文档库 最新最全的文档下载
当前位置:文档库 › 人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版
人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word

______年______月______日

____________________部门

———综合训练篇

一、选择题:

1. 在等差数列中,,则的值为 ( D ){}n a 120

31581=++a a a 1092a a -

A .18

B .20

C .22

D .24

2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32

C .64

D .27{}n a 30,8531==+S a a {}

n b ,,4311a b a b ==5b

3.等差数列中,则数列的前9项之和S9等于{}

n a 1

a {a

( C )A .66

B .144

C .99

D .297

4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{}

n a 2a 321a 1

a 5

443a a a a ++2

15-215+2

51-2

1

5+215-

5.设等比数列的前项和为,若则( B ){}n a n n S ,33

6=S S =

69S S A. 2 B. C. D.3738

3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向

量的坐标是 ( B ){}n a n n S 210S =555S =(,)

n P n a 2(2,)()n Q n a n N *++∈

A. B. C. D.1(2,)2

1(,2)2--1(,1)

2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则

的值为( C ) A .

B .

C .

D .a 1b

1c 1a c c a +15941594±15341534

±

8. 已知数列的通项则下列表述正确的是 ( A ){}

n a ,1323211

????????-??? ???

?

? ??=--n n n a

A .最大项为最小项为

B .最大项为最小项不存在,1a 3

a ,1a

C .最大项不存在,最小项为

D .最大项为最小项为3

a ,1a 4a

9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大

值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a

n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M ,

且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

对任意n ∈N*,总有Tn>恒成立,则m 的最大正整数为 ( B )

433111+n n b b 90m

A .3

B .5

C .6

D .9

二、填空题:

10.已知等差数列前n 项和Sn=-n2+2tn ,当n 仅当n=7时Sn 最大,则t 的取值范围是{}n a

(6.5,7.5) .

11. 数列的通项公式是,则数列的前2m (m 为正整数)项和是

2m+1+m2-2 .

{}n a ?????=)

(2)(2为偶数为奇数n n n a n

n

12.已知数列满足:则________;{}n a 43

4121,0,,N ,n n n n a a a a n *

--===∈2009a = 2014

a =_________. 【答案】1,0

【解析】本题主要考查周期数列等基础知识.属于创新题型.

依题意,得,.2009450331a a ?-==2014210071007425210a a a a ??-==== ∴应填1,0.

13.在数列和中,bn 是an 与an+1的等差中项,a1 = 2且对任意都有

{}n a {}n b *N n ∈

3an+1-an = 0,则数列{bn}的通项公式 .

n n b 34

=

14. 设P1,P2,…Pn…顺次为函数图像上的点(如图),Q1,

Q2,…Qn…顺次为x 轴上的点,且,…,均为等腰直解三角形(其

中Pn 为直角顶点).设Qn 的坐标为(,则数列{an}的通项公式为 .

)0(1

>=

x x

y n n n Q P Q Q P O Q OP 122111,,-??? *)0)(0,N x n ∈n x n 2=*)N n ∈

三、解答题:

15.已知是等比数列,Sn 是其前n 项的和,a1,a7,a4成等差数列,求证:2S3,S6,S12-S6,成等比数列.}{n a

15.

[解法

1]由已知………………(2

分)

.21,2,26361311741q q q a q a a a a a =+∴=+=+

66663124373124126361,2()2()2()2q S S S S a a a S a q a q a q S S q ≠-=++

+=++

=时

…………(4分)

………………(8分)

.

1)

1(1)1()1()1(266616318

633

S S q q a S q q a q S S q =?--=?--?+=+=

当……(10

分)

,

)(2,6,6,3,126612316121613S S S S a S S a S a S q =-=-===同样有时

所以,成等比数

列.………………………………………………(12分)61263,,2S S S S -

[解法2]由已知,……………(2分)

6

36131174121,2,2q q q a q a a a a a =+∴=+=+

,

36)12(32)(2,1231314122a a a a S S S q =-?=-=时

成等比数列.…(6

分)

∴==.36)6(232126a a S ∴=-.)(2266122S S S S 61263,,2S S S S -

当…………………………(8分)

,221)1(2111212,16

33

636q q q q S S q ?=+=--?=≠时

∴成等比数列.……………………………………………………(11

分)

61263,,2S S S S -

综上,成等比数

列.………………………………………………(12分)61263,,2S S S S -

16.已知数列{an}的前n 项和为Sn ,且对任意自然数n 总有为常数,且p a p S n n (),1(-=

q q n b b p p n n (2}{),1,0+=≠≠中有数列为常数)。

(1)求数列{an}的通项公式; (2)若求p 的取值范围。2211,b a b a <= 16.解:(1)

)1,0(1)1(1111≠≠-=

-==p p p p

a a p S a 解得

当111)1()(2---=--=-=≥n n n n n n n pa a p a a p S S a n 整理得时,

故 …………4分

)1,0,,2(11≠≠∈≥-=+-p p N n n p p

a a n n

1,111-=

-=

-p p

a a p p a n n

得………………………………6分

)()1()1(11+-∈-=--=

N n p p p p p p a n

n n

(2)由已知得021)1(4)1(2122<----????

??

