文档库 最新最全的文档下载
当前位置:文档库 › 光电探测实验报告

光电探测实验报告

光电探测实验报告
光电探测实验报告

光电探测技术

实验报告

班级:10050341

学号:05

姓名:解娴

实验一光敏电阻特性实验

一、实验目的

1.了解一些常见的光敏电阻的器件的类型;

2.了解光敏电阻的基本特性;

3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。

二、实验原理

伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。

光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。

大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为

式中,K为比例系数;是永远小于1的分数。

光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。

这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。

光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤

1、光敏电阻的暗电流、亮电流、光电流

按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。

2、伏安特性

光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果

填入表格并做出V/I曲线。

图1光敏电阻的测量电路

偏压2V4V6V8V10V12V 光电阻I

四、实验数据

实验数据记录如下:

光电流:

E/V246810

U/V0.090.210.320.430.56

I/uA1427.54255.270.5

暗电流:0.5uA

实验数据处理:

拟合曲线如下:

五、实验结论

通过本次实验了解了一些常用的光敏电阻的类型、内部结构及其基本特性,也熟练掌握了光敏电阻的特性测试的方法。随着偏置电压的增加,光敏电阻的伏安特性曲线呈线性增长。

实验二光源光功率测试实验

一、实验目的

1.了解光功率计的原理;

2.掌握光功率计的使用方法;

3.了解不同光源的功率值。

二、实验原理

采用美国相干公司的光功率计测量,其工作原理为:光功率计是测量光纤上传送的信号强度的设备,用于测量绝对光功率或通过一段光纤的光功率相对损

耗。在光纤系统中,测量光功率是最基本的。光功率计的原理非常像电子学中的万用表,只不过万用表测量的是电子,而光功率计测量的是光。通过测量发射端机或光网络的绝对功率,一台光功率计就能够评价光端设备的性能。用光功率计与稳定光源组合使用,组成光损失测试器,则能够测量连接损耗、检验连续性,并帮助评估光纤链路传输质量。

三、实验步骤

分别测量了红光激光器、绿光激光器和白光光源:

1.打开光功率计,预热一段时间;

2.将波长设置为红光激光器的波长;

3.打开对应激光器,在光功率计上测得其光功率值;

4.依次将波长设置为绿光激光器和白光光源的波长,重复第3步。

5.记录测得数据值。

四、实验数据

实验数据记录如下:

五、实验结论

通过此次光源光功率测试实验,初步了解了光功率计的工作原理及光功率的测量方法,学会了光功率计的使用。通过实验对光的功率有了一个直观的认识,

而且提高了我们的动手能力。

实验三光电位置敏感器件---PSD传感器

一、实验目的

1.了解光电位置敏感器件的内部结构;

2.了解PSD传感器的工作原理;

3.学会使用PSD传感器测量微小位移。

二、实验原理

PSD测试系统的基本组成:本测试系统主要有PSD基座、半导体激光器、反射屏、PSD及处理电路单元组成,其结构框图如图2所示。

图2 PSD测试系统结构框图

半导体激光器能输出频率单一,能量集中,功率稳定性好的光信号,具有体积小、亮度高、重量轻、方向性好、寿命长、抗冲击性能好等优点。所以采用半导体激光器作为光电测试系统的光源。

由于PSD器件对光点位置的变化非常敏感而对光斑的形状无严格要求,即输出信号与光的聚焦无关,只与光的能量中心有关,所以让反射屏连接在一个带有螺旋测微仪的平台上,通过旋转螺旋测微仪来改变反射体离激光器的距离从而改变光线照在聚光透镜上的位置最终达到改变光点离PSD中心的距离。

其光路图如图 3。

图 3 PSD 测试系统的光路图

由PSD 的工作原理及其探测位置线性度的讨论可知,从PSD 电极输出的电信号并不直接是位置信号,必须对这些电信号进一步处理才能得到光斑的入射位置。当允许将PSD 封装起来使用而且入射光比较强时,可以忽略背景光电流和暗电流,即采用恒定连续光源,光电流为直流信号,处理电路框图如图4所示(即PSD 处理电路单元),前置处理部分将从PSD 两电极输出的微弱电流转换成电压并放大,运算处理部分按照位置公式将两路电压信号相加、相减和相除,最终输出位置信号。

图 4 PSD 处理电路单元

三、实验步骤

1、通过基座上端圆形观察孔观察PSD 器件及在基座上的安装位置,连接好

透镜1 透镜2

A B

C

b

c LD

PSD

a

硅光电池特性测试实验报告

硅光电池特性测试实验报告 系别:电子信息工程系 班级:光电08305班 组长:祝李 组员:贺义贵、何江武、占志武 实验时间:2010年4月2日 指导老师:王凌波 2010.4.6

目录 一、实验目的 二、实验内容 三、实验仪器 四、实验原理 五、注意事项 六、实验步骤 七、实验数据及分析 八、总结

一、实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池伏安特性测试实验 5、硅光电池负载特性测试实验 6、硅光电池时间响应测试实验 7、硅光电池光谱特性测试实验 设计实验1:硅光电池光控开关电路设计实验 设计实验2:简易光照度计设计实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台 四、实验原理 1、硅光电池的基本结构 目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。 零偏反偏正偏 图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区 图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合

