文档库 最新最全的文档下载
当前位置:文档库 › 分式方程培优讲义全

分式方程培优讲义全

分式方程培优讲义全
分式方程培优讲义全

分式方程拔高讲练

一、含有参数方程

1.若关于x的分式方程的解为非负数,则a的取值围是

2.分式方程=1﹣的根为

3.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为

二、方程无解

1.若关于x的方程﹣=﹣1无解,则m的值是

2.若=0无解,则m的值是

3.若关于x的分式方程﹣=无解,求a= .

三、有增根

1、如果解关于x的分式方程﹣=1时出现增根,那么m的值为

2、关于x的分式方程有增根,则增根为.

3、若关于x的方程有增根,则m的值是.

4、解关于x的方程+=产生增根,则常数a=

四、整体代入解方程

1.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y的整式方程是.

2、用换元法解方程﹣2?+1=0时应设y= .

3.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是.

四、实际问题

1.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进

价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为()

A.﹣10= B.+10=

C.﹣10= D.+10=

2.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km

所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为()

A.= B.=C.= D.=

3.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是()

A. B. C. D.

4.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植

树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5 天完成任务,设原计划每天植树x万棵,可列方程是()

A.﹣=5 B.﹣=5

C.+5= D.﹣=5

5.市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角的垃圾,

调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据

题意可列出方程为()

A.+=1 B.+= C.+= D.+=1

【同步训练】

1.如果关于x的不等式组的解集为x>1,且关于x的分式方程+=3有非负整数解,则符合条件的m的所有值的和是()

A.﹣2 B.﹣4 C.﹣7 D.﹣8

2.从﹣2、﹣1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x 的不等式组无解,且使关于x的分式方程+=﹣1有非负整数解,那么这一个数中所有满足条件的m的个数是()

A.1 B.2 C.3 D.4

3.若关于x的分式方程+3=无解,则实数m= .

4.若关于x的分式方程+=3的解为正实数,则实数m的取值围是.5.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设x米,根据题意可列出方程:.

6.某市为绿化环境计划植树2400棵,实际劳动中每天植树的数量比原计划多20%,结果提前8天完成任务.若设原计划每天植树x棵,则根据题意可列方程为.

7.关于x的方程:x+=c+的解是x1=c,x2=;x﹣=c﹣的解是x1=c,x2=﹣,则x+=c+的解是x1=c,x2= .

8.若数a使关于x的不等式组有且仅有四个整数解,且使关于y的分式方程+=2有非负数解,则所有满足条件的整数a的值之和是()

A.3 B.1 C.0 D.﹣3

9.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm.点D在AC上,AD=1cm,点P 从点A出发,沿AB匀速运动;点Q从点C出发,沿C→B→A→C的路径匀速运动.两点同时出发,在B点处首次相遇后,点P的运动速度每秒提高了2cm,并沿B→C→A的路径匀速运动;点Q保持速度不变,并继续沿原路径匀速运动,两点在D点处再次相遇后停止运动,设点P原来的速度为xcm/s.

(1)点Q的速度为cm/s(用含x的代数式表示).

(2)求点P原来的速度.

12.定义新运算:对于任意实数a,b(其中a≠0),都有a?b=﹣,等式右边是通常的加法、减法及除法运算,例如2?3=﹣=+=1.

(1)求(﹣2)?3的值;(2)若x?2=1,求x的值.

2017年12月02日峰尚的初中数学组卷

参考答案与试题解析

一.选择题(共14小题)

1.若关于x的分式方程的解为非负数,则a的取值围是()

A.a≥1 B.a>1 C.a≥1且a≠4 D.a>1且a≠4

【解答】解:去分母得:2(2x﹣a)=x﹣2,

解得:x=,

由题意得:≥0且≠2,

解得:a≥1且a≠4,

故选:C.

2.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为()

A.10 B.12 C.14 D.16

【解答】解:分式方程+=4的解为x=且x≠1,

∵关于x的分式方程+=4的解为正数,

∴>0且≠1,

∴a<6且a≠2.

解不等式①得:y<﹣2;

解不等式②得:y≤a.

初中数学分式方程的应用培优训练(精选40道习题 附答案详解)