?+<-+=-p p p p q q

p p q p p

并整理得消去

211<-<

-p p

有 ………………………………9分

221

><

p p 或

又………………12分

1

0,(,0)(0,)(2,)

2p p ≠∴-∞??+∞的取值范围为

16.新星家俱厂开发了两种新型拳头产品,一种是模拟太空椅,一种是

多功能办公桌.20xx 年该厂生产的模拟太空椅获利48万元,以后它又以上年利润的1.25倍的速度递增;而多功能办公桌在同年获利75万元,这个利润是上年利润的,以后每年的利润均以此方式产生. 预期计划若干年后两产品利润之和达到174万元. 从20xx

年起,54

(I )哪一年两产品获利之和最小?

(II )至少经过几年即可达到或超过预期计划? 16.

分)

)(时取(当且仅当)(分,)(则分)万元万元,办公桌获利年太空椅获利)设第解:(5”“2120)54

(754548)

3..(..................................................)5

4

(7545481......(1111==≥+=+∴==I ----n y x y x y x n n n n n n n n n n n

故第20xx 年两产品获利最

小.……………………………………………………(6分)

(II )则有

)(,又令)(令,45174)54(7545481

11---==+=+n n n n n t y x

.7年即可超过预期计划故至少经过…………………………………………

(1分)

17.(选做题)已知函数的反函数为,数列{an}满足:a1 = 1, ,

数列是首项为1,公比为的等比数列.)4(44)(≥+-=x x x x f )

(1

x f

-)(),(*

1

1N n a f

a n n ∈=-+1

23121,,,----n n b b b b b b b 31

(Ⅰ)求证:数列为等差数列;}{n a

(Ⅱ)若,求数列的前n 项和Sn.n n n b a c ?=}{n c

17.解:(Ⅰ),)4()2(44)(2≥-=+-=x x x x x f

…………………………………………2分

)0()2()(21

≥+=∴-x x x f

,即

2

1

1)2()(+==∴-+n n n a a f

a

(4)

).

(2*1N n a a n n ∈=-+

∴数列为首项,公差为2的等差数列 …………………………6分

1

}{1=a a n 是以

(Ⅱ)由(1)得:,即12)1(21-=-+=n n a n

(8)

)

()12(*2N n n a n ∈-=

b1 = 1,当,

1

1)31

(,2--=-≥n n n b b n 时

因而 ……………………………………………………10分

.),31

1(23*N n b n n ∈-=

令 ①

n n n T 31

233312-+++=

则 ②1

43231

233235333131+-+-++++=n n

n n n T

①-②,得

.

311n n n T +-=∴又1 + 3 + 5 + … +(2n -1)= n2,

).311(232n n n n S ++-=

∴ …………………………………………………

………14分

18.

11(),(0,){}1,();21n n n x

f x x a a a f a x +=

∈+∞==+(选做题)已知函数,数列满足数111

1{},,{}n 1,2,3,.2

12()n n n n n b b b s b n f s +=

==-列满足其中为数列前项和,

(1);}{}{的通项公式和数列求数列n n b a (2)

.5:,1

112211<+++=

n n

n n T b a b a b a T 证明设

18.解:

(20xx 天津卷) 已知等差数列的公差为,等比数列的公比为.设

,

{}

n a )

0(≠d d {}

n b )

1(>q q 1122......n n n

S a b a b a b =+++*

12211,)1(N n b a b a b a T n n n n ∈-+???+-=-

(Ⅰ)若求 的值;,3,2,111====q d b a 3S

(Ⅱ)若,证明:11=b 2*

222

2(1)

(1)(1),1n n n dq q q S q T n N q ---+=∈-

(Ⅲ)若正整数n 满足2nq ,设的两个不同的排列,, 证明。≤≤

1212,,...,,,...,12...n n k k k l l l 和是,,,n 12112...n k k k n c a b a b a b =+++12212...n l l l n c a b a b a b =+++12c c ≠

本小题主要考查等差数列的通项公式、等比数列的通项公式与前n 项和公式等基础知识,考查运算能力,推理论证能力及综合分析和解决问题的能力的能力,满分14分。

(Ⅰ)解:由题设,可得1*

21,3,n n n a n b n N -=-=∈

所以,311223311335955S a b a b a b =++=?+?+?=

(Ⅱ)证明:由题设可得则1

n n b q -=

22121232.....,

n n n S a a q a q a q -=++++ ①

2321212342.....,n n n T a a q a q a q a q -=-+-+- ②

①式减去②式,得 ①式加上②式,得 ③2222213212(....)

n n n n S T a a q a q --+=+++

③式两边同乘q ,得 所以,

(Ⅲ)证明:1

1

2

2

1212()()()n

n

k l k l k l n c c a a b a a b a a b -=-+-++-K

因为所以10,0,d b ≠≠

(1) 若,取i=n n n k l ≠

(2) 若,取i 满足且n n k l =i i k l ≠,1j j k l i j n

=+≤≤

由(1),(2)及题设知,且1i n <≤

① 当时,得i i k l <1,1,1,2,3.....1i i i i k l q n k l q i i -≤-≥-≤-=-由,得

即,…,

111k l q -≤-22()(1)k l q q q -≤-22

11()(1)i i i i k l q q q -----≤- 又所以

11

(),i i i i k l q q ---≤- 因此12120,c c c c -≠≠即

② 当同理可得,因此i i

k l >12

11

c c db -<-12c c ≠ 综上, 12c c ≠

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学数列知识点总结(经典)