照度实验报告

照度实验报告 一、背景 作业场所的合理采光与照明,对生产中的效率、卫生和安全都有重要的意义。它是工作 场所设计中的重要项目,无论是天然采光还是人工照明,其主要目的都是给人们的生活和生 产提供必需的视觉条件。 适当的照度设计应遵循工效学的原则,使照度设置达到保证物体的轮廓立体视觉,有利 于辨认物体的高低,深浅,前后远近及相对位置,有利于眼睛的辨色能力,有利于大视野, 降低疲劳、减少错误和工伤事故的发生。提高照度值可以提高识别速度和主体视觉,从而提 高工作效率和准确度。但照度值提高到使人产生眩光时,会降低工作效率。此外,利用照明 设计对人的情绪的影响,根据场所功能的需求,可使光环境对人产生兴奋或抑制的作用。在 绿色照明理念的指导下,人工照明应考虑节能和环保的要求。 二、实验目的 正确熟悉和使用照度计,采集光环境数据,并通过分析数据来判断光环境的照度是否合 理,假如不合理则提出合理的改善措施。 三、实验场所 上海海洋大学图书馆二楼大厅自习室(室外) 四、实验要求 1、照度采集 2、对自习室的照度情况进行分析 3、分析光照度合理性,并提出改善措施 五、分析 1、主观分析 (1)、主观评价调查数据 (2)、主观评价结果分析 a、计算每个项目的评分s(n): s(n)= 式中,s(n)为第n个项目的评分 p(m)为第m个状态的分值,其中,p(1)=0,p(2)=10,p(3)=50,p(4)=100, v (n,m)为第n个评价项目的第m个状态所得的票数。所以: s(1)= s(2)= s(3)= s(4)= s(5)= s(6)= =16.4 =10.8 =12.4 =12.6 =12.4 =12.6 s(7)= s(8)= s(9)= s(10)= b、计算总的光环境指数 s s= =9.2 =8.2 =9.4 =10 式中,w(n)为第n个评价项目权值,设其权值均为1 所以: s=11.4 为了便于分析和确定评价结果,本方法将光环境质量按光环境的指数范围分为四个质量 等级,其质量等级的划分及其含意如下表所示: 因为10<11.4<=50所以根据上表的结论,本实验的光环境质量等级为3,含义是: 问题较大 2、客观分析(照度数据采集及分析)(1)、照度采集现场 在进行照度值测量的时间点上我们选择了一个晴朗的下午2点~3点之间,光照十分充足, 因为时间和条件的限制就没有对阴天和晚上进行测量和分析。 图书馆二楼自习室现场

光电实验报告.

长春理工大学 光电信息综合实验—实验总结 姓名:赵儒桐 学号:S1******* 指导教师:王彩霞 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,引起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc )为+5V 时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1: 表2-1 光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 图2.1 光敏电阻光照特性实验曲线 表2-2 光敏电阻伏安特性实验数据

通过实验我们看出光敏电阻的光电流值随外加电压的增大而增大,在光照强度增大的情况下流过光敏电阻的电流值也是增大的,得到数据如表2-2。 得到的伏安特性如下: 图2.2 光敏电阻伏安特性曲线 由光敏电阻的光谱特性可知光敏电阻对不同波长的光,接收的光灵敏度是不一样的,测量对应各种颜色的光透过狭缝时的电流值,得到数据如下表: 得到的光谱特性曲线如图:

光电计数器实验报告

光电计数器实验报告 学生姓名李志 学号081244115 专业名称光信息科学与技术 指导教师易煦农 时间日期2011-10-19 摘要 21世纪是信息时代,是获取信息,处理信息,运用信息的时代。传感与检测技术的重要性在于它是获得信息并对信息进行必要处理 的基础技术,是获取信 息和处理加工信息的手段,无法获取信息则无法运用信息。 光电式传感器是将光信号转化为电信号的一种传感器。它的理论基础是光电效应。这类效应大致可分为三类。第一类是外光电效应,即在光照射下,能使电子逸出物体表面。利用这种效应所做成的器件有真空光电管、光电倍增管等。第二类是内光电效应,即在光线照射下,能使物质的电阻率改变。这类器件包括各类半导体光敏电阻。第三类是光生伏特效应,即在光线作用下,物体内产生电动势的现象,此电动势称为光生电动势。这类器件包括光电池、光电晶体管等。光电效应都是利用光电元件受光照后,电特性发生变化。敏感的光波长是在可见光附近,包括红外波长和紫外波长。数字式电子计数器有直观和计数精确的优点,目前已在各种行业中普遍使用。数字式电子计

数器有多种计数触发方式,它是由实际使用条件和环境决定的。有采用机械方式的接触式触发的,有采用电子传感器的非接触式触发的,光电式传感器是其中之一,它是一种非接触式电子传感器。采用光电传感器制作的光电式电子计数器。这种计数器在工厂的生产流水线上作产品统计,有着其他计数器不可取代的优点。 【关键词】光电效应光电传感器光电计数器 ABSTRACT The 21st century is the age of information, it is the access to information, treatment information, use of the information age. Sensing and detection technology is important because it is the access to information and the information necessary to deal with the underlying technology, is access to information and means of processing information, unable to get information you won't be able to use information. Photoelectric sensor is a light signal into an electric signal of the sensor. It is the theoretical basis of the photoelectric effect. These effects can be broadly divided into three categories. The first type is outside of the photoelectric effect, namely, in daylight, can make the tungsten surface. Use this effect caused by device with vacuum photocell, photomultiplier tubes, etc. The second category is the photoelectric effect, i.e., in the light, can make the electrical resistivity of the material change. Such devices include various types of photosensitive semiconductor. The third category is photo voltaic effect, in the light, the objects within the EMF EMF, this is called light-induced electromotive force. This class of