初中数学分式方程的应用培优训练(精选40道习题附答案详解) 1.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元. (1)今年5月份A款汽车每辆售价多少万元? (2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知B款汽车每辆进价为7.5万元,每辆售价为10.5万元,A款汽车每辆进价为6万元,若卖出这两款汽车15辆后获利不低于38万元,问B款汽车至少卖出多少辆? 2.小明和小刚相约周末到净月潭国家森林公园去徒步,小明和小刚的家分别距离公园1600米和2800米,两人分别从家中同时出发,小明骑自行车,小刚乘公交车,已知公交车的平均速度是骑自行车速度的3.5倍,结果小刚比小明提前4min到达公园,求小刚乘公交车的平均速度. 3.兴发服装店老板用4500元购进一批某款T恤衫,由于深受顾客喜爱,很快售完,老板又用4950元购进第二批该款式T恤衫,所购数量与第一批相同,但每件进价比第一批多了9元. (1)第一批该款式T恤衫每件进价是多少元? (2)老板以每件120元的价格销售该款式T恤衫,当第二批T恤衫售出4 5 时,出现了 滞销,于是决定降价促销,若要使第二批的销售利润不低于650元,剩余的T恤衫每件售价至少要多少元?(利润=售价﹣进价) 4.近年来,泰州多条动车路线的开通进一步加强了与其他城市的沟通,同时也为市民的出行带来了方便.已知某市到泰州的路程约为900km,一列动车的平均速度比特快列车快50%,所需时间比特快列车少2h,求该列动车的平均速度. 5.一项工程,甲,乙两公司合做,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元. (1)甲,乙两公司单独完成此项工程,各需多少天? (2)若让一个公司单独完成这项工程,哪个公司的施工费较少? 6.甲、乙两人做某种机械零件,已知甲每小时比乙多做5个,甲做80个所用的时间与乙做60个所用的时间相等,问甲、乙两人每小时各做多少个零件?(用列方程的方法解答)

分式方程培优讲义

分式方程培优讲义-CAL-FENGHAI.-(YICAI)-Company One1

分式方程拔高讲练 一、含有参数方程 1.若关于x的分式方程的解为非负数,则a的取值范围是 2.分式方程=1﹣的根为 3.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组 的解集为y<﹣2,则符合条件的所有整数a的和为 二、方程无解 1.若关于x的方程﹣=﹣1无解,则m的值是 2.若=0无解,则m的值是 3.若关于x的分式方程﹣=无解,求a=.

三、有增根 1、如果解关于x的分式方程﹣=1时出现增根,那么m的值为 2、关于x的分式方程有增根,则增根为. 3、若关于x的方程有增根,则m的值是. 4、解关于x的方程+=产生增根,则常数a= 四、整体代入解方程 1.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y 的整式方程是. 2、用换元法解方程﹣2?+1=0时应设y=. 3.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是. 四、实际问题 1.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫设第一批购进x件衬衫,则所列方程为() A.﹣10= B.+10= C.﹣10= D.+10=

2.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行 120km所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为() A.= B.=C.= D.= 3.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是() A. B. C. D. 4.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5 天完成任务,设原计划每天植树x万棵,可列方程是() A.﹣=5 B.﹣=5 C.+5= D.﹣=5 5.西宁市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角内的垃圾,调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据题意可列出方程为() A.+=1 B.+= C.+= D.+=1 【同步训练】 1.如果关于x的不等式组的解集为x>1,且关于x的分式方程 +=3有非负整数解,则符合条件的m的所有值的和是()A.﹣2 B.﹣4 C.﹣7 D.﹣8 2.从﹣2、﹣1、0、2、5这一个数中,随机抽取一个数记为m,若数m使关于x的不等式组无解,且使关于x的分式方程+=﹣1有 非负整数解,那么这一个数中所有满足条件的m的个数是() A.1 B.2 C.3 D.4

分式复习讲义.doc

分式复习 知识点复习 1. 分式的概念 (1)如果 A 、B 表示两个整式,且 B 中含有未知字母,那么式子 A B 叫做分式。 (2)分式与整式的区别: 分式的分母中含有字母,整式的分母中不含有字母。 2. 分式有意义的条件:分式的分母不能为 0,即 A B 中, B ≠ 0 时,分式有意义。 3. 分式的值为0的条件:分子为0,且分母不为0,对于A B ,即00 A B =??≠?时,A B = 0 . 4. 分式(数)的基本性质: 分式(数)的分子、分母都乘以(或除以)同一个不等于零的整式(数),分式(数)的值不变。 A A M B B M ?=?, A A M B B M ÷=÷( M 为 ≠ 0 的整式) 5. 分式通分 (1)通分的依据是分式的基本性质; (2)通分的关键是确定最简公分母; (3)通分后的各分式的分母相同; (4)通分后的各分式分别与原来的分式相等. 6. 分式通分的步骤 (1)确定最简公分母 ①取各分母系数的最小公倍数。 ②凡出现的字母(或含字母的式子)因式都要取。 ③相同字母(或含字母的式子)的幂因式取指数最大的。 ④当分母中有多项式时,要先将多项式分解因式。 (2)将各分式化成相同分母的分式。 7. 分式的约分 (1)约分的依据:分式的基本性质 (2)约分后不改变分式的值。 (3)约分的结果:使分子、分母中没有公因式,即化为最简分式。 8. 分子的变号规则 分式的分子、分母及分式本身的符号改变其中任意两个,分式的值不变。 用式子表示为: a a a b b b -==--;a a a a b b b b ---=-==-- 9. 分式的乘除法则 乘法法则:分式乘以分式,用分子的积作积的分子,用分母的积作积的分母。 除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。 10. 分式的乘方:分式的乘方是把分子、分母分别乘方,即n a b ?? ??? = 11. 分式的加减 (1)同分母分式相加减,分母不变,把分子相加减。 (2)异分母分式相加减,先通分,变为同分母的分式,再加减。 a b c c ±= a c b d ±== 12. 分式的混合运算原则 (1)先乘方,再乘除,再算加减,有括号,先算括号内的。 (2)同级运算,按运算顺序进行。 bc ad c d b a d c b a bd ac d c b a = ?=÷=?;

