文档库 最新最全的文档下载
当前位置:文档库 › _固体在溶液中的吸附

_固体在溶液中的吸附

_固体在溶液中的吸附
_固体在溶液中的吸附

固体在溶液中的吸附

一、实验目的

(1)测定活性炭在醋酸水溶液中对醋酸的吸附作用,并由此计算活性炭的比表面;

(2)验证弗罗因德利希(Freundlich )经验公式和兰格缪尔(Langmuir)吸附公式;

(3)了解固-液界面的分子吸附。

二、实验原理

对于比表面很大的多孔性或高度分散的吸附剂,象活性炭和硅胶等,在溶液中有较强的吸附能力。由于吸附剂表面结构的不同,对不同的吸附质有着不同的相互作用,因而吸附剂能够从混合溶液中有选择地把某一种溶质吸附。根据这种吸附能力的选择性,在工业上有着广泛的应用,如糖的脱色提纯等

吸附能力的大小常用吸附量Г表示之。Г通常指每克吸附剂吸附溶质的物质的量,在恒定温度下,吸附量与溶液中吸附质的平衡浓度有关,弗罗因德利希(Freundlich )从吸附量和平衡浓度的关系曲线,得出经验方程:

n kc m x 1

==Γ (1) 式中:x 为吸附溶质的物质的量,单位为mol ;m 为吸附剂的质量,单位为g ;c 为平衡浓度,单位为mol·L -1;k ,n 为经验常数,由温度、溶剂、吸附质及吸附剂的性质决定(n 一般在0.1-0.5之间)。

将(1)式取对数:

lg Г = lg m x =n

1lg c +lg k (2) 以lg Г对lg c 作图可得一直线,从直线的斜率和截距可求得n 和k 。(1)式纯系经验方程式,只适用于浓度不太大和不太小的溶液。从表面上看,k 为c =1时的Г,但这时(1)式可能已不适用。一般吸附剂和吸附质改变时,n 改变不大,而k 值则变化很大。

兰格缪尔(Langmuir)根据大量实验事实,提出固体对气体的单分子层吸附理论,认为固体表面的吸附作用是单分子层吸附,即吸附剂一旦被吸附质占据之后,就不能再吸附。固体表面是均匀的,各处的吸附能力相同,吸附热不随覆盖程度而变,被吸附在固体表面上的分子,相互之间无作用力;吸附平衡是动态平衡,并由此导出下列吸附等温式,在平衡浓度为c 时的吸附量Г可用下式表示:

ck

ck +Γ=Γ∞1 (3) Г∞为饱和吸附量,即表面被吸附质铺满单分子层时的吸附量。k 是常数,也称吸附系数。

将(3)式重新整理可得:

Γc =k 1∞Γ+∞

Γ1 c (4) 以Γc 对c 作图,得一直线,由这一直线的斜率可求得Г∞,再结合截距可求得常数k 。这个k 实际上带有吸附和脱附平衡的平衡常数的性质,而不同于弗罗因德利希方程式中的k 。

根据Г∞的数值,按照兰格缪尔单分子层吸附的模型,并假定吸附质分子在吸附剂表面上是直立的,每个醋酸分子所占的面积以0.243nm 2计算(此数据是根据水-空气界面上对于直链正脂肪酸测定的结果而得)。则吸附剂的比表面S 0可按下式计算得到:

18

230010243.01002.6???Γ=??Γ=∞∞∞a N S (5) 式中S 0为比表面,即每克吸附剂具有的总表面积(m 2/g);N 0为阿佛加德罗常数(6.02×1023分子/摩尔);α∞为每个吸附分子的横截面积;1018是因为1m 2=1018nm 2所引入的换算因子。

根据上述所得的比表面积,往往要比实际数值小一些。原因有二:一是忽略了界面上被溶剂占据的部分;二是吸附剂表面上有小孔,醋酸不能钻进去,故这一方法所得的比表面一般偏小。不过这一方法测定时手续简便,又不要特殊仪器,故是了解固体吸附剂性能的一种简便方法。

三、实验仪器与试剂

1、仪器

HY-4型调速多用振荡器(江苏金坛)1台,带塞锥形瓶(125mL)7只,移液管(25mL 、5mL 、10 mL)各1支,洗耳球1支,碱式滴定管1支,温度计1支,电子天平1台,称量瓶1个。

2、实验试剂

NaOH 标准溶液(0.0910mol·L -1),醋酸标准溶液(0.3958 mol·L -1),活性炭,酚酞指示剂。

四、实验步骤

(1)准备6个干的编好号的125 mL 锥形瓶(带塞)。按记录表格中所规定的浓度配制50 mL 醋酸溶液,注意随时盖好瓶塞,以防醋酸挥发。

(2)将120℃下烘干的活性炭(本实验不宜用骨炭)装在称量瓶中,瓶里放上小勺,用差减法称取活性炭各约1g(准确到0.001g)放于锥形瓶中。塞好瓶塞,在振荡器上振荡半小时,或在不时用手摇动下放置1小时。