光电探测技术实验报告

光电探测技术实验报告 班级:08050341X 学号:28 姓名:宫鑫

实验一光敏电阻特性实验 实验原理: 光敏电阻又称为光导管,是一种均质的半导体光电器件,其结构如图(1)所示。由于半导体在光照的作用下,电导率的变化只限于表面薄层,因此将掺杂的半导体薄膜沉积在绝缘体表面就制成了光敏电阻,不同材料制成的光敏电阻具有不同的光谱特性。光敏电阻采用梳状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 实验所需部件: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、 各种光源、遮光罩、激光器、光照度计(由用户选配) 实验步骤: 1、测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩 盖,用万用表测得的电阻值为暗电阻 R暗,移开遮光罩,在环境光照下测得的光敏电阻的 阻值为亮电阻,暗电阻与亮电阻之差为光电阻,光 电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻, 试作性能比较分析。 2、光敏电阻的暗电流、亮电流、光电流 按照图(3)接线,电源可从+2~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮则暗电流L暗=V暗/R L,亮电流L亮=V亮/R L,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 分别测出两种光敏电阻的亮电流,并做性能比较。 图(2)几种光敏电阻的光谱特性 3、伏安特性: 光敏电阻两端所加的电压与光电流之间的关系。 按照图(3)分别测得偏压为2V、4V、6V、8V、10V、12V时的光电流,并尝试高照射光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果填入表格并作出V/I曲线。 注意事项: 实验时请注意不要超过光电阻的最大耗散功率P MAX, P MAX=LV。光源照射时灯胆及灯杯温度均很高,请勿用手触摸,以免烫伤。实验时各种不同波长的光源的获取也可以采用在仪器上的光源灯泡前加装各色滤色片的办法,同时也须考虑到环境光照的影响。

光电实验报告

长春理工大学 光电信息综合实验一实验总结 姓名:__________ 学号:S1******* 指导教师:__________ 专业:信息与通信工程 学院:电子信息工程 2016年5月20号

实验一:光电基础知识实验 1、实验目的 通过实验使学生对光源,光源分光原理,光的不同波长等基本概念有具体认识。 2、实验原理 本实验我们分别用了普通光源和激光光源两种。普通光源光谱为连续光谱,激光光源是半导体激光器。在实验中我们利用分光三棱镜可以得到红橙黄绿青蓝紫等多种波长的光辐射。激光光源发射出来的是波长为630纳米的红色光。 3、实验分析 为了找到光谱需要调节棱镜,不同的面对准光源找出光谱,棱镜的不同面对准光源产生的光谱清晰度不同,想要清晰的光谱就需要通过调节棱镜获得。 实验二:光敏电阻实验 1、实验目的 了解光敏电阻的光照特性,光谱特性和伏安特性等基本特性。 2、实验原理 在光线的作用下,电子吸收光子的能量从键和状态过渡到自由状态,弓I起电导率的变化,这种现象称为光电导效应。光电导效应是半导体材料的一种体效应。光照越强,器件自身的电阻越小。光敏电阻无极性,其工作特性与入射光光强,波长和外加电压有关。 3、实验结果

当光敏电阻的工作电压(Vcc)为+5V时,通过实验我们看出来改变光照度的值,光源的电流值是发生变化的。光照度增加电流值也是增加的。测得实验数据如表2-1 : 表光敏电阻光照特性实验数据 得到的光敏电阻光照特性实验曲线: 光敏电阻伏安特性实验数据 型号:G5528 电压 (U) 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 照度 (Lx) 50 电流 (mA 0 0.05 0 .11 0. 17 0.2 4 0.29 0.35 0 .42 0. 48 0.5 4 0.6 100 电流 (mA 0 0.09 0 .19 0.: 28 0.3 8 0.48 0.58 0 .67 0. 77 0.8 7 0.95 150 电流 (mA 0 0.12 0 .24 0.: 37 0.4 9 0.62 0.74 0 |.87 0. 98 1.1 2 1.19 表2-2光敏电阻伏安特性实验数据 光敏电阻光照 特 光照度 (Lx) 20 40 60 80 电流mA 0.37 0.52 0.68 0.78 寺性实验数据 100 120 140 160 180 0.88 1.00 1.07 1.18 1.24

光电阴极实验报告..

光电阴极实验报告 院系:电子工程与光电技术学院 专业:真空电子技术 班级: 09046201 姓名:李子龙(0904620114) 唐少拓(0904620119) 张伦(0904620124) 完成时间: 2013.1.10 指导老师:张俊举

实验一 光电阴极光谱响应测试 1. 实验目的 通过本实验,了解光电阴极工作原理,掌握相关实验器件的使用方式,学会测试光电阴极的光谱响应 实验原理 光电阴极的光谱响应,或者光谱响应特性,是阴极的光谱灵敏度随入射光谱的分布。具体来说,若照射到阴极面上的单色入射光的辐射功率为()λW ,阴极产生的光电流为()λI ,则阴极的光谱灵敏度为 将阴极对应入射光谱中每一单色光的光谱灵敏度连成一条曲线,便得到了光谱响应曲线。 本实验采用图2所示的实验装置,实验基本框图如图1。用单色仪对光源辐射进行分光,用光电阴极测量单色光,得到输出电流()λI ,根据表标定的光功率用公式) () ()(λλλW I S = 计算后得到光电阴极的光谱响应度,最后画出光谱响应曲线。 图1 光电阴极光谱响应度测试装置 2. 实验仪器简介 1. 由光源(氙灯、氘灯和溴钨灯) 2. 电源 3. 光栅单色仪 4. 光电流计 5. 工控机等组成