数列基础知识点和方法归纳 1. 等差数列的定义与性质 定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()() 1112 2 n n a a n n n S na d +-= =+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则 21 21 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界 项, 即:当100a d ><,,解不等式组10 0n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由10 0n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{} n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S nd S S =-奇偶, 1 += n n a a S S 偶 奇. (7)项数为奇数12-n 的等差数列{} n a ,有

高中数学数列专题大题训练

高中数学数列专题大题组卷 一.选择题(共9小题) 1.等差数列{a n}的前m项和为30,前2m项和为100,则它的前3m项和为()A.130 B.170 C.210 D.260 2.已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D. 3.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=() A.3×44B.3×44+1 C.44D.44+1 4.已知数列{a n}满足3a n+1+a n=0,a2=﹣,则{a n}的前10项和等于()A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1=()A.B.C.D. 6.已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23 7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6 8.等差数列{a n}的公差为2,若a2,a4,a8成等比数列,则{a n}的前n项和S n=() A.n(n+1)B.n(n﹣1)C.D. 9.设{a n}是等差数列,下列结论中正确的是() A.若a1+a2>0,则a2+a3>0 B.若a1+a3<0,则a1+a2<0 C.若0<a 1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题) 10.设数列{a n}(n=1,2,3,…)的前n项和S n满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.

高中数学数列复习题型归纳解题方法整理

数列 典型例题分析 【题型1】 等差数列与等比数列的联系 例1 (2010陕西文16)已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数 列.(Ⅰ)求数列{a n }的通项;(Ⅱ)求数列{2an } 的前n 项和S n . 解:(Ⅰ)由题设知公差d ≠0, 由a 1=1,a 1,a 3,a 9成等比数列得121d +=1812d d ++, 解得d =1,d =0(舍去), 故{a n }的通项a n =1+(n -1)×1=n. (Ⅱ)由(Ⅰ)知2m a =2n ,由等比数列前n 项和 公式得 S m =2+22+23+…+2n =2(12) 12 n --=2n+1-2. 小结与拓展:数列{}n a 是等差数列,则数列}{n a a 是 等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。(a>0且a ≠1).

【题型2】与“前n项和Sn与通项an”、 常用求通项公式的结合 例 2 已知数列{a n}的前三项与数列{b n}的前 三项对应相同,且a1+2a2+22a3+…+2n-1a n= 8n对任意的n∈N*都成立,数列{b n+1-b n}是等 差数列.求数列{a n}与{b n}的通项公式。 解:a1+2a2+22a3+…+2n-1a n=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2a n-1=8(n -1)(n∈N*) ② ①-②得2n-1a n=8,求得a n=24-n, 在①中令n=1,可得a1=8=24-1, ∴a n=24-n(n∈N*).由题意知b1=8,b2=4, b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{b n+1-b n}的公差为-2-(-4)=2,∴b n

重点高中数学数列知识点总结

重点高中数学数列知识点总结

————————————————————————————————作者:————————————————————————————————日期:

定义:1n n a a d +-=(d 为常数),()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ?=+ 前n 项和()()11122 n n a a n n n S na d +-==+ 性质:{}n a 是等差数列 (1)若m n p q +=+,则m n p q a a a a +=+; (2)数列{}{}{}12212,,+-n n n a a a 仍为等差数列,232n n n n n S S S S S --,,……仍为等差数列,公差为d n 2; (3)若三个成等差数列,可设为a d a a d -+,, (4)若n n a b ,是等差数列,且前n 项和分别为n n S T ,,则2121 m m m m a S b T --= (5){}n a 为等差数列2n S an bn ?=+(a b ,为常数,是关于n 的常数项为0的二次函数) n S 的最值可求二次函数2n S an bn =+的最值;或者求出{}n a 中的正、负分界项, 即:当100a d ><,,解不等式组100 n n a a +≥??≤?可得n S 达到最大值时的n 值. 当100a d <>,,由1 00n n a a +≤??≥?可得n S 达到最小值时的n 值. (6)项数为偶数n 2的等差数列{}n a ,有 ),)(()()(11122212为中间两项++-+==+=+=n n n n n n n a a a a n a a n a a n S Λ nd S S =-奇偶,1 +=n n a a S S 偶奇. (7)项数为奇数12-n 的等差数列{} n a ,有 )()12(12为中间项n n n a a n S -=-, n a S S =-偶奇, 1-=n n S S 偶奇.

