴的交点在y 轴的负半轴; 特别的,c = 0 ,抛物线过原点. ■ . 2 a,b,c 共同决定判别式 b 2 - 4ac > 0 b 2 - 4ac = 0 b 2 - 4ac < 0 * = b ~4ac 的符号进而决定图象与X 轴的交点 与X 轴两个交点 与X 轴一个交点 与X 轴没有交点 x=1 时,y=a + b + c ; x= -1 时,y=a - b + c . 当 x = 1 时,①若 y > 0,贝U a + b + c >0 ; ? 若 y < 时 0,贝U a + b + c < 0 当 x = -1 时,①若 y > 0,贝U a - b + c >0 ;②若 y < 0,贝U a - b + 扩:x=2, y=4a + 2b + c ; x= -2, y=4a -2b + c ; x=3, y=9a +3 b + c 一.选择题(共8小题) 1 .已知二次函数y=ax +bx+c 的图象大致如图所示,贝U 下列关系式中成立的是 A. a >0 B . b v 0 C. c v 0D . b+2a > 0 2.如果二次函数y=a£ +bx+c (a ^ 0)的图象如图所示,那么下列不等式成立 几种特殊情况: c < 0 . ;x= -3, y=9a -3b + c 。 ) C. ac v 0 D . bc v 0. 3.已知二次函数y=ax 2+bx+c (a ^0)的图象如图所示,有下列4个结论:①abc >0;②b v a+c ; ③4a+2b+c >0;④b 2- 4ac >0;其中正确的结论有( )

二次函数根与系数的关系练习

二次函数根与系数的关系 1、抛物线c x x y ++=2与x 轴的两个交点坐标分别为)0,(1x ,)0,(2x ,若32 221=+x x ,那么c 值为 ,抛物线的对称轴为 . 2、已知二次函数)1(3)2(2++-+-=m x m x y 的图象如图所示. (1)当m ≠-4时,说明这个二次函数的图象与x 轴必有两个交点; (2)求m 的取值范围; (3)在(2)的情况下,若6=?OB OA ,求C 点坐标; (4)求A 、B 两点间的距离; (5)求⊿ABC 的面积S . 3、 已知抛物线22 2m y x mx =-+与抛物线2 234m y x mx =+-在直角坐标系中的位置如图所示,其中一条与x 轴交于A ,B 两点. (1)试判断哪条抛物线经过A ,B 两点,并说明理由; (2)若A ,B 两点到原点的距离AO ,OB 满足条件 1123OB OA -=,求经过A ,B 两点的这条抛物线的函数式. 4、 已知抛物线2y ax bx c =++与y 轴交于C 点,与x 轴交于1(0)A x ,,212(0)()B x x x <,两点,顶点M 的纵坐标 为4-,若1x ,2x 是方程22 2(1)70x m x m --+-=的两根,且221210x x +=. (1)求A ,B 两点坐标; (2)求抛物线表达式及点C 坐标; (3)在抛物线上是否存在着点P ,使△PAB 面积等于四边形ACMB 面积的2倍,若存在,求出P 点坐标;若不存在,请说明理由. 5、已知开口向下的抛物线c bx ax y ++=2与x 轴交于两点A (1x ,0)、B (2x ,0),其中1x <2x ,P 为顶点,∠APB=90°,若1x 、2x 是方程021)2(222=-+--m x m x 的两个根,且262221=+x x . (1)求A 、B 两点的坐标; (2)求抛物线的函数关系式.

相关文档
相关文档 最新文档