实验器件及其相关: a)光源 在进行光谱响应测试时,首先要选取合适的辐射源。本测试辐射源选用GY-9型氢氘灯(GY-10高压球形氙灯)和GY-1型溴钨灯,以获得相应范围的单色光,通过组合使用,能够在200~1600nm范围内有合适的光功率。实物如图3.1所示: 图2 测试所需光源及其电源外形图 氘灯/氙灯用来产生近紫外光谱,溴钨灯则产生可见及近红外范围内的光谱,测试时,根据测试要求选用其中的一种或几种。 b)光栅单色仪 光栅单色仪的作用是将复色光色散,从而得到光谱范围内的单色光,其突出的优点是波段范围宽广,在全波段色散均匀,单色光的波长可以达到非常精确的程度。本测试实验所采用的是北京赛凡光电公司的71SW301型光栅单色仪。实物如图3所示:

光电检测实验报告(2)硅光电池

光电检测实验报告 实验名称:硅光电池特性测试实验实验者: 实验班级: 实验时间: 指导老师:宋老师

一:实验目的 1、学习掌握硅光电池的工作原理 2、学习掌握硅光电池的基本特性 3、掌握硅光电池基本特性测试方法 4、了解硅光电池的基本应用 二、实验内容 1、硅光电池短路电路测试实验 2、硅光电池开路电压测试实验 3、硅光电池光电特性测试实验 4、硅光电池负载特性测试实验 5、硅光电池光谱特性测试实验 三、实验仪器 1、硅光电池综合实验仪 1个 2、光通路组件 1只 3、光照度计 1台 4、2#迭插头对(红色,50cm) 10根 5、2#迭插头对(黑色,50cm) 10根 6、三相电源线 1根 7、实验指导书 1本 8、20M 示波器 1台

四、实验步骤 1、硅光电池短路电流特性测试: (1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。 (2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。 (3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (4)按图2-11所示的电路连接电路图 (5)记录下此时的电流表读数I即为硅光电池短路电流。 图2-11 硅光电池短路电流特性测试 2、硅光电池开路电压特性测试 (1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4

与光通路组件光源接口使用彩排数据线相连。 (2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。 (3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (4)按图2-12所示的电路连接电路图 (5)记录下此时电压表的读数u即为硅光电池开路电压。 图2-12 硅光电池开路电压特性测试 3、硅光电池伏安特性测试 (1)组装好光通路组件,将照度计显示表头与光通路组件照度计探头输出正负极对应相连(红为正极,黑为负极),将光源调制单元J4与光通路组件光源接口使用彩排数据线相连。 (2)“光照度调节”调到最小,连接好光照度计,直流电源调至最小,打开照度计,此时照度计的读数应为0。 (3)“光源驱动单元”的三掷开关BM2拨到“静态”,将拨位开关S1拨上,S2,S3,S4,S5,S6,S7均拨下。 (4)电压表档位调节至2V档,电流表档位调至200uA档,将“光照度调节”旋钮逆时针调节至最小值位置。

光电检测实验报告

光电检测试验报告 专业:应用物理学 姓名:叶长军 学号:10801030125 指导教师:王颖 实验时间:2011.4 重庆理工大学光电信息学院

实验一 光敏电阻特性实验 实验原理: 利用具有光电导效应的半导体材料制成的光敏传感器叫光敏电阻。光敏电阻采用梳 状结构是由于在间距很近的电阻之间有可能采用大的灵敏面积,提高灵敏度。 内光电效应发生时,光敏电阻电导率的改变量为: p n p e n e σμμ?=???+??? ,e 为 电荷电量,p ?为空穴浓度的改变量,n ?为电子浓度的改变量,μ表示迁移率。当两端加上电压U 后,光电流为:ph A I U d σ=??? 式中A 为与电流垂直的表面,d 为电极间的间距。在一定的光照度下,σ?为恒定的值,因而光电流和电压成线性关系。 光敏电阻的伏安特性如图1-2所示,不同的光照度可以得到不同的伏安特性,表明 电阻值随光照度发生变化。光照度不变的情况下,电压越高,光电流也越大,光敏电阻的工作电压和电流都不能超过规定的最高额定值。 图1-2光敏电阻的伏安特性曲线 图1-3 光敏电阻的光照特性曲线 实验仪器: 稳压电源、光敏电阻、负载电阻(选配单元)、电压表、各种光源、遮光罩、激光器、光照度计(做光照特性测试,由用户自备或选配) 实验步骤: 1. 测试光敏电阻的暗电阻、亮电阻、光电阻 观察光敏电阻的结构,用遮光罩将光敏电阻完全掩盖,用万用表欧姆档测得的电阻值为 暗电阻R 暗,移开遮光罩,在环境光照下测得的光敏电阻的阻值为亮电阻R 亮,暗电阻 与亮电阻之差为光电阻,光电阻越大,则灵敏度越高。 在光电器件模板的试件插座上接入另一光敏电阻,试作性能比较分析。 2. 光敏电阻的暗电流、亮电流、光电流 按照图1-5接线,分别在暗光及有光源照射下测出输出 电压暗和U 亮,电流L 暗=U 暗/R,亮电流L 亮=U 亮/R ,亮电流 与暗电流之差称为光电流,光电流越大则灵敏度越高。 3. 光敏电阻的伏安特性测试 按照上图接线,电源可从直流稳压电源+2~+12V 间选用, 每次在一定的光照条件下,测出当加在光敏电阻上电压 为 +2V ;+4V ;+6V ;+8V ;+10V ;+12V 时电阻R 两端的电压U R ,

传感器测速实验报告(第一组)