(完整版)高三文科数学数列专题.doc

高三文科数学数列专题 高三文科数学复习资料 ——《数列》专题 1. 等差数列{ a n}的前n项和记为S n,已知a1030, a2050 . ( 1)求通项a n; ( 2)若S n242 ,求 n ; ( 3)若b n a n20 ,求数列 { b n } 的前 n 项和 T n的最小值. 2. 等差数列{ a n}中,S n为前n项和,已知S77, S1575 . ( 1)求数列{ a n}的通项公式; ( 2)若b n S n,求数列 {b n } 的前 n 项和 T n. n 3. 已知数列{ a n}满足a1 1 a n 1 ( n 1) ,记 b n 1 , a n . 1 2a n 1 a n (1)求证 : 数列{ b n}为等差数列; (2)求数列{ a n}的通项公式 . 4. 在数列a n 中, a n 0 , a1 1 ,且当 n 2 时,a n 2S n S n 1 0 . 2 ( 1)求证数列1 为等差数列;S n ( 2)求数列a n的通项 a n; ( 3)当n 2时,设b n n 1 a n,求证: 1 2 (b2 b3 b n ) 1 . n 2(n 1) n 1 n 5. 等差数列{ a n}中,a18, a4 2 . ( 1)求数列{ a n}的通项公式; ( 2)设S n| a1 | | a2 || a n |,求 S n;

1 (n N *) , T n b1 b2 b n (n N *) ,是否存在最大的整数m 使得对任( 3)设b n n(12 a n ) 意 n N * ,均有T n m m 的值,若不存在,请说明理由. 成立,若存在,求出 32 6. 已知数列{log2(a n1)} 为等差数列,且a13, a39 . ( 1)求{ a n}的通项公式; ( 2)证明: 1 1 ... 1 1. a2 a1 a3 a2 a n 1 a n 7. 数列{ a n}满足a129, a n a n 12n 1(n 2, n N * ) . ( 1)求数列{ a n}的通项公式; ( 2)设b n a n,则 n 为何值时, { b n } 的项取得最小值,最小值为多少?n 8. 已知等差数列{ a n}的公差d大于0 , 且a2,a5是方程x2 12 x 27 0 的两根,数列 { b n } 的前 n 项和 为 T n,且 T n 1 1 b n. 2 ( 1)求数列{ a n} , { b n}的通项公式; ( 2)记c n a n b n,求证:对一切 n N 2 , 有c n. 3 9. 数列{ a n}的前n项和S n满足S n2a n 3n . (1)求数列{ a n}的通项公式a n; (2)数列{ a n}中是否存在三项,它们可以构成等差数列?若存在,请求出一组适合条件的项;若不存在,请说明理由 . 10. 已知数列{ a n}的前n项和为S n,设a n是S n与 2 的等差中项,数列{ b n} 中, b1 1,点 P(b n , b n 1 ) 在 直线 y x 2 上. ( 1)求数列{ a n} , { b n}的通项公式

高中数学专项训练(数列提升版)

高中数学专项训练(数列提升版) (含详细解答) 1.已知等差数列{a n}前9项的和为27,a10=8,则a100=() A. 100 B. 99 C. 98 D. 97 2.记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为() A. 1 B. 2 C. 4 D. 8 3.等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的 和为() A. ?24 B. ?3 C. 3 D. 8 4.设等比数列{a n}的前n项和为S n,若S2=3,S4=15,则S6=() A. 31 B. 32 C. 63 D. 64 5.已知等差数列{a n}的前n项和为S n,且,,则使得S n取最小 值时的n为() A. 1 B. 6 C. 7 D. 6或7 6.等比数列{a n}的各项均为正数,且a5a6+a4a7=18,则log3a1+log3a2+?+ log3a10=() A. 12 B. 10 C. 8 D. 7.已知等比数列{a n}满足a1+a3=10,a2+a4=5,则a5=() A. 1 B. 1 2C. 1 4 D. 4 8.设各项均为正的等比数列{a n}满足a4a8=3a7,则log3(a1a2…a9)等于() A. 38 B. 39 C. 9 D. 7 9.已知等比数列{a n}为递增数列,S n是其前n项和.若a1+a5=17 2 ,a2a4=4,则S6=() A. 27 16B. 27 8 C. 63 4 D. 63 2 10.在等差数列{a n}中,若a3+a4+a5=3,a8=8,则a12的值是() A. 15 B. 30 C. 31 D. 64 11.等差数列{a n}中,已知S15=90,那么a8=() A. 12 B. 4 C. 3 D. 6 12.正项等比数列{a n}中,存在两项a m、a n使得√a m?a n=2a1,且a6=a5+2a4,则 1 m +4 n 的最小值是() A. 3 2B. 2 C. 7 3 D. 9 4 13.等差数列{a n},{b n}的前n项和分别为S n,T n,且S n T n =3n+1 n+3 ,则 a2+a20 b7+b15 =______ . 14.若数列{a n}的首项a1=2,且a n+1=3a n+2(n∈N?),令,则 _________. 15.若数列{a n}满足a1=12,a1+2a2+3a3+?+na n=n2a n,则a2017=______ . 16.设{a n}是等差数列,若a4+a5+a6=21,则S9=______.

