文档库 最新最全的文档下载
当前位置:文档库 › 串并转换电路

串并转换电路

串并转换电路
串并转换电路

作业二——串-并转换电路

一.实验内容:

实现一个串-并转换电路,当输入信号A为1时,串行输入D的值,输入4 bit之后,并行输出Z,同时DONT输出为1。运用状态分析,共三个状态:state0,state1,state2。

设计testbench,检验输出波形。

二.实验代码:

1.修改的core代码如下:

2.设计的testbench代码如下:

其中,输入信号A和D是通过定义寄存器AM和DM,然后寻址获取数值。a.给复位信号R,时钟信号CLK赋值代码:

b.给输入信号A和D赋值代码:

三.仿真波形

1.总的波形

分析:从这幅图中可以看出,当R=1时,所有的信号复位成0,状态为0,之后当A=1给出ready信号之后,开始串行读数,四个时钟周期后,将数值并行输出到Z,同时DONT变为1,回归状态0。之后再次等待ready信号A=1,如此循环,实现串-并转换。波形正确。

2.第一个并行输出放大波形:

分析:从这幅图中可以看出,当时钟上升沿读取到A=1,说明准备好读入D 的数值了,D分别为:1,0,1,1,四个时钟之后,Z并行输出1011,同时DONT输出为1,之后回归到状态0,重新开始准备读数。

3.第二个并行输出波形:

分析:这幅图中,当Z输出1011之后,下一个时钟上升沿,虽然D为1,A 也为1,但是由于此时刚读入状态为0,因此还没有开始读数,而是在下一个时钟沿时开始串行读入D,一次读入D为:0,0,1,1,所以最后输出不是1001,而是0011。

单片机-串并转换

功能实现 /*************************************************** 本例主要演示串行转换成并行的功能实现:通过LED灯的闪亮显示(附带电路图)。 ***************************************************/ //C语言格式 #include #define uchar unsigned char #define uint unsigned int uint i,j; uint date[] = {1,2,4,8,16,32,64,128}; //延时 void Delay(uint n){ for(i = 0; i

if(TI == 1){ TI = 0; Delay(5); } } } } //asm格式 ORG 0000H AJMP START ORG 0030H START: MOV SCON,#0H MOV 30H,#01H MOV 31H,#02H MOV 32H,#04H MOV 33H,#08H MOV 34H,#16 MOV 35H,#32 MOV 36H,#64 MOV 37H,#128 MOV R0,#30H MOV R2,#8 LOOP: MOV A,@R0 MOV SBUF,A L0: JNB TI,L0 CLR TI ACALL DELAY INC R0 DJNZ R2,LOOP SJMP START

AD转换器及其应用

AD转换器及其应用 一A/D转换器的基本原理 定义:能将模拟量转换为数字量的电路称为模数转换器,简称A/D转换器或ADC。 A/D转换器转化模拟量的四个步骤:采样、保持、量化、编码。 模拟电子开关S在采样脉冲CP S的控制下重复接通、断开的过程。S接通时,ui(t)对C充电,为采样过程;S断开时,C上的电压保持不变,为保持过程。在保持过程中,采样的模拟电压经数字化编码电路转换成一组n位的二进制数输出。 1取样定理 将一个时间上连续变化的模拟量转换成时间上离散的模拟量称为采样。

取样定理:设取样脉冲s(t)的频率为f S,输入模拟信号x(t)的最高频率分量的频率为f max,必须满足f s ≥ 2f max y(t)才可以正确的反映输入信号(从而能不失真地恢复原模拟信号)。 通常取f s =(2.5~3)f max 。 由于A/D转换需要一定的时间,在每次采样以后,需要把采样电压保持一段时间。 s(t)有效期间,开关管VT导通,u I向C充电,u0(=u c)跟随u I的变化而变化; s(t)无效期间,开关管VT截止,u0(=u c)保持不变,直到下次采样。(由于集成运放A具有很高的输入阻抗,在保持阶段,电容C上所存电荷不易泄放。) 2 量化和编码 数字量最小单位所对应的最小量值叫做量化单位△。 将采样-保持电路的输出电压归化为量化单位△的整数倍的过程叫做量化。 用二进制代码来表示各个量化电平的过程,叫做编码。 一个n位二进制数只能表示2n个量化电平,量化过程中不可避免会产生误差,这种误差称为量化误差。量化级分得越多(n越大),量化误差越小。 划分量化电平的两种方法 (a)量化误差大;(b)量化误差小 3 采样-保持电路

串转并转换器1

一、题意分析及解决方案 1、课程设计名称及内容 应用STAR ES598PCI单板开发机系列接口芯片设计一个串转并转换器,熟悉串转并转换原理,掌握使用串并转换芯片扩展I/O口的实现方法。设计编写程序,循环点亮8个指示灯瞬间只有一个灯亮。观察实验结果,验证串并转换数据的正确性。 2、题意需求分析 根据题目给定的内容与要求可得:本实验需要用到的主要是控制数据输入的芯片、实现串并转换的芯片和用于显示的发光管。 本实验的核心部分是8位移位寄存器74HC164,它可以实现数据的串行输入和并行输出,达到数据从串行转换为并行的目的。为了方便控制74HC164的输入,考虑运用可编程接口芯片8255连接CPU和74HC164,实现数据的串行输入和CP脉冲的变化。同时,为了方便观察实验结果,使用74HC164移位寄存器输出接口连接8位发光二极管,显示并行输出结果。 3、解决问题的思路与方法 (1)硬件部分 程序用到的硬件芯片有8255、74HC164、发光二极管: 使用8255作为CPU和移位寄存器之间的接口电路来控制8位串行数据的输入,其本身的接口就可以支持输出的操作。而且8255的可编程并行接口,具有传输速度快效率高等优点,不需要附加外部电路便可和大多数并行传输数据的外部设备相连,数据的各位同时传送,使用十分方便。 74HC164是8位移位寄存器,当其中一个(或二个)选通串行输入端的低电平禁止进入新数据,并把第一个触发器在下一个时钟脉冲来后复位到低电平时,门控串行输入端(A 和B) 可完全控制输入数据。一个高电平输入后就使另一个输入端赋能,这个输入就决定了第一个触发器的状态。虽然不管时钟处于高电平或低电平时,串行输入端的数据都可以被改变,但只有满足建立条件的信息才能被输入。时钟控制发生在时钟输入由低电平到高电平的跃变上。为了减小传输线效应,所有输入端均采用二极管钳位。时钟 (CP) 每次由低变高时,数据右移一位,输入到 Q0, Q0 是两个数据输入端(DSA 和 DSB)的逻辑与,它将上升时钟沿之前保持一个建立时间的长度。主复位 (MR) 输入端上的一个低电平将使其它所有输入端都无效,同时非同步地清除寄存器,强制所有的