分式培优讲义教学文案

讲义 ———分式 姓名: 分式 知识点一:分式的定义

一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。 知识点二:与分式有关的条件 ①分式有意义:分母不为0(B ≠0) ②分式无意义:分母为0(B=0) ③分式值为0:分子为0且分母不为0(A=0且B ≠0) ④分式值为正或大于0:分子分母同号(或 )

⑤分式值为负或小于0:分子分母异号(或 ) ⑥分式值为1:分子分母值相等(A=B) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 知识点三:分式的基本性质 分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不变。

字母表示:,,其中 A、B、C是整式,C0。 拓展:分式的符号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变,即

注意:在应用分式的基本性质时,要注意C0这个限制条件和隐含 条件B0。 知识点四:分式的约分 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。 步骤:把分式分子分母因式分解,然后约去分子与分母的公因。 注意:①分式的分子与分母为单项式时可直接约分,约去分子、分母系数的最大公约数,然后约去分子分母相同因式的最低次幂。 ②分子分母若为多项式,约分时先对分子分母进行因式分解,再约分。 最简分式的定义:一个分式的分子与分母没有公因式时,叫做最简分式。 知识点五:分式的通分 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。分式的通分最主要的步骤是最简公分母的确定。 最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

分式方程培优讲义全

分式方程拔高讲练 一、含有参数方程 1.若关于x的分式方程的解为非负数,则a的取值围是 2.分式方程=1﹣的根为 3.若数a使关于x的分式方程+=4的解为正数,且使关于y的不等式组的解集为y<﹣2,则符合条件的所有整数a的和为 二、方程无解 1.若关于x的方程﹣=﹣1无解,则m的值是

2.若=0无解,则m的值是 3.若关于x的分式方程﹣=无解,求a= . 三、有增根 1、如果解关于x的分式方程﹣=1时出现增根,那么m的值为 2、关于x的分式方程有增根,则增根为. 3、若关于x的方程有增根,则m的值是.

4、解关于x的方程+=产生增根,则常数a= 四、整体代入解方程 1.已知在方程x2+2x+=3中,如果设y=x2+2x,那么原方程可化为关于y的整式方程是. 2、用换元法解方程﹣2?+1=0时应设y= . 3.如果实数x满足(x+)2﹣(x+)﹣2=0,那么x+的值是. 四、实际问题 1.某服装店用10000元购进一批某品牌夏季衬衫若干件,很快售完;该店又用14700元钱购进第二批这种衬衫,所进件数比第一批多40%,每件衬衫的进

价比第一批每件衬衫的进价多10元,求第一批购进多少件衬衫?设第一批购进x件衬衫,则所列方程为() A.﹣10= B.+10= C.﹣10= D.+10= 2.一艘轮船在静水中的最大航速为35km/h,它以最大航速沿江顺流航行120km 所用时间,与以最大航速逆流航行90km所用时间相等.设江水的流速为v km/h,则可列方程为() A.= B.=C.= D.= 3.甲、乙二人做某种机械零件,甲每小时比乙多做6个,甲做90个所用的时间与乙60个所用的时间相等.设甲每小时做x个零件,下面所列方程正确的是() A. B. C. D. 4.2017年,在创建文明城市的进程中,乌鲁木齐市为美化城市环境,计划种植 树木30万棵,由于志愿者的加入,实际每天植树比原计划多20%,结果提前5 天完成任务,设原计划每天植树x万棵,可列方程是() A.﹣=5 B.﹣=5 C.+5= D.﹣=5 5.市创建全国文明城市已经进入倒计时!某环卫公司为清理卫生死角的垃圾, 调用甲车3小时只清理了一半垃圾,为了加快进度,再调用乙车,两车合作1.2小时清理完另一半垃圾.设乙车单独清理全部垃圾的时间为x小时,根据 题意可列出方程为()

分式方程培优

(4) 分式方程培优 、分式方程的解法 4、在x=0,X=1,X = -1中,分式方程 5、 若分式方程一( ------- =-一的解为x = 3,则a = . a(x -1) 5 6、 当m= _______ 时,方程竺 - 1的解与方程 ―4 =3的解互为相反数 m+1 x-1 x x +3 7、 方程丄亠=y 的整数解有 ______________ 组。 x +1 8、 解方程: x —7 x —4 x —5 x —6 1、不解下列方程, 判断下列哪个数是方程 2、关于x 的方程 B 2ax 3 3、若分式 a 「x B 、3 x 2 _1 岛1的值等于 2(x+1) .x=-1 3 =一的解为 4 C 、一 x=1,贝U a= 0,贝U x 的值为 A. 1 B. 3 = ----- + x 3 .x=3 D 、一 3 D. -1 1 r 的解( x 2 —2x — 3 D . x=-3 (1) x 14 x 2 -4 2x x 2 -1