人教版最新高中数学数列专题复习(综合训练篇含答案)Word版

——教学资料参考参考范本——人教版最新高中数学数列专题复习(综合训练篇含答案)Word 版 ______年______月______日 ____________________部门

———综合训练篇 一、选择题: 1. 在等差数列中,,则的值为 ( D ){}n a 120 31581=++a a a 1092a a - A .18 B .20 C .22 D .24 2.等差数列满足:,若等比数列满足则为( B ) A .16 B .32 C .64 D .27{}n a 30,8531==+S a a {} n b ,,4311a b a b ==5b 3.等差数列中,则数列的前9项之和S9等于{} n a 1 a {a ( C )A .66 B .144 C .99 D .297 4.各项都是正数的等比数列的公比q ≠1,且,,成等差数列,则为(A ) A . B . C . D .或{} n a 2a 321a 1 a 5 443a a a a ++2 15-215+2 51-2 1 5+215- 5.设等比数列的前项和为,若则( B ){}n a n n S ,33 6=S S = 69S S A. 2 B. C. D.3738 3

6.已知等差数列的前项的和为,且,,则过点和的直线的一个方向向 量的坐标是 ( B ){}n a n n S 210S =555S =(,) n P n a 2(2,)()n Q n a n N *++∈ A. B. C. D.1(2,)2 1(,2)2--1(,1) 2--(1,1)-- 7.设a 、b 、c 为实数,3a 、4b 、5c 成等比数列,且、、成等差数列,则 的值为( C ) A . B . C . D .a 1b 1c 1a c c a +15941594±15341534 ± 8. 已知数列的通项则下列表述正确的是 ( A ){} n a ,1323211 ????????-??? ??? ? ? ??=--n n n a A .最大项为最小项为 B .最大项为最小项不存在,1a 3 a ,1a C .最大项不存在,最小项为 D .最大项为最小项为3 a ,1a 4a 9.已知为等差数列,++=105,=99.以表示的前项和,则使得达到最大 值的是(B ){}n a 1a 3a 5a 246a a a ++n S {}n a n n S n A .21 B .20 C .19 D .18 9.一系列椭圆都以一定直线l 为准线,所有椭圆的中心都在定点M , 且点M 到l 的距离为2,若这一系列椭圆的离心率组成以为首项,为公比的等比数列,而椭圆相应的长半轴长为ai=(i=1,2,…,n),设bn=2(2n+1)·3n -2·an ,且Cn=,Tn=C1+C2+…+Cn ,若

高中数学数列知识点总结

数列基础知识点 《考纲》要求: 1、理解数列的概念,了解数列通项公式的意义,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项; 2、理解等差数列的概念,掌握等差数列的通项公式与前n 项和公式,并能解决简单的实际问题; 3、理解等比数列的概念,掌握等比数列的通项公式与前n 项和公式,并能解决简单的实际问题。 数列的概念 1.数列的概念:数列是按一定的顺序排列的一列数,在函数意义下,数列是定义域为正整数N * 或其子集{1,2,3,……n}的函数f(n).数列的一般形式为a 1,a 2,…,…,简记为{},其中是数列{}的第 项. 2.数列的通项公式 一个数列{}的 与 之间的函数关系,如果可用一个公式=f(n)来表示,我们就把这个公式叫做这个数列的通项公式. 3.在数列{}中,前n 项和与通项的关系为: =n a ?? ???≥==2 1n n a n 4.求数列的通项公式的其它方法 ⑴ 公式法:等差数列与等比数列采用首项与公差(公比)确定的方法. ⑵ 观察归纳法:先观察哪些因素随项数n 的变化而变化,哪些因素不变;初步归纳出公式,再取n 的特珠值进行检验,最后用数学归纳法对归纳出的结果加以证明. ⑶ 递推关系法:先观察数列相邻项间的递推关系,将它们一般化,得到的数列普遍的递推关系,再通过代数方法由递推关系求出通项公式. 例1. 根据下面各数列的前n 项的值,写出数列的一个通项公式. ⑴ - 3 12?,534?,-758?,9716?…; ⑵ 1,2,6,13,23,36,…; ⑶ 1,1,2,2,3,3, 解: ⑴ =(-1) n ) 12)(12(1 2+--n n n ⑵ =)673(2 12+-n n (提示:a 2-a 1=1,a 3-a 2=4,a 4-a 3=7,a 5-a 4=10,…,--1=1+3(n -2)=3n -5.各式相加得

高中数学数列放缩专题:用放缩法处理数列和不等问题

用放缩法处理数列和不等问题(教师版) 一.先求和后放缩(主要是先裂项求和,再放缩处理) 例1.正数数列{}n a 的前n 项的和n S ,满足12+=n n a S ,试求: (1)数列{}n a 的通项公式; (2)设11+= n n n a a b ,数列{}n b 的前n 项的和为n B ,求证:2 1

高中数学数列专题练习版

高中数学数列专题练习(精编版) 1. 已知数列{}()n a n N *∈是等比数列,且130,2,8.n a a a >== (1)求数列{}n a 的通项公式; (2)求证: 11111321<++++n a a a a ; (3)设1log 22+=n n a b ,求数列{}n b 的前100项和. 2.数列{a n }中,18a =,42a =,且满足21n n a a ++-=常数C (1)求常数C 和数列的通项公式; (2)设201220||||||T a a a =+++, (3) 12||||||n n T a a a =++ +,n N +∈ 3. 已知数列n n 2,n a =2n 1,n ???为奇数; -为偶数; , 求2n S 4 .已知数列{}n a 的相邻两项1,+n n a a 是关于x 的方程022=+-n n b x x ∈n (N )*的两根,且 11=a . (1) 求证: 数列? ?? ????-n n a 231是等比数列; (2) 求数列{}n b 的前n 项和n S . 5.某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,…,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)? 6. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少5 1,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加4 1. (1)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元, 写出a n ,b n 的表达式;