传感器测速实验报告 院系: 班级: 、 小组: 组员: 日期:2013年4月20日

实验二十霍尔转速传感器测速实验 一、实验目的 了解霍尔转速传感器的应用。 二、基本原理 利用霍尔效应表达式:U H=K H IB,当被测圆盘上装有N只磁性体时,圆盘每转一周磁场就变化N次。每转一周霍尔电势就同频率相应变化,输出电势通过放大、整形和计数电路就可以测量被测旋转物的转速。 本实验采用3144E开关型霍尔传感器,当转盘上的磁钢转到传感器正下方时,传感器输出低电平,反之输出高电平 三、需用器件与单元 霍尔转速传感器、直流电源+5V,转动源2~24V、转动源电源、转速测量部分。 四、实验步骤 1、根据下图所示,将霍尔转速传感器装于转动源的传感器调节支架上,调节探头对准转盘内的磁钢。 图9-1 霍尔转速传感器安装示意图 2、将+15V直流电源加于霍尔转速器的电源输入端,红(+)、黑( ),不能接错。 3、将霍尔传感器的输出端插入数显单元F,用来测它的转速。 4、将转速调解中的转速电源引到转动源的电源插孔。 5、将数显表上的转速/频率表波段开关拨到转速档,此时数显表指示电机的转速。 6、调节电压使转速变化,观察数显表转速显示的变化,并记录此刻的转速值。

五、实验结果分析与处理 1、记录频率计输出频率数值如下表所示: 电压(V) 4 5 8 10 15 20 转速(转/分)0 544 930 1245 1810 2264 由以上数据可得:电压的值越大,电机的转速就越快。 六、思考题 1、利用霍尔元件测转速,在测量上是否有所限制? 答:有,测量速度不能过慢,因为磁感应强度发生变化的周期过长,大于读取脉冲信号的电路的工作周期,就会导致计数错误。 2、本实验装置上用了十二只磁钢,能否只用一只磁钢? 答:如果霍尔是单极的,可以只用一只磁钢,但可靠性和精度会差一些;如果霍尔 是双极的,那么必须要有一组分别为n/s极的磁钢去开启关断它,那么至少要两只磁钢。

光电效应实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓名 学 号 指导教师 成绩 日 期 年 月 日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A ),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫光电子,由光子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD 为光电管,它是一个抽成真空的玻璃管,管内有两个金属电极,K 为光电管阴极,A 为光电管阳极;G 为微电流计;V 为电压表;R 为滑线变阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A 迁移形成光电流,由微电流计G 可以检测光电流的大小。调节R 可使A 、K 之间获得连续变化的电压AK U ,改变AK U ,测量出光电流I 的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。

图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的AK -I U 关系如图2(a)所示。从图中可见,对一定的频率,有一电压0U ,当AK 0U U ≤时,光电流为零,这个相对于阴极的负值的阳极电压0U ,称为截止电压。 (2)当AK 0U U ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比,如图2(b)所示。 (3)对于不同频率的光,其截止电压的值不同,如图2(a)所示。 (4)截止电压0U 与频率v 的关系如图2(c)所示。0U 与ν成正比。当入射光频率低于某极限值0v (随不同金属而异)时,无论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0v ,在开始照射后立即有光电子产生,所经过的时间至多为910-秒的数量级。 2.爱因斯坦光电效应方程 上述光电效应的实验规律无法用电磁波的经典理论解释。为了解释光电效应现象,爱因斯坦根据普朗克的量子假设,提出了光子假说。他认为对于频率为ν的光波,每个光子的能量为E h ν=,h 为普朗克常数。当光子照射到金属表面上时,一次性为金属中的电子全部吸收,而无须积累能量的时间。电子把该能量的一部分用来克服金属表面对它的吸引力,另一部分就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程 201 2 h m W νυ=+ (1) 式中,W 为被光线照射的金属材料的逸出功,2 012m υ为从金属逸出的光电子的最大初动能。 由式(1)可知,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低(即加反向电压)时,也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电

光电探测实验报告

光电探测技术 实验报告 班级:10050341 学号:05 姓名:解娴

实验一光敏电阻特性实验 一、实验目的 1.了解一些常见的光敏电阻的器件的类型; 2.了解光敏电阻的基本特性; 3.测量不同偏置电压下的光敏电阻的电压与电流,并作出V/A曲线。 二、实验原理 伏安特性显示出光敏电阻与外光电效应光电元件间的基本差别。这种差别是当增加电压时,光敏电阻的光电流没有饱和现象,因此,它的灵敏度正比于外加电压。 光敏电阻与外光电效应光电元件不同,具有非线性的光照特性。各种光敏电阻的非线性程度都是各不相同的。 大多数场合证明,各种光敏电阻均存在着分析关系。这一关系为 式中,K为比例系数;是永远小于1的分数。 光电流的增长落后于光通量的增长,即当光通量增加时,光敏电阻的积分灵敏度下降。 这样的光照特性,使得解算许多要求光电流与光强间必需保持正比关系的问题时不能利用光敏电阻。 光照的非线性特性并不是一切光敏半导体都必有的。目前已有就像真空光电管—样,它的光电流随光通量线性增大的光敏电阻的实验室试样。光敏电阻的积分灵敏度非常大,最近研究出的硒—鎘光敏电阻达到12A/lm,这比普通锑、铯真空光电管的灵敏度高120,000倍。