(5)x 7 x 9_x10 x 6 x亠6 x亠8 x亠9 x亠5 9、阅读材料: 111 1 方程的解为x = 1 , x+1 x x—2 x-3 1111 方程丄一二丄—的解为x=2, x x-1 x-3 x—4 1111 方程——- - ——的解为x = 3, x—1 x—2 x—4 x—5 (1 )请写出能反映上述方程一般规律的一个方程___________________ 解是x=10. 1111 (2)方程」丄丄—的解是_________________________ x+3 x+4 x + 6 x + 7 ,使它的 二、方程有增根、无解、正解、负解的问题: 1、如果关于x的方程乙泌—无解,则m等于( ) x -5 5 —x A.3 B. 4 C.-3 D.5 1 x—4 2、若方程」7 =有增根,则增根为. x - 3 3 — x 3、若分式方程土3 _1 =0无解,那么a的值应为________________ 。 x_2 x—2 x 16k 4、当k 时关于x的方程 2 有解。 x + 2 x-2 x2-4 5、若关于x的方程- —有增根,则增根是多 少?产生增根的 X2-9 x+3 x-3 少? m值又是多

培优专题分式方程培优提高经典例题

分式方程专题 例1:去分母法解分式方程 1、 ()()113116=---+x x x 2、2 2416222-+=--+-x x x x x 3、22412212362x x x x x x x -+++=++--- 4、64534275--+--=--+--x x x x x x x x 例2:整体换元与倒数型换元: 1、用换元法解分式方程:(1) 6151=+++x x x x (2)12221--=+--x x x x 变式练习: (11上海)用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( ) A .230y y +-= B .2310y y -+= C .2310y y -+= D .2310y y --= 例3:分式方程的(增)根的意义 1、 若分式方程: 024122=+-+-x x a 有增根,求a 的值。 2、关于x 的分式方程131=---x x a x 无解,则a=_________。 变式练习:当m 为 时,分式方程 ()01163=-+--+x x m x x x 有根。

例4一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货物量不变,且甲、乙两车单独运这批货物分别运2a 次、a 次能运完;若甲、丙两车合运相同次数运完这批货物时,甲车共运了180t ;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270t . 问:⑴乙车每次所运货物量是甲车每次所运货物量的几倍; ⑵现甲、乙、丙合运相同次数把这批货物运完时,货主应付车主运费各多少元?(按每运1t 付运费20元计算) 课堂总练习 1关于x 的分式方程 1131=-+-x x m 的解为正数,则m 的取值范围是 2.关于x 的方程 223242mx x x x +=--+会产生增根,则m 为____________ 3.若关于x 的方程 2111 x m x x ++=--产生增根,则 m =____________; 4.k 取何值时,方程x x k x x x x +=+-+211 2会产生增根? 5.当a 为何值时,关于x 的方程223242 ax x x x +=--+无解?

分式和分式方程知识点总结及练习(供参考)

分式和分式方程知识点总结 一、分式的基本概念 1、分式的定义 一般地,我们把形如B A 的代数式叫做分式,其中 A , B 都是整式,且B 含有字母。A 叫做分式的分子,B 叫做分式的分母。分式也可以看做两个整式相除(除式中含有字母)的商。 2.分式的基本性质 分式的分子和分母同乘(或除以)一个不为0的整式,分式的值不变。 M B M A M B M A B A ÷÷=??=。其中,M 是不等于0的整式。 3.分式的约分 把分式中分子和分母的公因式约去,叫做分式的约分。 4.最简分式 分子和分母没有公因式的分式叫做最简分式。利用分式的基本性质可以对分式进行化简 二、分式的运算 1、分式的乘除 分式的乘法法则 分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。 D B C A D C B A ??=? 分式的除法法则 分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。 C B D A C D B A D C B A ??=?=÷

2、分式的加减 同分母的分式加减法法则 同分母的两个分式相加(减),分母不变,把分子相加(减)。 B C A B C B A ±=± 异分母的分式加减法法则 异分母的两个分式相加(减),先通分,化为同分母的分式,再加(减)。 分式的通分 把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。 几个分式的公分母不止一个,通分时一般选取最简公分母 BD BC AD BD BC BD AD D C B A ±=±=± 分式的混合运算 分式的混合运算,与数的混合运算类似。先算乘除,再算加减;如果有括号,要先算括号里面的。 三、分式方程 1、分式方程的定义 分母中含有未知数的方程叫做分式方程。 2、分式方程的解 使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。 3、解分式方程的步骤 1.通过去分母将分式方程转化为整式方程,

分式方程培优答案(教师版)

分式方程培优 一、分类解析 例1. 解方程:x x x --+=121 1 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根 解:方程两边都乘以()() x x +-11,得 x x x x x x x x x 222211121232 32 --=+---=--∴==()()(), 即, 经检验:是原方程的根。 例2. 解方程x x x x x x x x +++++=+++++12672356 分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现 ()()()() x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。 解:原方程变形为: x x x x x x x x ++-++=++-++67562312 方程两边通分,得 1671236723836 9 2()()()() ()()()() x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =- 92 。 例3. 解方程:121043323489242387161945x x x x x x x x --+--=--+-- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。