数列专项练习及答案

(二)数列专项练习 1. (本小题满分12分)已知数列{}n a 满足() 12111,3,32,2n n n a a a a a n N n *+-===-∈≥, (I )证明:数列{}1n n a a +-是等比数列,并求出{}n a 的通项公式; (II )设数列{}n b 满足()2 42log 1n n b a =+,证明:对一切正整数222 121111 ,1112 n n b b b ++???+<---有 . 2.(本小题满分12分)已知数列{}n a 是等差数列,n S 为{}n a 的前n 项和,且1019a =,10100S =;数列 {}n b 对任意N n *∈,总有123 12n n n b b b b b a -???=+成立. (Ⅰ)求数列{}n a 和{}n b 的通项公式; (Ⅱ)记2 4(1)(21)n n n n b c n ?=-+,求数列{}n c 的前n 项和n T .

3.(本小题满分12分)已知数列{} n a 是递增的等比数列,149a a +=,238a a =. (Ⅰ)求数列{} n a 的通项公式; (Ⅱ)若2log n n n b a a =? ,求数列{} n b 的前n 项和n T . 4.已知双曲线=1的一个焦点为,一条渐近线方程为y=x ,其中{a n }是以4 为首项的正数数列. (Ⅰ)求数列{c n }的通项公式; (Ⅱ)若不等式对一切正常整数n 恒成立,求实数x 的取 值范围.

5.已知正项数列{a n },其前n 项和Sn 满足,且a 2是a 1和a 7的等比中项. (Ⅰ)求数列 的通项公式; (Ⅱ)符号[x]表示不超过实数x 的最大整数,记,求. 6.(本小题满分12分)单调递增数列{}n a 的前行项和为 n S ,且满足 2 44n n S a n =+. (I)求数列{}n a 的通项公式; (Ⅱ)数列 {}n b 满足: 1221 log log 2 n n n a b a ++=。求数列{}n b 的前n 项和 n T 。

(完整版)高中数学数列基础知识与典型例题

数学基础知识例题

数学基础知识与典型例题(第三章数列)答案 例1. 当1=n 时,111==S a ,当2n ≥时,34)1()1(2222-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适合34-=n a n ,∴34-=n a n ()n N +∈ 例2. 解:∵1--=n n n S S a ,∴ n n n S S 221=--,∴12 211 =---n n n n S S 设n n n S b 2 = 则{}n b 是公差为1的等差数列,∴11-+=n b b n 又∵2 3 22111=== a S b , ∴ 21 2 +=n S n n ,∴12)12(-+=n n n S ,∴当2n ≥时 212)32(--+=-=n n n n n S S a ∴????+=-2 2 )32(3n n n a (1)(2)n n =≥,1 2)12(-+=n n n S 例3 解:1221)1(----=-=n n n n n a n a n S S a 从而有11 1 -+-=n n a n n a ∵11=a ,∴312=a ,31423?=a ,3142534??=a ,3 1 4253645???=a , ∴)1(234)1()1(123)2)(1(+=???-+????--=n n n n n n n a n ΛΛ,∴122+==n n a n S n n . 例4.解:)111(2)1(23211+-=+=++++= n n n n n a n Λ∴12)111(2)111()3 1 21()211(2+= +-=??????+-++-+-=n n n n n S n Λ 例5.A 例6. 解:1324321-+++++=n n nx x x x S ΛΛ①()n n n nx x n x x x xS +-++++=-132132ΛΛ② ①-②()n n n nx x x x S x -++++=--1211ΛΛ, 当1≠x 时,()()x nx x n x nx nx x nx x x S x n n n n n n n n -++-=-+--=---=-++1111111111∴()() 21111x nx x n S n n n -++-=+; 当1=x 时,()2 14321n n n S n +=++++=ΛΛ 例7.C 例8.192 例9.C 例10. 解:14582 54 54255358-=-? =?==a a a q a a 另解:∵5a 是2a 与8a 的等比中项,∴25482-?=a ∴14588-=a 例11.D 例12.C 例13.解:12311=-==S a , 当2n ≥时,56)]1(2)1(3[23221-=-----=-=-n n n n n S S a n n n ,1=n 时亦满足 ∴ 56-=n a n , ∴首项11=a 且 )(6]5)1(6[561常数=----=--n n a a n n ∴{}n a 成等差数列且公差为6、首项11=a 、通项公式为56-=n a n 例14. 解一:设首项为1a ,公差为d 则???? ????? = ??+??++=?+1732225662256)(635421112121 11d a d d a d a 5=?d 解二:??? ??==+2732354 奇偶偶奇S S S S ???==?162192奇偶S S 由 d S S 6=-奇偶5=?d 例15. 解:∵109181a a a a =,∴205 100 110918=== a a a a 例16. 解题思路分析: 法一:利用基本元素分析法 设{a n }首项为a 1,公差为d ,则71151 76772 151415752 S a d S a d ?? =+=?????=+=??∴ 121a d =-??=? ∴ (1)22n n n S -=-+∴ 15 2222 n S n n n -=-+=-此式为n 的一次函数 ∴ {n S n }为等差数列∴ 21944n T n n =- 法二:{a n }为等差数列,设S n =An 2 +Bn ∴ 2 72 157******** S A B S A B ?=?+=??=?+=?? 解之得:12 5 2 A B ?=????=-??∴ 21522n S n n =-,下略 注:法二利用了等差数列前n 项和的性质 例17.解:设原来三个数为2,,aq aq a 则必有 )32(22-+=aq a aq ①,)32()4(22-=-aq a aq ② 由①: a a q 24+=代入②得:2=a 或9 5 =a 从而5=q 或13 ∴原来三个数为2,10,50或9 338 ,926,92 例18.70 例19. 解题思路分析: ∵ {a n }为等差数列∴ {b n }为等比数列 ∴ b 1b 3=b 22,∴ b 23=81,∴ b 2=21,∴ 1312178 14 b b b b ? +=????=??,∴ 13218b b =???=??或 12182b b ?=?? ?=? ∴ 13212()24n n n b --== 或 1251 428n n n b --=?= ∵ 1 ()2n a n b =,∴ 12 log n n a b =,∴ a n =2n -3 或 a n =-2n +5 例20. 2392 n n +