(3)使用颗粒活性炭时,可直接从锥形瓶里取样分析。如果是粉状性活性炭,则应过滤,弃去最初10mL 滤液。按记录表规定的体积取样,用标准碱溶液滴定。

(4)活性炭吸附醋酸是可逆吸附。使用过的活性炭可用蒸馏水浸泡数次,烘干后回收利用。

五、注意事项

(1)温度及气压不同,得出的吸附常数不同

(2)使用的仪器干燥无水;注意密闭,防止与空气接触影响活性炭对醋酸的吸附。

(3)滴定时注意观察终点的到达。

(4)在浓的HAc 溶液中,应该在操作过程中防止HAc 的挥发,以免引起较大的误差。

(5)本实验溶液配制用不含CO 2的蒸馏水进行。

六、实验记录与处理

(1)将实验数据记录到表84-1。

(2)由平衡浓度c 及初始浓度c 0,按公式:()m c c 0V -=Γ计算吸附量,式中V 为溶液总体积,单位为L ;m 为活性炭的质量,单位为g 。

(3)作吸附量Г对平衡浓度c 的等温线。

(4)以lg Г对lg c 作图,从所得直线的斜率和截距可求得(1)式中的常数n 和k 。

(5)计算Γc ,作Γc - c 图,由图求得Г∞,将Г∞值用虚线作一水平线在Г- c 图上。这一虚线即是吸附量Г的渐近线。

(6)由Г∞根据(5)式计算活性炭的比表面。

溶液吸附法测固体比表面积

实验五 溶液吸附法测固体比表面积 一、实验目的: 1.了解溶液吸附法测定固体比表面的优缺点。 2.掌握溶液吸附法测定固体比表面积的基本原理和测定方法。 3.用亚甲基蓝水溶液吸附法测定活性碳、硅藻土、碱性层析氧化铝比表面积。 二、实验原理: ① Langmuir 吸附定律: 在一定温度下以及一定的浓度范围内,大多数固体对次甲基蓝的吸附是单分子层吸附,与固体对气体的吸附很相似,可用Langmuir 单分子层吸附模型来处理。 Langmuir 吸附理论的基本假定是: a) 固体表面是均匀的; b) 吸附是单分子层吸附; c) 被吸附在固体表面上的分子相互之间无作用力; d) 吸附剂一旦被吸附质覆盖就不能被再吸附; e) 吸附平衡时,吸附和脱附建立动态平衡; f) 吸附平衡前,吸附速率与空白表面成正比,解吸速率与覆盖度成正比。 根据以上假定,推导出吸附方程: 设固体表面的吸附位总数为N ,覆盖度为θ,溶液中吸附质的浓度为c ,根据上述假定,有 ?)c (kr= kN (1-为吸附速率常数) 吸附速率: 1 1吸? = rkN(k 为脱附速率常数) 脱附速率: -1 -1脱?? N = N (1-k )c 当达到吸附平衡时: r= r 即 k -11 脱吸Kc :由此可得 (1) 吸 θ? 1?Kc 吸式中K=k/k 称为吸附平衡常数,其值决定于吸附剂和吸附质的性质及温11-吸度,K 值越大,固体对吸附质吸附能力越强。若以q 表示浓度c 时的平衡吸附量,吸? =q/: q 以q 表示全部吸附位被占据时单分子层吸附量,即饱和吸附量,则?? q 代入式(1)得)(2 式中:K 为吸附作用的平衡常数,也称为吸附系数,与吸附质、吸附剂性质及温度有关,其值越大,则表示吸附能力越强;q 为平衡吸附量,1g 吸附剂达吸附平衡时,吸附的溶质的物质的量(mg/g );q 为饱和吸附量,1g 吸附剂的表面∞上盖满一层吸附质分子时所能吸附的最大量(mg/g );c 为达到吸附平衡时,溶 质在溶液本体中的平衡浓度。. ② 吸附剂对亚甲基蓝的吸附 溶液吸附法的吸附质一般用亚甲基蓝、苯酚、硬脂酸等,水溶性吸附质广泛应用于测定固体比表面积,由于在所有染料中亚甲基蓝具有最大的吸附倾向,故本实验选用亚甲基蓝作为吸附质,以活性碳、硅藻土、碱性层析氧化铝作为固体吸附剂。

_固体在溶液中的吸附

固体在溶液中的吸附 一、实验目的 (1)测定活性炭在醋酸水溶液中对醋酸的吸附作用,并由此计算活性炭的比表面; (2)验证弗罗因德利希(Freundlich )经验公式和兰格缪尔(Langmuir)吸附公式; (3)了解固-液界面的分子吸附。 二、实验原理 对于比表面很大的多孔性或高度分散的吸附剂,象活性炭和硅胶等,在溶液中有较强的吸附能力。由于吸附剂表面结构的不同,对不同的吸附质有着不同的相互作用,因而吸附剂能够从混合溶液中有选择地把某一种溶质吸附。根据这种吸附能力的选择性,在工业上有着广泛的应用,如糖的脱色提纯等 吸附能力的大小常用吸附量Г表示之。Г通常指每克吸附剂吸附溶质的物质的量,在恒定温度下,吸附量与溶液中吸附质的平衡浓度有关,弗罗因德利希(Freundlich )从吸附量和平衡浓度的关系曲线,得出经验方程: n kc m x 1 ==Γ (1) 式中:x 为吸附溶质的物质的量,单位为mol ;m 为吸附剂的质量,单位为g ;c 为平衡浓度,单位为mol·L -1;k ,n 为经验常数,由温度、溶剂、吸附质及吸附剂的性质决定(n 一般在0.1-0.5之间)。 将(1)式取对数: lg Г = lg m x =n 1lg c +lg k (2) 以lg Г对lg c 作图可得一直线,从直线的斜率和截距可求得n 和k 。(1)式纯系经验方程式,只适用于浓度不太大和不太小的溶液。从表面上看,k 为c =1时的Г,但这时(1)式可能已不适用。一般吸附剂和吸附质改变时,n 改变不大,而k 值则变化很大。 兰格缪尔(Langmuir)根据大量实验事实,提出固体对气体的单分子层吸附理论,认为固体表面的吸附作用是单分子层吸附,即吸附剂一旦被吸附质占据之后,就不能再吸附。固体表面是均匀的,各处的吸附能力相同,吸附热不随覆盖程度而变,被吸附在固体表面上的分子,相互之间无作用力;吸附平衡是动态平衡,并由此导出下列吸附等温式,在平衡浓度为c 时的吸附量Г可用下式表示: ck ck +Γ=Γ∞1 (3) Г∞为饱和吸附量,即表面被吸附质铺满单分子层时的吸附量。k 是常数,也称吸附系数。

固体表面的吸附

§12.8 固体表面的吸附 一、固体表面的特点 固体表面上的原子或分子与液体一样,受力也是不均匀的,所以固体表面也有表面张力和表面能。 固体表面的特点是: 1.固体表面分子(原子)移动困难,只能靠吸附来降低表面能。 2.固体表面是不均匀的 ,不同类型的原子的化学行为、吸附热、催化活性和表面态能级的分布都是不均匀的。 3.固体表面层的组成与体相内部组成不同。 二、吸附等温线 1、当气体或蒸气在固体表面被吸附时,固体称为吸附剂,被吸附的气体称为吸附质。 常用的吸附剂有:硅胶、分子筛、活性炭等。 为了测定固体的比表面,常用的吸附质有:氮气、水蒸气、苯或环己烷的蒸气等。 2、吸附量的表示 吸附量通常有两种表示方法: (1)单位质量的吸附剂所吸附气体的体积 (2)单位质量的吸附剂所吸附气体物质的量 3、吸附量与温度、压力的关系 对于一定的吸附剂与吸附质的系统,达到吸附平衡时,吸附量是温度和吸附质压力的函数,即: 通常固定一个变量,求出另外两个变量之间的关系,例如: (1)T =常数,q = f (p ),称为吸附等温式; (2)p =常数,q = f (T ),称为吸附等压式; (3)q =常数,p = f (T ),称为吸附等量式; 注:①这三种关系式中,吸附等温式最常用,从一组某类型的曲线可以得到其他两组曲线。 ②从吸附等温线可以反映出吸附剂的表面性质、孔分布以及吸附剂与吸附质之间的相互作用等有关信息。 常见的吸附等温线有如下5种类型:(图中p /p s 称为比压,p s 是吸附质在该温度时的饱和蒸气压,p 为吸附质的压力)。 见教材P359图13.34 三、Langmuir 吸附等温式 Langmuir 吸附等温式描述了吸附量与被吸附蒸气压力之间的定量关系。他在推导该公式的过程引入了两个重要假设: (1) 吸附是单分子层的; (2) 固体表面是均匀的,被吸附分子之间无相互作用。 31 m g V q m -=?单位:1 mol g n q m -=?单位:(,)q f T p =1ap ap θ=+a d k a k =