解:由原方程得:3143428932874145- -++-=--++- x x x x 即2892862810287x x x x ---=--- 于是,所 以解得:经检验:是原方程的根。 189861810878986810871 1()()()() ()()()()x x x x x x x x x x --=----=--== 例4. 解方程:61244444402222y y y y y y y y +++---++-=2 分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。 解:原方程变形为:622222220222()()()()() ()()y y y y y y y y ++-+--++-= 约分,得62222202y y y y y y +-+-++-=()() 方程两边都乘以()()y y +-22,得 622022 ()()y y y --++= 整理,得经检验:是原方程的根。 216 88y y y =∴== 注:分式方程命题中一般渗透不等式,恒等变形,因式分解等知识。因此要学会根据方程结构特点,用特殊方法解分式方程。 二、中考题解: 1.若解分式方程2111x x m x x x x +-++=+产生增根,则m 的值是( ) A. - -12或 B. -12或 C. 12或 D. 12或- 分析:分式方程产生的增根,是使分母为零的未知数的值。由题意得增根是:

一元二次方程培优专题讲义(最新整理)

数学培优专题讲义:一元二次方程 一.知识的拓广延伸及相关史料 1.一元二次方程几种解法之间的关系解一元二次方程有下列几种常用方法:(1)配方法:如,经配方得 2670x x ++=,再直接用开平方法; 2(3)2x +=(2)公式法;(3)因式分解法。 这三种方法并不是孤立的,直接开平方法,实际也是因式分解法,解方程,只2670x x ++=要变形为 即可,或原方程 22(3)0x +-=经配方化为,再求解时, 2670x x ++=2(3)2x +=还是归到用平方差公式的因式分解法,所以配方法归为用因式分解法的手段。公式法在推导公式过程中用的是配方法和直接开平方法,因此,它还是归到因式分解法,所不同的是,公式法用一元二次方程的系数来表示根,因而可以作为公式。由此可见,对因式分解法应予以足够的重视。因式分解法还可推广到高次方程。 2.我国古代的一元二次方程 提起代数,人们自然就把它和方程联系起来。事实上,过去代数的中心问题就是对方程的研究。我国古代对代数的研究,特别是对方程解法的研究有着优良的传统,并取得了重要成果。 下面是我国南宋数学家杨辉在1275年提出的一个问题:”直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?”答:”阔二十四步,长三十六步.” 这里,我们不谈杨辉的解法,只用已学过的知识解决上面的问题. 上面的问题选自杨辉所著的《田亩比类乘除算法》。原题另一个提法是:“直田积八百六十四步,只云阔与长共六十步,问阔及长各几步?”这个问题同样可以类似求解. 3. 掌握数学思想方法,以不变应万变。 本章内容蕴涵了丰富的数学方法,主要有转化思想、类比思想、降次法、配方法等。 (1)转化思想 我们知道,解方程的过程就是不断地通过变形把原方程转化为与它等价的最简单方程的过程。因此,转化思想就是解方程过程中思维活动的主导思想。在本章,转化无所不在,无处不有, 可以说这是本章的精髓和特色之一,其表现主要有以下方面: ①未知转化为已知,这是解方程的基本思路: ②一元二次方程转化为一元一次方程,这是通过将原方程降次达到的: ③特殊转化为一般,一般转化为特殊。例如,通过用配方法解数字系数的一元二次方程归纳出用配方法解一般形式2670x x ++=的一元二次方程的方法,进而得出20ax bx c ++=一元二次方程的求根公式,而用公式法又可以解各种具体的一元二次方程,推导出一元二次方程根与系数的关系。又如,通过设未知数,找出等量关系,列方程,把实际问题转化为解方程问题,等等。 掌握转化思想并举一反三,还可以解决很多其他方程问题,如高次方程转化为一元一次或一元二次方程,分式方程转化为整式方程,无理方程转化为有理方程,二元二次方程组转化为二元一次方程组,总之,本章学习的关键之一是学会如何”转化”. 练习: ;222 1 1.510a x x a a -+=+ 是方程的一根,求的值 2421032. a x a ?--=--是方程x 的一根,求a 的值 2 2 42 3101 x x x x x --=-+、若,求的值。 (2)类比思想 本章多次运用类比找出新旧知识的联系,在新旧知识间进行对比,以利于更快更好地掌握新知识. 如用配方法解一元二次方程时,可类比平方根的概念和意义,列一元二次方程解应用题,可类比列一元一次方程解应用题的思路和一般步骤. 类比思想是联系新旧知识的纽带,有利于帮助我们开阔思路,研究解题途径和方法,有利于掌握新知识、巩固旧知识,学习时应特别重视。

分式培优训练(含答案)