高三数列专题练习30道带答案

高三数列专题训练二 学校:___________姓名:___________班级:___________考号:___________ 一、解答题 1.在公差不为零的等差数列{}n a 中,已知23a =,且137a a a 、、成等比数列. (1)求数列{}n a 的通项公式; (2)设数列{}n a 的前n 项和为n S ,记,求数列{}n b 的前n 项和n T . 2.已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式; 1,公比为3的等比数列,求数列{}n b 的前n 项和n T . 3.设等比数列{}n a 的前n 项和为n S ,,2S ,3S 成等差数列,数列{}n b 满足2n b n =. (1)求数列{}n a 的通项公式; (2)设n n n c a b =?,若对任意*n N ∈,求λ的取值范围. 4.已知等差数列{n a }的公差2d =,其前n 项和为n S ,且等比数列{n b }满足11b a =, 24b a =,313b a =. (Ⅰ)求数列{n a }的通项公式和数列{n b }的前n 项和n B ; (Ⅱ)记数列的前n 项和为n T ,求n T . 5.设数列{}n a 的前n 项和为n S ,且满足()21,2,3,n n S a n =-=. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足11b =,且1n n n b b a +=+,求数列{}n b 的通项公式; (3)设()3n n c n b =-,求数列{}n c 的前n 项和n T .

数列应用题专题训练

数列应用题专题训练 高三数学备课组 以数列知识作为背景的应用题是高中应用题中的常见题型,要正确快速地求解这类问题,需要在理解题意的基础上,正确处理数列中的递推关系。 一、储蓄问题 对于这类问题的求解,关键是要搞清:(1)是单利还是复利;(2)存几年。 单利是指本金到期后的利息不再加入本金计算。设本金为P元,每期利率为r,经过n期,按单利计算的本利和公式为Sn=P(1+nr)。 复利是一种计算利率的方法,即把前一期的利息和本金加在一起做本金,再计算下一期的利息。设本金为P,每期利率为r,设本利和为y,存期为x,则复利函数式为y=P(1+r)x。 例1、(储蓄问题)某家庭为准备孩子上大学的学费,每年6月30日在银行中存入2000元,连续5年,有以下两种存款的方式: (1)如果按五年期零存整取计,即每存入a元按a(1+n·6.5%)计本利(n为年数); (2)如果按每年转存计,即每存入a元,按(1+5.7%)n·a计算本利(n为年数)。 问用哪种存款的方式在第六年的7月1日到期的全部本利较高? 分析:这两种存款的方式区别在于计复利与不计复利,但由于利率不同,因此最后的本利也不同。 解:若不计复利,5年的零存整取本利是 2000(1+5×0.065)+2000(1+4×0.065)+…+2000(1+0.065)=11950; 若计复利,则 2000(1+5%)5+2000(1+5%)4+…+2000(1+5%)≈11860元。 所以,第一种存款方式到期的全部本利较高。 二、等差、等比数列问题 等差、等比数列是数列中的基础,若能转化成一个等差、等比数列问题,则可以利用等差、等比数列的有关性质求解。 例2、(分期付款问题)用分期付款的方式购买家用电器一件,价格为1150元。购买当天先付150元,以后每月这一天都交付50元,并加付欠款的利息,月利率为1%。若交付150元以后的第