三、实验步骤 1、光敏电阻的暗电流、亮电流、光电流 按照图1接线,电源可从+2V~+8V间选用,分别在暗光和正常环境光照下测出输出电压V暗和V亮。则暗电流L暗=V暗/RL,亮电流L亮=V亮/RL,亮电流与暗电流之差称为光电流,光电流越大则灵敏度越高。 2、伏安特性 光敏电阻两端所加的电压与光电流之间的关系即为伏安特性。按照图1接线,分别测得偏压为2V、4V、6V、8V、10V时的光电流,并尝试高照度光源的光强,测得给定偏压时光强度的提高与光电流增大的情况。将所测得的结果 填入表格并做出V/I曲线。 图1光敏电阻的测量电路 偏压2V4V6V8V10V12V 光电阻I 四、实验数据 实验数据记录如下: 光电流: E/V246810 U/V0.090.210.320.430.56 I/uA1427.54255.270.5 暗电流:0.5uA 实验数据处理:

自动化传感器实验报告十三 光电转速传感器测速实验

广东技术师范学院实验报告 学院:自动化专业:自动化班级: 08自动化 成绩: 姓名:学号: 组 别: 组员: 实验地点:实验日期:指导教师签名: 实验十二项目名称:光电转速传感器测速实验 一、实验目的 了解光电转速传感器测量转速的原理及方法。 二、基本原理 光电式转速转速传感器有反射型和透射型两种,本实验装置是透射型的,传感器端部有发光管和光电管,发光管发出的光源通过转盘上开的孔透射后由光电二极管接受转换成电 信号,由于转盘上有相间的6个孔,转动时将获得与转速及孔数有关的脉冲,将电脉冲计数 处理即可得到转速值。 三、需用器件与单元 光电转速传感器、直流电源5V、转动源及2~24V直流电源、智能转速表。 四、实验步骤 1.光电转速传感器已经安装在传感器实验箱(二)上。 2.将+5V直流源加于光电转速传感器的电源端。 3.将光电转速传感器的输出接到面板上的智能转速表。 4.将面板上的0~30V稳压电源调节到5 V,接入传感器实验箱(二)上的转动电源处。 5.调节转动源的输入电压,使转盘的速度发生变化,观察转速表上转速的变化。 电压(V) 5 6 7 8 9 10 11 12 频率 (HZ) 45 60 78 95 113 130 150 169 6.调节转动源的输入电压,使转盘的转速发生变化,把界面切换到示波器状态,观察传感器输出波形的变化。 电压越大,波形越窄。 五、注意事项 1.转动源的正负输入端不能接反,否则可能击穿电机里面的晶体管。 2.转动源的输入电压不可超过24V,否则容易烧毁电机。 3.转动源的输入电压不可低于2V,否则由于电机转矩不够大,不能带动转盘,长时间

实验报告_光电效应实验

南昌大学物理实验报告 学生姓名: 学号: 专业班级:材料124班 实验时间:10时00分 第十一周 星期四 座位号:28 一、 实验名称: 光电效应 二、 实验目的: 1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律; 2、掌握用光电管进行光电效应研究的方法; 3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。 三、实验仪器: 光电效应测试仪、汞灯及电源、滤色片、光阑、光电管、测试仪 四、实验原理: 1、 光电效应与爱因斯坦方程 用合适频率的光照射在某些金属表面上时,会有电子从金属表面逸出,这种现象叫做光电效应,从金属表面逸出的电子叫光电子。为了解释光电效应现象,爱因斯坦提出了“光量子"的概念,认为对于频率为γ的光波,每个光子的能量为E h ν=,其中 h =6.626 s J ??-3410为普朗克常数。 按照爱因斯坦的理论,光电效应的实质是当光子和电子相碰撞时,光子把全部能量传递给电子,电子所获得的能量,一部分用来克服金属表面对它的约束,其余的能量则成为该光电子逸出金属表面后的动能。爱因斯坦提出了著名的光电方程: 21 2h m W νυ=+ (1) 式中, 为入射光的频率,m 为电子的质量, 为光电子逸出金属表面的初速度,W 为被 光线照射的金属材料的逸出功,1/2mv 2 为从金属逸出的光电子的最大初动能。 由(1)式可见,入射到金属表面的光频率越高,逸出的电子动能必然也越大,所以即使阴极不加电压也会有光电子落入阳极而形成光电流,甚至阳极电位比阴极电位低时也会有光电子落到阳极,直至阳极电位低于某一数值时,所有光电子都不能到达阳极,光电流才为零.这个相对于阴极为负值的阳极电位0U 被称为光电效应的截止电压。 显然,有 eu 0-1/2m v2 =0 (2) 代入上式即有 0h eU W ν=+ (3) 由上式可知,若光电子能量h + W,则不能产生光电子。产生光电效应的最低频率是 0 =W /h,通常称为光电效应的截止频率。不同材料有不同的逸出功,因而 也不同.由

传感器设计实验―光电测转速

光电式传感器测转速实验报告 ——传感器与检测技术 班级:1321202 专业:测控技术与仪器学号:201320120209 姓名:林建宇

1.实验目的: 1)掌握利用光电传感器进行非接触式转速测量的方法; 2)掌握测量和显示电路的设计方法; 3)了解光电式传感器以及示波器的使用方法。 2.实验基本原理: 光电式转速传感器有反射型和透射型二种,本实验装置是透射型的(光电断续器也称光耦),传感器端部二内侧分别装有发光管和光电管,发光管发出的光源透过转盘上通孔后由光电管接收转换成电信号,由于转盘上有均匀间隔的6个孔,转动时将获得与转速有关的脉冲数,脉冲经处理由频率表显示f,即可得到转速n=10f。实验原理框图如下图所示。 光耦测转速实验原理框图 3.需用器件与单元: 主机箱中的直流稳压电源、示波器、电压表、频率\转速表;转动源、光电转速传感器—光电断续器(已装在转动源上)。 4.实验步骤: (1)、按图1所示接线,并且接上示波器,将直流稳压电源调到10V档。