试验十六固体在溶液中的吸附

实验十六 固体在溶液中的吸附 一 实验目的 1. 测定活性炭在醋酸水溶液中对醋酸的吸附量; 2. 通过实验进一步理解吸附等温线及弗兰德列希方程的意义。 二 实验原理 1. 溶质在溶液中被吸附于固体表面是一种普遍现象,也是物质提纯的主要方法之一。活性炭是用途广泛的吸附剂,它不仅可以用于吸附气体物质,也可以在溶液中吸附溶质。 2. 吸附量通常以每克吸附剂吸附溶质的物质的量来表示。在一定温度下,达到吸附平衡的溶液中,吸附量与溶液浓度的关系,符合弗兰德列希经验方程: n c k m x q ?== (16-1) 式中 x - 吸附质物质的量(mol ); m - 吸附剂的质量(g ); q - 吸附量(mol·g -1c - 平衡时溶液的浓度(mol·dm ); -3k 、n - 常数,由温度、溶剂、吸附质及吸附剂的性质决定,一般由实验确定; ); 将式(16-1)取对数,则有: k c n m x lg lg lg += (16-2) 若以m x lg 对c lg 作图,可得一斜率为n ,截距为k lg 的直线,由直线可求得n 和k 的值。 式(16-1)中m x 可以通过吸附前后溶液浓度的变化及活性炭准确称量值求等得,即: V m c c m x ??=)(0 (16-3) 式中 V - 溶液的总体积(dm 3m - 活性炭的质量(g )。 ); 三 仪器和试剂 125cm 3锥形瓶8个;25 cm 3酸式、碱式测定管各1支; 5 cm 3、10 cm 3和25 cm 30.4mol·dm 移液管各1支;漏斗6只;振荡机一台。 -3HAc 标准溶液;0.1mol·dm -3四 实验步骤 NaOH 标准溶液;酚酞指示剂一瓶;活性炭(颗粒状或粉状)若干。 1.将0.4mol·dm -3HAc 标准溶液按下列比例稀释配制成50 cm 3 不同浓度的HAc 溶液并分别置于干燥洁净的锥形瓶中,编好号并盖好瓶塞,防止醋酸挥发。

固液界面的吸附

实验四 固液界面上的吸附 一.实验目的 1. 了解固体吸附剂在溶液中的吸附特点。 2. 做出在水溶液中用活性炭吸附醋酸的吸附等温线,求出Freundlich 等温式中的经验常数。 3. 通过测定活性炭在醋酸溶液中的吸附,验证弗伦特立希(Freundlich )吸附等温式对此体系的适用性。 二、实验原理 (一)计算依据: 当一溶液与不溶性固体接触时,固体表面上溶液的成分常与体相溶液内部的不同,即在固-液界面发生了吸附作用。由于溶液中各组分被固体吸附的程度不同,吸附前后溶液各组分的浓度将发生变化,根据这种变化可计算出吸附量。 Γ=V (C 0-C )/m (1) 式中:m ——吸附剂的质量(g ) C ——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol ) C 0——被吸附物质的初始浓度(1 -?L mol ) V ——所用溶液的总体积(L ) 在 V 、C 0 、m 已知的情况下,Γ和C 的关系如何呢? 活性炭是一种高分散的多孔性吸附剂,在一定温度下,它在中等浓度溶液中的吸附量与 溶质平衡浓度的关系,可用Freundlich 吸附等温式表示:Γ=n kC m x 1 = (2) 式中:m ——吸附剂的质量(g ) x ——吸附平衡时吸附质被吸附的量(mol ) m x ——平衡吸附量(1-?g mol ) C ——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol )

k 、n ——经验常数(与吸附剂、吸附质的性质和温度有关)。将式(2)取对数,得 k C n m x lg lg 1 lg += (3) 以m x lg 对c lg 作图,可得一条直线,直线的斜率等于n 1 ,截距等于k lg ,由此可求得n 和 k 。 (二)本实验操作原理: 本次实验是在活性炭—醋酸体系中,验证Freundlich 吸附等温式的适用性,并求出经验常数n 和k : NaOH+HAc==NaAc+H 2O 根据这个中和反应,计量滴定所用的NaOH 的量,可知HAc 的浓度c ,再根据 (1)式计算Γ值,即可作图。 三、仪器试剂 仪器:150ml 磨口具塞锥型瓶6个,150ml 锥型瓶6个,长颈漏斗6个,称量瓶1个,50ml 酸式、碱式滴定管各1支,5ml 移液管1支,10ml 移液管2支,25ml 移液管3支,电子天平1台,恒温振荡器1套,定性滤纸若干。 试剂:活性炭(20~40目,比表面300~400m 2/g ),0.41 -?L mol HAc 溶液,0.10001 -?L mol NaOH 标准溶液,酚酞指示剂。 四、实验步骤 1. 打开恒温振荡器的开关,预热10分钟,调节温度为25℃。 2. 将6个干净的磨口具塞锥型瓶编号,并各称入1.0克活性炭。 3. 用移液管按下表分别加入0.41 -?L mol HAc 和蒸馏水,并立即盖上塞子,置于25℃恒温振荡器中,调节好速度,摇荡一小时。 4. 从各号瓶中按下表所规定的平衡取样量V 取样,放入1~6标号的小锥形瓶中,各加入5滴酚酞指示剂,用NaOH 标准溶液各滴定两次(滴至粉红色刚好不褪去),碱量取平均值记入下表。 5. 用过的活性炭回收于托盘中,清洗仪器,关闭电源,整理实验台。 五、数据记录及处理 1. 将实验数据记入表,计算吸附前各瓶中醋酸的初浓度C 0和吸附平衡时的浓度C ,并按(1)式计算吸附量一同填入表.

固体从溶液中的吸附实验报告

固体从溶液中的吸附实验报告 院(系) 生化系年级 10级专业化工姓名学号 课程名称物化实验实验日期 2012 年 11月 29 日实验地点 3栋指导老师 一、实验目的: 1·熟悉溶液吸附法测定固体比表面的原理与实验方法。 2?测定活性炭的比表面。 二、实验原理: 吸附能力的大小常用吸附量Γ表示之。Γ通常指每克吸附剂上吸附溶质的物 质的量。吸附量Γ的大小与吸附平衡时溶质的浓度C有关,常用的关联式有两个: (1)Freundlich经验公式: 式中,x 表示吸附溶质的物质的量(mol);m 表示吸附剂的质量(g);c 表示吸附 平衡时溶液的浓度(mol/L);k,n表示经验常数,由温度、溶剂、吸附质与吸附剂 的性质决定。 以lg Γ对lgc 作图可得一直线,由直线的斜率与截距可求得n 与k。 (2)Langmuir吸附方程: 式中,Γ∞表示饱与吸附量;C 表示吸附平衡时溶液的浓度;K 为常数、 用c/Γ对c作图得一直线,由此直线的斜率与截距可求得Γ∞,并进一步计算出吸 附剂的比表面积S S0(m2/g)=