高中数学专题复习数列训练题

高中数学专题复习数列训练题 1.已知递增的等差数列满足11 =a ,4223-=a a ,则=n a (A )12-=n a n 或n a n 23-= (B) 12-=n a n (C) 12+=n a n (D) n a n 23-= 2。设等比数列{}n a 的公比为q ,前n 项和为n S ,若1+n S 、n S 、2+n S 成等差数列,则q 的值为 (A )1或2- (B) 2- (C)2 (D)1或2 3。首项为正数的数列{}n a 满足)3(4 121+=+n n a a ,*∈N n ,若对一切*∈N n 都有 n n a a >+1,则1a 的取值范围是 (A )),3()1,0(+∞Y (B) ),3()1,(+∞-∞Y (C) )1,0( (D) )3,0( 4。在项数为12+n 的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于 (A )9 (B)10 (C)11 (D)12 5。已知两个等差数列{}n a ,{}n b ,它们的前n 项和为n S 和n T ,若325++=n n T S n n ,则=5 5b a (A )1245 (B) 947 (C) 1247 (D) 21 47 6。已知数列{}n a 的通项公式为)34()1(--=n a n n ,n S 是其前n 项和,则33178S S S -+的值为 (A )48 (B)49 (C)50 (D)47 7。已知数列 {}n a 的前n 项和为n S ,且1-=n n n S S a )2(≥n ,921=a ,则=10a (A )74 (B) 94 (C) 634 (D) 63 5 8。设等差数列 {}n a 的前n 项和为n S ,且65S S <,876S S S >=,则下列结论错误的是 (A )0 (D) 6S 与7S 均为n S 的最大值 9。设数列{}n a 的前n 项和为n S ,数列{}n S 的前n 项和为n T ,满足22n S T n n -=,*∈N n ,则=n a (A )22 3-?n (B) 2231-?-n (C) 2231-?+n (D) 1231+?-n 10。数列{}n a 满足12)1(1-=-++n a a n n n ,则{}n a 的前60项的和为 (A )1820 (B)1830 (C)1846 (D)1849 二.填空题:

(推荐)高中数学数列知识点精华总结

数 列 专 题 ◆ 考点一:求数列的通项公式 1. 由a n 与S n 的关系求通项公式 由S n 与a n 的递推关系求a n 的常用思路有: ①利用S n -S n -1=a n (n≥2)转化为a n 的递推关系,再求其通项公式; 数列的通项a n 与前n 项和S n 的关系是a n =? ?? ?? S 1,n =1, S n -S n -1,n≥2.当n =1时,a 1若适合S n -S n -1,则n =1的情况可 并入n≥2时的通项a n ;当n =1时,a 1若不适合S n -S n -1,则用分段函数的形式表示. ②转化为S n 的递推关系,先求出S n 与n 的关系,再求a n . 2.由递推关系式求数列的通项公式 由递推公式求通项公式的常用方法:已知数列的递推关系,求数列的通项公式时,通常用累加、累乘、构造法求解. ◆ 累加法:递推关系形如a n +1-a n =f(n),常用累加法求通项; ◆ 累乘法:递推关系形如a n +1 a n =f(n),常用累乘法求通项; ◆ 构造法:1)递推关系形如“a n +1=pa n +q(p 、q 是常数,且p≠1,q≠0)”的数列求通 项,此类通项问题,常用待定系数法.可设a n +1+λ=p(a n +λ),经过比较,求得λ,则数列{a n +λ}是一个等比数列; 2)递推关系形如“a n +1=pa n +q n (q ,p 为常数,且p≠1,q≠0)”的数列求通项,此类型可以将关系式两边同除以q n 转化为类型(4),或同除以p n +1 转为用迭加法求解. 3) ◆ 倒数变形

3.数列函数性质的应用 数列与函数的关系 数列是一种特殊的函数,即数列是一个定义在非零自然数集或其子集上的函数,当自变量依次从小到大取值时所对应的一列函数值,就是数列.因此,在研究函数问题时既要注意函数方法的普遍性,又要考虑数列方法的特殊性. 函数思想在数列中的应用 (1)数列可以看作是一类特殊的函数,因此要用函数的知识,函数的思想方法来解决. (2)数列的单调性是高考常考内容之一,有关数列最大项、最小项、数列有界性问题均可借助数列的单调性来解决,判断单调性时常用:①作差;②作商;③结合函数图象等方法. (3)数列{a n }的最大(小)项的求法 可以利用不等式组? ?? ?? a n -1≤a n ,a n ≥a n +1,找到数列的最大项;利用不等式组? ?? ?? a n -1≥a n , a n ≤a n +1,找到 数列的最小项. [例3] 已知数列{a n }.(1)若a n =n 2 -5n +4,①数列中有多少项是负数?②n 为何值时,a n 有最小值?并求出最小值. (2)若a n =n 2 +kn +4且对于n ∈N * ,都有a n +1>a n 成立.求实数k 的取值范围. 考点二:等差数列和等比数列 等差数列 等比数列 定义 a n -a n -1=常数(n≥2) a n a n -1=常数(n≥2) 通项公式 a n =a 1+(n -1)d a n =a 1q n -1 (q≠0)

高二数学数列专题练习题(含答案)

高中数学《数列》专题练习 1.n S 与n a 的关系:1 1(1)(1)n n n S n a S S n -=??=?->?? ,已知n S 求n a ,应分1=n 时1a =1S ; 2≥n 时,n a =1--n n S S 两步,最后考虑1a 是否满足后面的n a . 2.等差等比数列

3.数列通项公式求法:(1)定义法(利用等差、等比数列的定义);(2)累加法;(3)累乘法( n n n c a a =+1 型);(4)利用公式1 1(1)(1) n n n S n a S S n -=??=?->??;(5)构造法(b ka a n n +=+1型);(6)倒数法等 4.数列求和 (1)公式法;(2)分组求和法;(3)错位相减法;(4)裂项求和法;(5)倒序相加法。 5. n S 的最值问题:在等差数列{}n a 中,有关n S 的最值问题——常用邻项变号法求解: (1)当0,01<>d a 时,满足???≤≥+00 1 m m a a 的项数m 使得m S 取最大值. (2)当 0,01>

相关文档
相关文档 最新文档