图1、光电传感器测速实验接线示意图 (2)、检查接线无误后,合上主机箱电源开关,调节电机控制旋钮,F/V表以及示波器就会显示相应的频率f,计算转速为n=10f。实验完毕,关闭主、副电源。 5、实验结论与总结 组数 1 2 3 4 5 6 仪器频率108 133 166 186 232 373 示波器频率106.083 134.913 167.949 188.170 232.125 373.892 转速1080 1330 1660 1860 2320 3730 (注:转速单位为转/分钟) 平均误差?△=∑△i/6 (i=6) ?△≈0.855 σ≈1.070 总结:通过计算可知标准差较小,仪器准确率较高。由仪器和示波器所测的两种频率,其中示波器所显示的为标准值。根据上面实验观察到的波形,由于孔所占比例小,所以方波的高电平比低电平要宽。光电式传感器测转速方法简单,易于实现。

光电效应物理实验报告

光电效应 实验目的: (1)了解光电效应的规律,加深对光的量子性的理解 (2)测量普朗克常量h。 实验仪器: ZKY-GD-4 光电效应实验仪 1 微电流放大器 2 光电管工作电源 3 光电管 4 滤色片 5 汞灯 实验原理: 原理图如右图所示:入射光照射到光电管阴极K上,产生 的光电子在电场的作用下向阳极A迁移形成光电流。改变外加 电压V AK,测量出光电流I的大小,即可得出光电管得伏安特性曲线。 1)对于某一频率,光电效应I-V AK关系如图所示。从图中 可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为0, 这个电压V0叫做截止电压。 2)当V AK≥V0后,电流I迅速增大,然后趋于饱和,饱和光电流IM的大小与入射光的强度成正比。 3)对于不同频率的光来说,其截止频率的数值不同,如右图:

4) 对于截止频率V0与频率的关系图如下所示。V0与成正比关系。当入射光的频率低于某极限值时,不论发光强度如何大、照射时间如何长,都没有光电流产生。 5)光电流效应是瞬时效应。即使光电流的发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过的时间之多为10-9s的数量级。 实验内容及测量: 1 将4mm的光阑及365nm的滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。从低到高调节电压(绝对值减小),观察电流值的变化,寻找电流为零时对应的V AK值,以其绝对值作为该波长对应的值,测量数据如下: 波长/nm365577 频率 / 截止电压/V 频率和截止电压的变化关系如图所示:

由图可知:直线的方程是:y= 所以: h/e=× , 当y=0,即时,,即该金属的 截止频率为。也就是说,如果入射光如果频率低于上值时,不管光强多大 也不能产生光电流;频率高于上值,就可以产生光电流。 根据线性回归理论: 可得:k=,与EXCEL给出的直线斜率相同。 我们知道普朗克常量, 所以,相对误差: 2 测量光电管的伏安特性曲线 1)用的滤色片和4mm的光阑 实验数据如下表所示: 4mm光阑 I-V AK的关系 V AK I V AK I V AK I V AK I V AK I V AK I

光电开关实验报告

声光控开关实验报告 实验目的:通过对声光开关的制作,掌握焊接技术,以及声光开关的基本 原理。 实验器材:印刷电路板,电容若干,电阻若干,单向可控硅一个,三极管一个,光敏电阻一个,话筒一个,二极管若干,CD4011芯片一块。 实验内容: 工作原理: 选用CD4011集成块为延时电路,选用1A 单向进口可控硅以及性能稳定的光敏电阻 和驻极体组成的声光控动作电路,此电路节省能源,制作方便。 声光控开关必须同时具备两个条件,声光才起作用。从声光控开关的结构上分析,开关面板表面装有光敏二级管,内部装有柱极体话筒。而光敏二极管的敏感效应,光信息091班 朱建成武 09620136

只有在黑暗时才起到作用(可用液晶万用表测得数值)。也就是说当环境变暗到一定程度,光敏二级管感应后会在电子线路板上产生一个脉冲电流,使光敏二级管一路电路处在关闭状态,只要声音刺激,柱极体活简就会同样产生脉冲电流,这时声光控制开关电路就连通起作用。因为必须要二个条件同时存在,声光控开关才起作用。实验成果展示: 外观展示电路背面电路正面 通过对开关延时性能的测试,在黑暗中受到声波刺激后,与之相连的台灯发光,此开关延时53秒后熄灭,达到了延时效果。 实验总结:在实验中,我们制作了这种通过声音与光照控制电路的开关,它可以用于楼梯,车库,过道等公共场所。在白天强光,多杂音的情况下,开关保持断开,不导通;在黑暗,安静的环境中,通过一个声音刺激就能使开关导通,从而接通电路,过段时间后自动熄灭。 电路中的器件廉价,可靠,稳定,使得它可以广泛的运用与生活之中,达到节能的效果,做到用科技改变生活。 通过本实验,我在实践中运用了所学到的知识,深入了解电路的设计,并牢固掌握。同时,我们在焊接过程中,也掌握了一门技术,在理论学习中加强了实践动手能力,全面发展了自我。在此过程中的种种问题,以及在实验中解决问题的方法,都将是以后的生活工作中的一笔宝贵的财富。