三、实验准备: 1、仪器:电动振荡器、分析天平、碱式滴定管、带塞锥形瓶(5个)、移液管、锥形瓶 2:药品:活性炭;HAC(0、4mol·ml-3);NaOH (0、1mol·ml-3);酚酞指示剂。 四、实验步骤: 1、 2 五、注意事项 1、溶液的浓度配制要准确,活性炭颗粒要均匀并干燥

2、 醋酸就是一种有机弱酸,其离解常数Ka = 1、76×10-5 ,可用标准碱溶液直接滴定,化学计量点时反应产物就是NaAc ,就是一种强碱弱酸盐,其溶液pH 在8、7 左右,酚酞的颜色变化范围就是8-10,滴定终点时溶液的pH 正处于其内,因此采用酚酞做指示剂,而不用甲基橙与甲基红。直到加入半滴NaOH 标准溶液使试液呈现微红色,并保持半分钟内不褪色即为终点。 3.变红的溶液在空气中放置后,因吸收了空气中的CO2,又变为无色。 4、 以标定的NaOH 标准溶液在保存时若吸收了空气中的CO2,以它测定醋酸的浓度,用酚酞做为指示剂,则测定结果会偏高。为使测定结果准确,应尽量避免长时间将NaOH 溶液放置于空气中。 六、数据处理 1、已知 CNaOH=0、1040 mol/L 标准滴定醋酸:V HAC =10、00 ml c 0 V V C HAC NaoH NaoH * 消耗NaoH 的平均体积 37、10ml C 0=0、3858 mol/L

固体在溶液中的吸附

实验报告 溶液吸附法测固体比表面积 一.实验目的 1. 用次甲基蓝水溶液吸附法测定颗粒活性炭的比表面积 2. 了解溶液吸附法测定比表面积的基本原理 二.实验原理 对于比表面积很大的多孔性或高度分散的吸附剂,像活性炭和硅胶等,在溶液中有较强的吸附能力。由于吸附剂表面结构的不同,对不同的吸附质有着不同的相互作用,因而,吸附剂能够从混合溶液中有选择地把某一种溶质吸附。这种吸附能力的选择性在工业上有着广泛的应用,如糖的脱色提纯等。 吸附能力的大小常用吸附量Г表示。Г通常指每克吸附剂上吸附溶质的量。在恒定的温度下,吸附量和吸附质在溶液中的平衡浓度c 有关,弗朗特里希从吸附量和平衡浓度的关系曲线,得一经验方程 1 n x kc m Γ== ⑴ 式中:x 为吸附溶质的量,以mol 为单位;m 为吸附剂的质量,以g 为单位;c 为吸附平衡时溶液的浓度,以mo l ·dm -3 为单位;k 和n 都是经验常数,由温度、溶剂、吸附质的性质所决定(一般n>1)。将⑴式取对数,可得下式 1313 1 1lg lg lg n n n c k mol g n mol dm mol dm g ----Γ=+ ⑵ 因此根据方程以lg[Γ/(1 mol g -)]对[lgc/(3 mol dm -)]作图,可得一直线,由斜率和截 距可求得n 及k 。⑴式纯系经验方程式,只适用于浓度不太大和不太小的溶液。从表面上看,k 为c=13 mol dm -时的Г,但这时⑴式可能已不适用。一般吸附剂和吸附质改变时,n 改变不大而k 值变化很大。 朗格缪尔吸附方程式系基于吸附过程的理论考虑,认为吸附是单分子层吸附,即吸附剂一旦被吸附质占据之后,就不能再吸附;在吸附平衡时,吸附和脱附达成平衡。设∞Γ为饱和吸附量,即表面被吸附质铺满单分子层时的吸附量。在平衡浓度为c 时的吸附量Г由 式 1cK cK ∞ Γ=Γ+ ⑶ 表示。将⑶式重新整理,可得 11c c K ∞∞ =+ΓΓΓ ⑷

溶液吸附法测定固体比表面积

实验五溶液吸附法测定固体比表面积 一、实验目的 了解Langmuir吸附理论及溶液法测定比表面积的基本原理 二、实验原理 比表面积是粉末及多孔性物质的一个重要特性参数。它在催化、色谱、环保及纺织等生产和科研部门有着广泛的应用。 测定比表面积的方法有电子显微镜法、色谱法及BET法。常用BET法(又分静态法和动态法),但仪器及数据处理复杂是其缺点。而本法所用仪器简单,操作方便。 本实验采用亚甲蓝染料水溶液吸附法测定硅胶的比表面积,亚甲蓝具有很强的吸附倾向,可被大多数固体物质吸附,在一定条件下为单层吸附,该吸附具有Langmuir吸附特征。 根据Langmuir理论,当吸附达饱和时,吸附质(亚甲蓝)分子铺满整个吸附剂(硅胶)表面而不留下空位。此时,单位质量的吸附质分子所占的面积就等于被吸附的吸附质的分子数与每个分子在表面层所占面积的乘积。通常通过测定吸附质的重量而求得吸附质分子数。按下式计算吸附剂的比表面积S(m2/g): S=Γ∞N A A/ΓM 5-1 式中:M为吸附质分子量(亚甲蓝的分子量为373.88),N A为阿弗伽德罗常数 (6.0222 ×1023),Γ为吸附剂的质量(g),Γ∞为吸附达饱和时吸附质的质量(g),A为吸附质(亚甲蓝)分子吸附投影面积。 亚甲蓝易溶于水呈天蓝色,在空气中较稳定,不易受吸附剂酸碱性的影响。亚甲蓝水溶液在445nm和665nm处具有吸收峰,用紫外分光光度计测定吸附前后溶液吸收度值的变化,求出Γ∞。 由于亚甲蓝分子具有矩形结构,分子长16.0 ?,宽8.4 ?,最小的宽度为4.7 ?,如下图所示:它吸附于吸附剂上有三种取向,平面吸附投影面积为135 ?2,侧面吸附投影面积为75 ?2,端积吸附投影面积为39.5 ?2。因此,对于不同吸附剂或同种吸附剂的不同条件,吸附取向不同,投影面积也不同,测得的A也不同。所以实验时要严格控制实验条件的一致。通常用已知比表面积的样品,实验测得Γ∞和Γ,用上式反求A。 三、仪器和试剂 水浴振荡器亚甲蓝硅胶蒸馏水 四、实验操作 1.配制0.05mg/ml亚甲蓝标准液的配制 水为溶剂。 2.硅胶比表面积的测定 精密量0.05mg/ml亚甲蓝标准液15ml加入50ml具塞三角瓶中,共三份,然后准确称未知硅胶15mg加入,盖塞,在振荡器上振荡2小时,静置后取滤液稀释4倍,加水稀释至刻度。以蒸馏水为空白分别测定溶液的吸收度,按标准曲线计算溶液浓度。 3.亚甲蓝吸附投影面积的测定 除样品用已知比表面积的微粉硅胶,其余操作和步骤2一致。将已知比表面积S和测得的Γ和Γ∞代入式S=Γ∞N A A/ΓM,求得A值。 4.亚甲蓝标准曲线的绘制 用水稀释得到分别浓度为2.5μg/ml,5μg/ml,7.5μg/ml,10μg/ml,12.5μg/ml, 15μg/ml的溶液,以蒸馏水为空白分别测定溶液吸收度,以吸收度值对溶液浓度(μg/ml)进行直线拟合,得拟合直线方程。 五、实验数据及处理