13、分式总复习 【知识精要】 分式定义:(、为整式,中含有字母)性质通分:约分:分式方程定义:分母含有未知数的方程。如解法思想:把分式方程转化为整式方程方法:两边同乘以最简公分母依据:等式的基本性质 注意:必须验根应用:列分式方程解应用题及在其它学科中的应用A B A B A M B M M A B A M B M M x x A B B =??≠=÷÷≠???????-=+???????????????????????????????????????????()()005113 【分类解析】 1. 分式有意义的应用 例1. 若ab a b +--=10,试判断 1111a b -+,是否有意义。 分析:要判断1111 a b -+,是否有意义,须看其分母是否为零,由条件中等式左边因式分解,即可判断a b -+11,与零的关系。 解: ab a b +--=10 ∴+-+=a b b ()()110 即()()b a +-=110 ∴+=b 10或a -=10 ∴-+1111 a b ,中至少有一个无意义。 2. 结合换元法、配方法、拆项法、因式分解等方法简化分式运算。 例2. 计算:a a a a a a 2211313 +-+--+- 分析:如果先通分,分子运算量较大,观察分子中含分母的项与分母的关系,可采取“分

离分式法”简化计算。 解:原式=+-+--+-a a a a a a ()()111313 =-+-+-=-+--=--+++-=- -+-a a a a a a a a a a a a a 1113 1113 311322 13()()() ()() ()() 例3. 解方程:11765556 222-++=-+-+x x x x x x 分析:因为x x x x 27616++=++()(),x x x x 25623-+=--()(),所以最简公分母为:()()()()x x x x ++--1623,若采用去分母的通常方法,运算量较大。由于x x x x x x x x x x 222225556561561156 -+-+=-+--+=--+故可得如下解法。 解: x x x x x x 222561561156 -+--+=--+ 原方程变为11761156 22-++=--+x x x x ∴++=-+∴++=-+∴=176156 76560 2222x x x x x x x x x 经检验,x =0是原方程的根。 3. 在代数求值中的应用 例4. 已知a a 2 69-+与||b -1互为相反数,求代数式 ()42222222222a b a b ab a b a ab b a b ab b a -++-÷+-++的值。 分析:要求代数式的值,则需通过已知条件求出a 、b 的值,又因为a a a 226930-+=-≥(),||b -≥10,利用非负数及相反数的性质可求出a 、b的值。

分式和分式方程培优精讲

二、知识点梳理 知识点一:分式的定义 一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A 叫做分式,A 为分子,B 为分母。 知识点二:与分式有关的条件 1、分式有意义:分母不为0(0B ≠) 2、分式值为0:分子为0且分母不为 0(? ??≠=00B A ) 3、分式无意义:分母为0(0B =) 4、分式值为正或大于0:分子分母 同号(???>>00B A 或???<<0 B A ) 5、分式值为负或小于0:分子分母异号(???<>00B A 或? ??><00 B A ) 知识点三:分式的通分 ① 分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母分式,叫做分式的通分。 ② 分式的通分最主要的步骤是最简公分母的确定。 最简公分母的定义:取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。 确定最简公分母的一般步骤: Ⅰ 取各分母系数的最小公倍数; Ⅱ 单独出现的字母(或含有字母的式子)的幂的因式连同它的指数作为一个因式; Ⅲ 相同字母(或含有字母的式子)的幂的因式取指数最大的。 Ⅳ 保证凡出现的字母(或含有字母的式子)为底的幂的因式都要取。 注意:分式的分母为多项式时,一般应先因式分解。 知识点四:分式的四则运算与分式的乘方 1、分式的乘除法法则: 分式乘分式,用分子的积作为积的分子,分母的积作为积的分母。式子表示

为:d b c a d c b a ??=? 分式除以分式:式子表示为 c c ??=?=÷b d a d b a d c b a 2、分式的乘方:把分子、分母分别乘方。式子n n n b a b a =??? ?? 3、分式的加减法则: 同分母分式加减法:分母不变,把分子相加减。式子表示为 c b a c b ±=± c a 异分母分式加减法:先通分,化为同分母的分式,然后再加减。式子表示为 bd bc ad d c ±=±b a 注意:加减后得出的结果一定要化成最简分式(或整式)。 知识点五:分式方程的解的步骤 ⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程) ⑵解整式方程,得到整式方程的解。 ⑶检验,把所得的整式方程的解代入最简公分母中: 如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根; 如果最简公分母不为0,则是原方程的解。 2、产生增根的条件是:①是得到的整式方程的解; ②代入最简公分母后值为0。 三、典型例题 例一 当x 有何值时,下列分式有意义 (1)4 4+-x x (2) 2 32+x x (3) 1 22-x (4) 3||6--x x (5) x x 11-

培优专题分式方程及其应用(含答案)