光电探测器特性测量实验报告

实验1 光电探测器光谱响应特性实验 实验目的 1. 加深对光谱响应概念的理解; 2. 掌握光谱响应的测试方法; 3. 熟悉热释电探测器和硅光电二极管的使用。 实验内容 1. 用热释电探测器测量钨丝灯的光谱特性曲线; 2. 用比较法测量硅光电二极管的光谱响应曲线。 实验原理 光谱响应度是光电探测器对单色入射辐射的响应能力。电压光谱响应度 ()v R λ定义为在波长为λ的单位入射辐射功率的照射下,光电探测器输出的信号 电压,用公式表示,则为 () ()() v V R P λλλ= (1-1) 而光电探测器在波长为λ的单位入射辐射功率的作用下,其所输出的光电流叫做探测器的电流光谱响应度,用下式表示 () ()() i I R P λλλ= (1-2) 式中,()P λ为波长为λ时的入射光功率;()V λ为光电探测器在入射光功率 ()P λ作用下的输出信号电压;()I λ则为输出用电流表示的输出信号电流。为简 写起见,()v R λ和()i R λ均可以用()R λ表示。但在具体计算时应区分()v R λ和()i R λ,显然,二者具有不同的单位。 通常,测量光电探测器的光谱响应多用单色仪对辐射源的辐射功率进行分光来得到不同波长的单色辐射,然后测量在各种波长的辐射照射下光电探测器输出的电信号()V λ。然而由于实际光源的辐射功率是波长的函数,因此在相对测量中要确定单色辐射功率()P λ需要利用参考探测器(基准探测器)。即使用一个光

谱响应度为()f R λ的探测器为基准,用同一波长的单色辐射分别照射待测探测器和基准探测器。由参考探测器的电信号输出(例如为电压信号)()f V λ可得单色辐射功率()=()()f P V R λλλ,再通过(1-1)式计算即可得到待测探测器的光谱响应度。 本实验采用单色仪对钨丝灯辐射进行分光,得到单色光功率()P λ ,这里用响应度和波长无关的热释电探测器作参考探测器,测得()P λ入射时的输出电压为()f V λ。若用f R 表示热释电探测器的响应度,则显然有 ()()f f f V P R K λλ= (1-3) 这里f K 为热释电探测器前放和主放放大倍数的乘织,即总的放大倍数。在本实验中=100300f K ?,f R 为热释电探测器的响应度,实验中在所用的25Hz 调制频率下,=900/f R V W 。 然后在相同的光功率()P λ下,用硅光电二极管测量相应的单色光,得到输出电压()b V λ,从而得到光电二极管的光谱相应度 ()() ()()()b b f f f V K V R P V R K λλλλλ= = (1-4) 式中b K 为硅光电二极管测量时总的放大倍数,这里=150300b K ?。 实验仪器 单色仪、热释电探测器组件、光电二极管探测器组件、选频放大器、光源。

光电、磁电传感器测量转速实验报告

广东技术师范学院实验报告 学院: 机电学院 专业: 机械电子工程(师范) 班级: 10机电师 成绩: 姓名: 章烁斌 学号: 15 组别: 组员: 实验地点: 607 实验日期: 2013.05 指导教师签名: 实验 (1) 项目名称:光电传感器、磁电传感器测量转速实验 1.实验项目名称 光电传感器、磁电传感器测量转速实验 2.实验目的和要求 (1)了解和掌握采用光电传感器测量的原理和方法 (2)了解和掌握采用磁电传感器测量的原理和方法 (3)了解和掌握转速测量的基本方法 3.实验原理 (1)光电传感器的结构和工作原理 光电传感器在工业上的应用可归纳为吸收式、遮光式、反射式、辐射式四种基本形式。本实验采用的是反射式光电传感器。反射式光电传感器的工作原理见图1,主要由被测旋转部件、反光片(或反光贴纸)、反射式光电传感器组成,在可以进行精确定位的情况下,在被测部件上对称安装多个反光片或反光贴纸会取得较好的测量效果。在本实验中,由于测试距离近且测试要求不高,仅在被测部件上只安装了一片反光贴纸,因此,当旋转部件上的反光贴纸通过光电传感器前时,光电传感器的输出就会跳变一次。通过测出这个跳变频率f ,就可以知道转速n 。n=f 图1 反射式光电传感器测转速的工作图

如果在被测部件上对称安装多个反光片或反光贴纸,那么,n=f/N。N-反光片或反光贴纸的数量。 (2)磁电传感器的结构和工作原理 磁电传感器的内部结构请参考图2,它的核心部件有衔铁、磁钢、线圈几个部分,衔铁的后部与磁性很强的磁钢详解,衔铁的前端有固定片,其材料是黄铜,不导磁。线圈缠绕在骨架上并固定在传感器内部。为了传感器的可靠性,在传感器的后部填入了环氧树脂以固定引线和内部结构。 图2 磁电传感器的内部结构 使用时,磁电转速传感器是和测速(发讯)齿轮配合使用的,如图3。测速齿轮的材料是导磁的软磁材料,如钢、铁、镍等金属或者合金。测速齿轮的齿顶与传感器的距离d比较小,通常按照传感器的安装要求,d约为1mm。齿轮的齿数为定值(通常为60齿)。这样,当测速齿轮随被测旋转轴同步旋转的时候,齿轮的齿顶和齿根会均匀的经过传感器的表面,引起磁隙变化。在探头线圈中产生感应电动势,在一定的转速范围内,其幅度与转速成正比,转速越高输出的电压越高,输出频率与转速成正比。 图3 直射式光电传感器的工作方式 那么,在已知发讯齿轮齿数的情况下,测得脉冲的频率就可以计算出测速齿轮的转

相关文档
相关文档 最新文档