固体从溶液中的吸附实验报告

固体从溶液中的吸附实验报告 院(系)生化系年级 10级专业化工姓名学号 课程名称物化实验实验日期 2012 年 11月 29 日实验地点 3栋指导老师 一、实验目的: 1·熟悉溶液吸附法测定固体比表面的原理和实验方法。 2?测定活性炭的比表面。 二、实验原理: 吸附能力的大小常用吸附量Γ表示之。Γ通常指每克吸附剂上吸附溶质的物 质的量。吸附量Γ的大小与吸附平衡时溶质的浓度C有关,常用的关联式有两个: (1)Freundlich经验公式: 式中,x 表示吸附溶质的物质的量(mol);m 表示吸附剂的质量(g);c 表示吸附平衡时溶液的浓度(mol/L);k,n表示经验常数,由温度、溶剂、吸附质与吸附剂的性质决定。 以lg Γ对lgc 作图可得一直线,由直线的斜率和截距可求得n 和k。 (2)Langmuir吸附方程: 式中,Γ∞表示饱和吸附量;C 表示吸附平衡时溶液的浓度;K 为常数. 用c/Γ对c作图得一直线,由此直线的斜率和截距可求得Γ∞,并进一步计算出 吸附剂的比表面积S S0(m2/g)= 三、实验准备: 1.仪器:电动振荡器、分析天平、碱式滴定管、带塞锥形瓶(5个)、移液管、锥形瓶

2:药品:活性炭;HAC(0.4mol·ml-3);NaOH (0.1mol·ml-3);酚酞指示剂。 四、实验步骤: 1. 五、注意事项 1.溶液的浓度配制要准确,活性炭颗粒要均匀并干燥 2. 醋酸是一种有机弱酸,其离解常数Ka = 1.76×10-5,可用标准碱溶液直接滴定,化学计量点时反应产物是NaAc,是一种强碱弱酸盐,其溶液pH 在8.7 左右,酚酞的颜色变化范围是8-10,滴定终点时溶液的pH 正处于其内,因此采用酚酞做指示剂,而不用甲基橙和甲基红。直到加入半滴NaOH 标准溶液使试液呈现微红色,并

固液界面的吸附

固液界面的吸附

————————————————————————————————作者:————————————————————————————————日期:

实验四 固液界面上的吸附 一.实验目的 1. 了解固体吸附剂在溶液中的吸附特点。 2. 做出在水溶液中用活性炭吸附醋酸的吸附等温线,求出Freu nd lic h等温式中的经验常数。 3. 通过测定活性炭在醋酸溶液中的吸附,验证弗伦特立希(Freund lich)吸附等温式对此体系的适用性。 二、实验原理 (一)计算依据: 当一溶液与不溶性固体接触时,固体表面上溶液的成分常与体相溶液内部的不同,即在固-液界面发生了吸附作用。由于溶液中各组分被固体吸附的程度不同,吸附前后溶液各组分的浓度将发生变化,根据这种变化可计算出吸附量。 Γ=V(C 0-C)/m (1) 式中:m ——吸附剂的质量(g) C——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol ) C0——被吸附物质的初始浓度(1 -?L mol ) V ——所用溶液的总体积(L ) 在 V 、C 0 、m 已知的情况下,Γ和C 的关系如何呢? 活性炭是一种高分散的多孔性吸附剂,在一定温度下,它在中等浓度溶液中的吸附量 与溶质平衡浓度的关系,可用Freun dlich 吸附等温式表示:Γ=n kC m x 1 = (2) 式中:m ——吸附剂的质量(g ) x ——吸附平衡时吸附质被吸附的量(mo l) m x ——平衡吸附量(1-?g mol )

C——吸附平衡时被吸附物质留在溶液中的浓度(1 -?L mol ) k、n ——经验常数(与吸附剂、吸附质的性质和温度有关)。将式(2)取对数,得 k C n m x lg lg 1 lg += (3) 以m x lg 对c lg 作图,可得一条直线,直线的斜率等于n 1,截距等于k lg ,由此可求得n 和 k。 (二)本实验操作原理: 本次实验是在活性炭—醋酸体系中,验证Freu ndl ich 吸附等温式的适用性,并求出经验常数n 和k: Na OH+HAc ==NaAc+H2O 根据这个中和反应,计量滴定所用的NaOH 的量,可知HAc 的浓度c ,再根据 (1)式计算Γ值,即可作图。 三、仪器试剂 仪器:150ml 磨口具塞锥型瓶6个,150ml 锥型瓶6个,长颈漏斗6个,称量瓶1个,50ml 酸式、碱式滴定管各1支,5m l移液管1支,10ml 移液管2支,25ml 移液管3支,电子天平1台,恒温振荡器1套,定性滤纸若干。 试剂:活性炭(20~40目,比表面300~400m2 /g),0.41-?L mol HAc 溶液,0.10001 -?L mol NaOH 标准溶液,酚酞指示剂。 四、实验步骤 1. 打开恒温振荡器的开关,预热10分钟,调节温度为25℃。 2. 将6个干净的磨口具塞锥型瓶编号,并各称入1.0克活性炭。 3. 用移液管按下表分别加入0.41 -?L mol HA c和蒸馏水,并立即盖上塞子,置于25℃恒温振荡器中,调节好速度,摇荡一小时。 4. 从各号瓶中按下表所规定的平衡取样量V 取样,放入1~6标号的小锥形瓶中,各加入5滴酚酞指示剂,用N aOH 标准溶液各滴定两次(滴至粉红色刚好不褪去),碱量取平均值记入下表。 5. 用过的活性炭回收于托盘中,清洗仪器,关闭电源,整理实验台。 五、数据记录及处理 1. 将实验数据记入表,计算吸附前各瓶中醋酸的初浓度C0和吸附平衡时的浓度C,并按(1)