12、分式方程及其应用 【知识精读】 1. 解分式方程的基本思想:把分式方程转化为整式方程。 2. 解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程; (3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。 3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。 下面我们来学习可化为一元一次方程的分式方程的解法及其应用。 【分类解读】 例1. 解方程:x x x --+=121 1 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根 解:方程两边都乘以()()x x +-11,得 x x x x x x x x x 22221112123 2 32--=+---=--∴== ()()(), 即, 经检验:是原方程的根。 例2. 解方程x x x x x x x x +++++=+++++12672356 分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为: x x x x x x x x ++-++=++-++67562312 方程两边通分,得 1671236723836 9 2 ()()()() ()()()() x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =- 92。 例3. 解方程:121043323489242387161945 x x x x x x x x --+--=--+-- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。 解:由原方程得:3143428932874145 - -++-=--++-x x x x 即2892862810287x x x x ---=--- 于是,所以解得:经检验:是原方程的根。 189861810878986810871 1()()()() ()()()() x x x x x x x x x x --=----=--== 例4. 解方程:612444444 0222 2y y y y y y y y +++---++-=2 分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。 解:原方程变形为:62222222022 2 ()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202 y y y y y y +-+-++-=()()

分式方程练习题及标准答案

分式方程练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

分式方程练习题及答案 一、选择题(每小题3分,共30分) 1.下列式子是分式的是( ) A .2 x B .x 2 C .πx D . 2 y x + 2.下列各式计算正确的是( ) A .1 1--= b a b a B . ab b a b 2 = C . ()0,≠=a ma na m n D . a m a n m n ++= 3.下列各分式中,最简分式是( ) A .() () y x y x +-73 B .n m n m +-22 C . 2 222ab b a b a +- D . 2 2222y xy x y x +-- 4.化简 2 293m m m --的结果是( )

A.3+m m B.3 +- m m C. 3 -m m D. m m -3 5.若把分式 xy y x +中的x 和y 都扩大2 倍,那么分式的值( ) A .扩大2倍 B .不变 C .缩小2倍 D .缩小4倍 6.若分式方程 x a x a x +-=+-321有增根,则a 的值是( ) A .1 B .0 C .—1 D .—2 7.已知 4 32c b a ==,则 c b a +的值是( ) A .5 4 B. 4 7 C.1 D.4 5

8.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A .x x -= +3060 30100 B .3060 30100-= +x x C . x x += -3060 30100 D . 30 60 30100+= -x x 9.某学校学生进行急行军训练,预计行60千米的路程在下午5时到达,后来由于把速度加快20% ,结果于下午4时到达,求原计划行军的速度。

八年级分式与分式方程培优专题

4 2 《分式与分式方程》培优专题 1下列各式中,无论 X 取何值,分式都有意义的是( ) 八 1 x 小 3x +1 A . B . C . D 2 2x ::1 2 x -,-1 x x a 2.分式 ------- 中,当x 二_a 时,下列结论正确的是( ) 3x _1 (1) C ?右a 工 时,分式的值为零; D 3 2 3.当x 时,分式 x 一1的值为零. 2 x 亠 x —2 5.商店通常用以下方法来确定两种糖混合而成的什锦糖的价格:设 A 种糖的单价为a 元/千克,B 种糖的单价为b 元/千克,则m 千克A 种糖和n 千克B 种糖混合而成的什锦糖的单价为 ma ' nb 元 m n /千克(平均价)。现有甲乙两种什锦糖,均由 A 、B 两种糖混合而成;其中甲种什锦糖由 10千克A 种糖和10千克B 种糖混合而成,乙种什锦糖由 100元A 种糖和100元B 种糖混合而成,你认为哪 一种什锦糖的单价较高?为什么? A .分式的值为零; B .分式无意义 2x 2 ■ 1 1 若a 工时,分式的值为零 3 4.计算:(1)已知 1 x -3 5 x +3 xy _5y ,求—— x _ 2xy _y 的值. x y z xy yz zx 右 — ,求 2 2 2 2 3 4 x + y -z (2) 的值.

4 2 _ 2 6.已知a —6a 9与|b -1|互为相反数,求 a - b 2 2 ab —a b 2 b ■ 2ab i_ ■-的值。 a

7.化简下列各式 (1) x _1 1 1 1 + -------------------- + x(x 1) -------------( x ■ 1)( x 2) ---------- (x ■ 2)( x 3)+ IH + (x - 9)( x - 1 0) x 2X +1x - 6x 2x - 5 8 解方程. Q侖邳千耳 ——一19.解方程— x - 1 x - 1x +2x 7x - 3x - 6 2 m 10.如果关于x的方程 1 一 x — 3 x — 有增根, 3 则m的值等于( ) A. -3 B. -2 C. -1 D. 3 2 11.m为何值时,关于x的方程m x—会产生增根? x —2x - 4 x2 12.轮船在一次航行中顺流航行80千米,逆流航行42千米,共用了7小时;在另一次航行中,用相同的时间,顺流航行40千米,逆流航行70千米。求这艘轮船在静水中的速度和水流速度。

专题5.8分式方程无解与特殊解(重难点培优)八年级数学下册尖子生同步培优题典(解析版)【北师大版】

2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】 专题5.8分式方程无解与特殊解专题培优 姓名:__________________ 班级:______________ 得分:_________________ 注意事项: 本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置. 一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的. 1.(2020?浦城县二模)如果关于x 的方程m 3?x ? 1?x x?3 =0无解,则m 的值是( ) A .2 B .0 C .1 D .﹣2 【分析】分式方程去分母转化为整式方程,由分式方程无解得到x ﹣3=0,求出x 的值,代入整式方程求出m 的值即可. 【解析】去分母得:﹣m ﹣1+x =0, 由分式方程无解,得到x ﹣3=0,即x =3, 把x =3代入整式方程得:﹣m ﹣1+3=0, 解得:m =2, 故选:A . 2.(2020秋?綦江区期末)方程12x ?1 ? 6x?1 = 1 x+1 增根为( ) A .1 B .±1 C .﹣1 D .0 【分析】先把分式方程变成整式方程,求出方程的解,再进行检验即可. 【解析】方程两边都乘以(x +1)(x ﹣1)得:12﹣6(x +1)=x ﹣1, 解得:x =1, 经检验x =1不是原方程的根,是原方程的增根, 故选:A . 3.(2020?丛台区校级二模)若关于x 的分式方程m+1x?1 = x 1?x 有增根,则m 的值是( ) A .m =﹣1 B .m =1 C .m =﹣2 D .m =2 【分析】方程两边同时乘以x ﹣1,得x =﹣m ﹣1,由于方程有增根,则有﹣m ﹣1=1,求解m 即可. 【解析】方程两边同时乘以x ﹣1,得 m +1=﹣x ,

分式培优讲义

分式培优练习题 补充知识点:与分式有关的条件 ①分式有意义:分母不为0(B ≠0) ②分式无意义:分母为0(B=0) ③分式值为0:分子为0且分母不为0(A=0且B ≠0) ④分式值为正或大于0:分子分母同号(或) ⑤分式值为负或小于0:分子分母异号(或) ⑥分式值为1:分子分母值相等(A=B ) ⑦分式值为-1:分子分母值互为相反数(A+B=0) 1、若M =1 )2)(1(2--+x x x ,则当x ________时,M 有意义;当x =________时,M =0;当x =________时,M =4. 2、当x ________时,分式x x -52 的值为正数. 3、在正数范围内定义一种运算*,其规则为a *b =b a 11+,则x *(x +1)=________. 4、不论x 取何值时,下列分式总有意义的是( ) A.21x x - B.22)2(+x x C.2+x x D.22+x x 5、若x 2-9=0,则分式3 652-+-x x x 的值为( ) A.1 B.-5 C.1或-5 D.5 6、若分式m m m --21||的值为零,则m 取值为( ) A.m =±1 B.m =-1 C.m =1 D.m 的值不存在 7、当m ______时,关于x 的方程3 23-+=-x m x x 有增根; 8、若a ∶b ∶c=1∶3∶5,则a c b a +-= ,2 2 22a c b a +-= 。

9、已知:b b a 2-=35,则 b a = . 10、(1)已知(0)234x y z x ==≠,求分式2 33233x y z x y z +--+的值。 (2)已知311=-y x ,求y xy x y xy x ---+55的值. (3)若a 、b 满足b a +a b =2,则 的值是 。 11、(1)若方程122-=-+x a x 的解是正数,求a 的取值范围. (2)已知关于x 的分式方程1)2)(1(23 ++-=+-x x k x x 的解是非负数,求k 的取值范围. 12、已知a 2+3a +1=0,求 (1)a +a 1; (2)a 2+21a ; (3)a 4+41 a

分式方程培优提高练习

分式方程培优提高练习 一、选择题(每题5分,共30分) 1.若73212++y y 的值为8 1,则96412-+y y 的值是( ) (A )21- (B )171- (C )71- (D )71 2.已知x z z y x +=+=531,则z y y x +-22的值为( ) (A )1 (B ) 23 (C )23- (D )4 1 3.若对于3±=x 以外的一切数98332-=--+x x x n x m 均成立,则mn 的值是( ) (A )8 (B )8- (C )16 (D )16- 4.有三个连续正整数,其倒数之和是60 47,那么这三个数中最小的是( ) (A )1 (B )2 (C )3 (D )4 5.若d c b a ,,,满足a d d c c b b a ===,则2 222d c b a da cd bc ab ++++++的值为( ) (A )1或0 (B )1- 或0 (C )1或2-(D )1或1- 6.设轮船在静水中的速度为v ,该船在流水(速度为v u <)中从上游A 驶往下游B,再返回A ,所用的时间为T,假设0=u ,即河流改为静水,该船从A 至B 再返回A,所用时间为t ,则( ) (A )t T = (B )t T < (C )t T > (D )不能确定T 与t 的大小关系 二、填空题(每题5分,共30分) 7.已知:x 满足方程20061120061 =--x x ,则代数式2007 200520062004+-x x 的值是_____. 8. 已知: b a b a +=+511,则b a a b +的值为_____. 9.方程71011=++z y x 的正整数解()z y x ,,是_____. 10. 若关于x 的方程122-=-+x a x 的解为正数,则a 的取值范围是_____.

相关文档
相关文档 最新文档