气体吸附分析技术知识讲解

目前,气体吸附分析技术作为多孔材料比表面和孔径分布分析的不可或缺的手段,得到了广泛应用。物理吸附分析不仅应用于传统的催化领域,而且渗透到新能源材料、环境工程等诸多领域。 本专题分为基础篇,实验篇和应用篇,旨在以实用为目的,力求避免冗余和数学公式,按实验的思维顺序逐步理清物理吸附相关的疑难点。当然,对于一些比较复杂的问题,我们将会专门出专题文章进行介绍。 1. 什么是表面和表面积? 表面是固体与周围环境, 特别是液体和气体相互影响的部分;表面的大小即表面积。表面积可以通过颗粒分割(减小粒度)和生成孔隙而增加,也可以通过烧结、熔融和生长而减小。 2. 什么是比表面积? 为什么表面积如此重要? 比表面积英文为specific surface area,指的是单位质量物质所具有的总面积。分外表面积、内表面积两类。国际标准单位为㎡/g。表面积是固体与周围环境,特别是液体和气体相互作用的手段和途径。一般有下列三种作用:1) 固体-固体之间的作用:表现为自动粘结,流动性(流沙),压塑性等。2) 固体-液体之间的作用:表现为浸润,非浸润,吸附能力等。3) 固体-气体之间的作用:表现为吸附,催化能力等。 3. 什么是孔? 根据ISO15901 中的定义,不同的孔(微孔、介孔和大孔)可视作固体内的孔、通道或空腔,或者是形成床层、压制体以及团聚体的固体颗粒间的空间(如裂缝或空隙) 4. 什么是开孔和闭孔? 多孔固体中与外界连通的空腔和孔道称为开孔(open pore),包括交联孔、通孔和盲孔。这些孔道的表面积可以通过气体吸附法进行分析。除了可测定孔外,固体中可能还有一些孔,这些孔与外表面不相通,且流体不能渗入,因此不在气体吸附法或压汞法的测定范围内。不与外界连通的孔称为闭孔(close pore)。开孔与闭孔大多为在多孔固体材料制备过程中形成的,有时也可在后处理过程中形成,如高温烧结可使开孔变为闭孔。 5. 什么是孔隙度? 孔隙度是指深度大于宽度的表面特征,一般用孔径及其分布和总孔体积表征。 6. 什么是多孔材料? 多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。多孔材料可表现为细或粗的粉体、压制体、挤出体、片体或块体等形式。其表征通常包括孔径分布和总孔体积或孔隙度的测定。在某些场合,也需要考察其孔隙形状和流通性,并测定内表面和外表面面积。

固液界面的吸附

实验四固液界面上的吸附 1. 了解固体吸附剂在溶液中的吸附特点。 2. 做出在水溶液中用活性炭吸附醋酸的吸附等温线,求出Freundlich等温式中的经验常数。 3. 通过测定活性炭在醋酸溶液中的吸附,验证弗伦特立希(Freundlich )吸附等温式对此体系的适用性。 二、实验原理 (一)计算依据: 当一溶液与不溶性固体接触时,固体表面上溶液的成分常与体相溶液内部的不同,即在固-液界面发生了吸附作用。由于溶液中各组分被固体吸附的程度不同,吸附前后溶液各组分的浓度将发生变化,根据这种变化可计算出吸附量。 r =V (C0-C)/m ⑴ 式中:m 吸附剂的质量(g) C――吸附平衡时被吸附物质留在溶液中的浓度(mol I,) C0――被吸附物质的初始浓度(mol丄‘) V ――所用溶液的总体积(L) 在V、C O、m已知的情况下,r和C的关系如何呢? 活性炭是一种高分散的多孔性吸附剂,在一定温度下,它在中等浓度溶液中的吸附量与 1 x — 溶质平衡浓度的关系,可用Freundlich吸附等温式表示:r = kC n m ⑵ 式中:m 吸附剂的质量(g) x ----- 吸附平衡时吸附质被吸附的量(mol) ---- 平衡吸附量(mol g ')

m C――吸附平衡时被吸附物质留在溶液中的浓度(mol L^ ) k、n――经验常数(与吸附剂、吸附质的性质和温度有关)。将式(2)取对数,得 x 1 lg lg C lg k (3) m n x 1 以lg 对lg c作图,可得一条直线,直线的斜率等于,截距等于lgk,由此可求得n和m n k。 (二)本实验操作原理: 本次实验是在活性炭一醋酸体系中,验证Freundlich吸附等温式的适用性,并求出经验常数n 和k: NaOH+HAc==NaAc+H2O 根据这个中和反应,计量滴定所用的NaOH的量,可知HAc的浓度c,再根据(1)式计 算r值,即可作图。 三、仪器试剂 仪器:150ml磨口具塞锥型瓶6个,150ml锥型瓶6个,长颈漏斗6个,称量瓶1个,50ml 酸式、碱式滴定管各1支,5ml移液管1支,10ml移液管2支,25ml移液管3支,电子天平1台,恒温振荡器1套,定性滤纸若干。 试剂:活性炭(20?40目,比表面300?400m2/g) , 0.4 mol I* HAc溶液, 0.1000 mol L NaOH标准溶液,酚酞指示剂。 四、实验步骤 l. 打开恒温振荡器的开关,预热10分钟,调节温度为25 C。 2. 将6个干净的磨口具塞锥型瓶编号,并各称入 1.0克活性炭。 3. 用移液管按下表分别加入0.4mol L 4HAc和蒸馏水,并立即盖上塞子,置于25C恒温振 荡器中,调节好速度,摇荡一小时。 4. 从各号瓶中按下表所规定的平衡取样量V取样,放入1~6标号的小锥形瓶中,各加入5 滴酚酞指示剂,用NaOH标准溶液各滴定两次(滴至粉红色刚好不褪去),碱量取平均值记 入下表。 5. 用过的活性炭回收于托盘中,清洗仪器,关闭电源,整理实验台。

溶液吸附法测定固体比表面积

中级化学实验报告 实验名称:溶液吸附法测定固体比表面积 一、 实验目的 1. 用亚甲基蓝水溶液吸附法测定活性炭、硅藻土、碱性层析氧化铝的比表面积。 2. 掌握溶液吸附法测定固体比表面积的基本原理和测定方法。 3. 了解溶液吸附法测定固体比表面积的优缺点。 二、 实验原理 测定固体物质比表面的方法很多,常用的有BET 低温吸附法、电子显微镜法和气相色谱法等,不过这些方法都需要复杂的装置,或较长的时间。而溶液吸附法测定固体物质比表面,仪器简单,操作方便,还可以同时测定许多个样品,因此常被采用,但溶液吸附法测定结果有一定误差。其主要原因在于:吸附时非球型吸附层在各种吸附剂的表面取向并不一致,每个吸附分子的投影面积可以相差很远,所以,溶液吸附法测得的数值应以其它方法校正之。然而,溶液吸附法常用来测定大量同类样品的相对值。溶液吸附法测定结果误差一般为10%左右。 根据光吸收定律,当入射光为一定波长的单色光时,某溶液的吸光度与溶液中有色物质的浓度及溶液层的厚度成正比 kc bc I I A ==-=ε0 lg (5) 式中,A 为吸光度,I 0为入射光强度,I 为透过光强度,为吸光系数,b 为 光径长度或液层厚度,c 为溶液浓度。 亚甲基蓝溶液在可见区有2个吸收峰:445nm 和665nm 。但在445nm 处活性炭吸附对吸收峰有很大的干扰,故本试验选用的工作波长为665nm , 并用分光光度计进行测量。 水溶性染料的吸附已广泛应用于固体物质比表面的测定。在所有染料中,亚甲基蓝具有最大的吸附倾向。研究表明,在大多数固体上,亚甲基蓝吸附都是单分子层,即符合朗格缪尔型吸附。但当原始溶液浓度较高时,会出现多分子层吸附,而如果吸附平衡后溶液的浓度过低,则吸附又不能达到饱和,因此,原始溶液的浓度以及吸附平衡后的溶液浓度都应选在适当的范围内。本实验原始溶液浓度为100ppm 左右,平衡溶液浓度不小于10ppm

实验八十四 固体在溶液中的吸附

实验八十四 固体在溶液中的吸附 一、实验目的 (1)测定活性炭在醋酸水溶液中对醋酸的吸附作用,并由此计算活性炭的比表面; (2)验证弗罗因德利希(Freundlich )经验公式和兰格缪尔(Langmuir)吸附公式; (3)了解固-液界面的分子吸附。 二、实验原理 对于比表面很大的多孔性或高度分散的吸附剂,象活性炭和硅胶等,在溶液中有较强的吸附能力。由于吸附剂表面结构的不同,对不同的吸附质有着不同的相互作用,因而吸附剂能够从混合溶液中有选择地把某一种溶质吸附。根据这种吸附能力的选择性,在工业上有着广泛的应用,如糖的脱色提纯等 吸附能力的大小常用吸附量Г表示之。Г通常指每克吸附剂吸附溶质的物质的量,在恒定温度下,吸附量与溶液中吸附质的平衡浓度有关,弗罗因德利希(Freundlich )从吸附量和平衡浓度的关系曲线,得出经验方程: n kc m x 1 ==Γ (1) 式中:x 为吸附溶质的物质的量,单位为mol ;m 为吸附剂的质量,单位为g ;c 为平衡浓度,单位为mol·L -1;k ,n 为经验常数,由温度、溶剂、吸附质及吸附剂的性质决定(n 一般在0.1-0.5之间)。 将(1)式取对数: lg Г = lg m x =n 1 lg c +lg k (2) 以lg Г对lg c 作图可得一直线,从直线的斜率和截距可求得n 和k 。(1)式纯系经验方程式,只适用于浓度不太大和不太小的溶液。从表面上看,k 为c =1时的Г,但这时(1)式可能已不适用。一般吸附剂和吸附质改变时,n 改变不大,而k 值则变化很大。 兰格缪尔(Langmuir)根据大量实验事实,提出固体对气体的单分子层吸附理论,认为固体表面的吸附作用是单分子层吸附,即吸附剂一旦被吸附质占据之后,就不能再吸附。固体表面是均匀的,各处的吸附能力相同,吸附热不随覆盖程度而变,被吸附在固体表面上的分子,相互之间无作用力;吸附平衡是动态平衡,并由此导出下列吸附等温式,在平衡浓度为c 时的吸附量Г可用下式表示: ck ck +Γ=Γ∞1 (3) Г∞为饱和吸附量,即表面被吸附质铺满单分子层时的吸附量。k 是常数,也称吸附系数。

第6章气体在固体中的溶解与扩散

气体在固体中的溶解和扩散

气体在固体中的溶解和扩散 ?气体分子的溶解与渗透 ?溶解 由两种或两种以上物质所组成的均匀体系叫做“溶体”。溶体中含量较多的成分称为“溶剂”,其余称为“溶质”。溶剂可以是液体,也可以是气体、固体;溶质可以是固体,也可以是气体、液体。 ?渗透和渗透率 由于在真空容器器壁两侧的气体总是存在压力差,即使固体壁面材料上存在的微孔小到足以阻止正常气体通过,但任何固体材料总是或多或少地渗透一些气体。气体从密度大的一侧向密度小的一侧渗入、扩散、通过、和逸出固体阻挡层的过程成为渗透。这种情况下气体的稳态流率称为渗透率。 ?气体溶质溶解于固体溶剂中的情况 从微观的角度来看,气体溶解于固体的过程可分为五个步骤: ①吸附 在高压侧,气体分子吸附在固体表面上; ②离解 吸附的气体分子有时在固体表面上离解为原子态; ③溶解 气体在固体表层达到与环境气压相对应的溶解浓度; ④扩散 由于表层浓度比较高,在浓度梯度的作用下气体分子

(或原子)向固体深部扩散,直到浓度均匀为止; ⑤脱附 溶质气体扩散到器壁的另一面重新结合成分子后释放(或气体扩散到器壁的另一面后解吸和释出;

气体在固体中的溶解和扩散 ?扩散速度与溶解度 溶解和渗透速度一般由扩散速度所决定,而最终固体材料可溶解的气体量则取决于溶解度。 ?扩散速度——研究溶解(或解溶)的动力学参量 表示溶解(或解溶)没有达到平衡时的进行速度,研究扩散可以知道固体材料吸收或放出气体 的速度。与渗透气体及壁面材料的种类和性质有密切关系; ?溶解度——研究溶解的静力学参量 在一定温度、一定气压下,固体能溶解气体的饱和浓度,称为该温度及气压下的“溶解度”。溶 解度表示材料内溶解达到动态平衡时所溶解的气体量,研究溶解度可以知道各种固体材料在一 定条件下能溶解多少气体; ?影响溶解度的因素 从宏观来看,溶解度与气体一固体组合的性质、气体压强、温度有关。 ?气体在固体中的溶解度——近似有理想溶体的性质 ①如果溶解时各物质成分能以任何比例互溶,体积有可加性,没有热效应发生,则形 成的溶体称为“理想溶体” ②当溶质浓度很小时,许多实际溶体表现得很像理想溶体。气体在固体中的溶解度一般

固体从溶液中的吸附实验报告

固体从溶液中的吸附实验报告院(系)生化系年级 10级专业化工姓名学号 课程名称物化实验实验日期 2012 年 11月 29 日实验地点3栋指导老师 一、实验目的: 1·熟悉溶液吸附法测定固体比表面的原理和实验方法。 2?测定活性炭的比表面。 二、实验原理: 吸附能力的大小常用吸附量Γ表示之。Γ通常指每克吸附剂上吸附溶质的物质的量。吸附量Γ的大小与吸附平衡时溶质的浓度C有关,常用的关联式有两个: (1)Freundlich经验公式: 式中,x 表示吸附溶质的物质的量(mol);m 表示吸附剂的质量(g);c 表示吸附平衡时溶液的浓度(mol/L);k,n表示经验常

数,由温度、溶剂、吸附质与吸附剂的性质决定。 以lg Γ对lgc 作图可得一直线,由直线的斜率和截距可求得n 和 k。 (2)Langmuir吸附方程: 式中,Γ∞表示饱和吸附量;C 表示吸附平衡时溶液的浓度;K 为 常数. 用c/Γ对c作图得一直线,由此直线的斜率和截距可求得Γ∞,并进 一步计算出吸附剂的比表面积S0 S0(m2/g)= 三、实验准备: 1.仪器:电动振荡器、分析天平、碱式滴定管、带塞锥形瓶(5个)、移液管、锥形瓶 2:药品:活性炭;HAC(0.4mol·ml-3);NaOH (0.1mol·ml-3);酚酞 指示剂。 四、实验步骤: 1. 分别放入1—5号洗净干燥的带塞锥形瓶中

五、注意事项 1.溶液的浓度配制要准确,活性炭颗粒要均匀并干燥 2. 醋酸是一种有机弱酸,其离解常数Ka = 1.76×10-5 ,可用标准碱溶液直接滴定,化学计量点时反应产物是NaAc ,是一种强碱弱酸盐,其溶液pH 在8.7 左右,酚酞的颜色变化范围是8-10,滴定

实验八十四 固体在溶液中的吸附 习题设计

固体在溶液中的吸附 一选择题(单选) 1在固体在溶液中的吸附实验中,为什么振荡时锥形瓶瓶塞要塞紧?(A)A 防止醋酸挥发 B 防止醋酸在振荡时溅出 C 防止振荡时液体溅出打湿振荡器 D 防止空气中的水分进入 2 固体在溶液中的吸附实验中朗格缪尔吸附常数k与那些因素有关?(B) A 吸附剂的种类 B 温度和气压 C 吸附剂表面建构 D 吸附时间的长短 3固体在溶液中的吸附实验中弗罗因德利希公式中k是C=1时的 吗?(B)A 是 B 不是 C 看情况 D 无法确定 4在活性炭吸附醋酸分子的实验中吸附剂和吸附质分别是什么?(A) A 活性炭,醋酸分子B活性炭,活性炭 C醋酸分子,醋酸分子 D 醋酸分子,活性炭 5为什么在固体在溶液中的吸附实验中要使用不含CO2的蒸馏水进行?(C) A 蒸馏水易得 B 排除其他离子的干扰 C 防止CO2酸性气体溶解在溶液中带来误差D实验习惯

6弗罗因德利希公式适用于哪些浓度的溶液(C ) A 浓度很大的溶液 B 浓度很小的溶液 C 浓度不大不小的溶液 7固体在溶液中的吸附实验里朗格缪尔吸附模型是什么? (B ) A 双分子层 B 单分子层 D 平面型 D 立体型 8 朗格缪尔吸附公式 ck ck +Γ=Γ∞1中 ∞Γ 表示什么? (D ) A 吸附常数 B 最大值 C 最小值 D 饱和吸附量 9固体在溶液中的吸附实验里用什么方法称取活性炭?(A ) A 差量法 B 去皮称量 C 任意方法 D 台秤称量 10为什么固体在溶液中的吸附实验里所有仪器均须洁净?(B) A 实验习惯 B 防止杂质也有吸附作用 C 会稀释溶液 D 干扰终点的观察 11活性炭吸附醋酸是可逆吸附吗?(D )

固体从溶液中地吸附实验报告材料

固体从溶液中的吸附 —实验报告 院(系) 生化系 年级 10 级 专业 化工 姓名 _________________________ 学号 课程名称 物化实验 实验日期2012 年月_29_日 实验地点 3 栋 指导老师 r 一、实验目的: 1O 30 1 ?熟悉溶液吸附法测定固体比表面的原理和实验方法。 2?测定活性炭的比表面。 吸附能力的大小常用吸附量r 表示之。『通常指每克吸附剂上吸附溶质的物 质的量。吸附量r 的大小与吸附平衡时溶质的浓度C t 关,常用的关联式有两 个: (1) Freundlich 经验公式: 示吸附平衡时溶液的浓度(mol/L ) ; k,n 表示经验常数,由温度、溶剂、吸附 质与吸附剂的性质决定。 以lg r 对lgc 作图可得一直线,由直线的斜率和截距可求得 n 和k 。 (2) Langmuir 吸附方程: Kc 1+Kc c 1 1 —= ---- + --- C r r^K 匚 实验原理: 式中, 『=几.一^ x 表示吸附溶质的物质的量_moi ) m 表示吸附剂的质量(g ); c 表

式中表示饱和吸附量;C表示吸附平衡时溶液的浓度;K为常数. 用c/ r对c作图得一直线,由此直线的斜率和截距可求得r 「并进一步计算出

吸附剂的比表面积S S o (m 2 /g )= 三、实验准备: 1. 仪器: 电动振荡器、分析天平、碱式滴定管、带塞锥形瓶( 5 个)、移液管、锥形瓶 2:药品:活性炭;HAC (0.4mol ? ml -3 ); 指示剂。 四、实验步骤: 1. 约ig (准确到0.001g )的活性 ------ 配好各瓶溶液 > 用磨口瓶塞塞好 >摇动锥形 --------------- ? NaOH (0.1mol - ml -3 );酚酞 分别放入1 — 5号洗净干燥的带塞锥形瓶中

固体从溶液中的吸附实验分析报告

固体从溶液中的吸附实验报告

作者: 日期: 2

固体从溶液中的吸附实验报告 院(系)生化系年级10级专业化工姓名学号 课程名称物化实验实验日期2012年11月29 日实验地点3栋指导老师 一、实验目的: 1 ?熟悉溶液吸附法测定固体比表面的原理和实验方法。 2?测定活性炭的比表面。 二、实验原理: 吸附能力的大小常用吸附量r表示之。『通常指每克吸附剂上吸附溶质的物质的量。吸附量r 的大小与吸附平衡时溶质的浓度C有关,常用的关联式有两个: (1) Freundlich 经验公式: 0 ] JCc 式中,x表示吸附溶质的物质的量(mol ) ; m表示吸附剂的质量(g) ; c表 示吸附平衡时溶液的浓度(mol/L);k,n表示经验常数,由温度、溶剂、吸附 质与吸附剂的性质决定。 以Ig r对Igc作图可得一直线,由直线的斜率和截距可求得n和k。 (2) Langmuir吸附方程:

Kc 5 g

1 —C r r^K 厂2 式中表示饱和吸附量;C 表示吸附平衡时溶液的浓度;K 为常数. 用C/ r 对C 作图得一直线,由此直线的斜率和截距可求得r 「并进一步计算出吸 附剂的比表面积S 0 S0(m 2 /g ) = x6 02x10 24.3 10 三、实验准备: 1?仪器:电动振荡器、分析天平、碱式滴定管、带塞锥形瓶( 5个)、 2:药品:活性炭;HAC(0.4mol ml -3); NaOH (O.lmol ml -3 );酚酞 指示剂。 四、实验步骤: 1. 约lg (准确到 分别放入1 — 5号洗净 盖好固定板,

>用磨口瓶塞塞好

相关文档
相关文档 最新文档