12-1电路中能量转化练习题

12-1电路中能量转化 1.关于电功,下列说法中正确的有( ) A .电功的实质是静电力所做的功 B .电功是电能转化为其他形式能的量度 C .静电力做功使金属导体内的自由电子运动的速率越来越大 D .电流通过电动机时的电功率和热功率相等 2.关于四个公式①P =UI ;②P =I 2R ;③P =U 2R ;④P =W t ,下列叙述正确的是( ) A .公式①④适用于任何电路的电功率的计算 B .公式②适用于任何电路的热功率的计算 C .公式①②③适用于任何电路电功率的计算 D .以上均不正确 3.两个精制电阻,用锰铜电阻丝绕制而成,电阻上分别标有“100 Ω,10 W ”和“20 Ω,40 W ”,则它们的额定电流之比为( ) A.5∶5 B.10∶20 C.5∶10 D .1∶2 000 4.额定电压、额定功率均相同的电风扇、电烙铁和日光灯,各自在额定电压下正常工作了相同的时间.比较它们产生的热量,结果是( ) A .电风扇最多 B .电烙铁最多 C .日光灯最多 D .一样多 5.额定电压都是110 V ,额定功率P A =100 W ,P B =40 W 的灯泡两盏,若接在电压为220 V 的电路上,使两盏灯泡均能正常发光,且消耗功率最小的电路是( )

6.两盏额定功率相同的灯泡A和B,其额定电压U A>U B,则下列说法正确的是() A.两灯正常发光时,灯泡的电流I A>I B B.两灯电阻R A

双电源切换应用电路

双电源切换应用电路 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

功率P-FET控制器LTC4414 LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。该器件主要特点:工作电压范围宽,为~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。 图1 LTC4414的引脚排列引脚排列及功能 LTC4414的引脚排列如图1所示,各引脚功能如表1所示。 图2 LTC4414结构及外围器件框图 基本工作原理 这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源()、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL内部有μA的下拉电流源等组成。外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。 图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分别如下。 1 主电源单独供电

主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE之值成比例的电流输入到模拟控制器。当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GATE 端的电压降到地电平或到栅极箝位电压(保证-VGS≤),使外接P-MOSFET 导通。与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。P-MOSFET的损耗为ILOAD×20mV。在P-MOSFET 导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET导通)。 2 加上辅电源 当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。模拟控制器使GATE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。 在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。 在上述两种供电方式时,CTL端是接地或悬空的。CTL的控制功能将在下面的应用电路介绍。 典型应用电路 1主、辅电源自动切换电路

verilog串并转换并串转换

1. 设计名称:38译码器带使能端的 主要功能: 实现38译码功能,并且在使能段处于低电平是输出为00000000 设计框图: 设计代码: module decoder3_8(a,b,ena); input [2:0] a; input ena; output [7:0] b; reg [7:0] b; always @ (ena,a) if(!ena) begin b=8'b00000000; end else begin case(a) 3'b000: b=8'b00000001; 3'b001: b=8'b00000010; 3'b010: b=8'b00000100;

3'b011: b=8'b00001000; 3'b100: b=8'b00010000; 3'b101: b=8'b00100000; 3'b110: b=8'b01000000; 3'b111: b=8'b10000000; default: b=8'b00000000; endcase end endmodule 仿真代码: `timescale 1ns/1ns module tb; reg [2:0] a; reg ena; wire [7:0] b; initial begin a = 3'b000; ena = 1'b0; #50; ena = 1'b1; #50; a=3'b001; #50; a=3'b010; #50; a=3'b011; #50; a=3'b100; #50; a=3'b101; #50; a=3'b110; #50; a=3'b111; #50; $ stop; end decoder3_8 udecoder3_8( .a(a), .ena(ena), .b(b) ); endmodule 仿真结果:

串并联电路图与实物图转换

周末提高《串并联电路图专题练习》 一、了解串并联电路: 1.串并联概念: 串联电路:①概念:把电路元件_连接起来。②特点:(1)通过一个元件的电流_另一个元件,电流只有_条路径;(2)电路中只需个开关,且开关的位置对电路影响。 并联电路:①概念:把电路元件_ _连接起来(并列元件两端才有公共端)。②特点:干路电流在分支处,分成_ 条支路;(2)各元件可以_工作,互不干扰;(3)干路开关控制_ __,支路开关只控制_ __。 2. 电流流向法:电流流向法是识别串并联电路最常用的方法。在识别电路时,让电流从电源的正极出发经过各用电器回到电源的负极,途中不分流,始终是一条路径者,为串联;如果电流在某处分为几条支路,若每条支路上只有一个用电器,最终电流又重新汇合到一起,像这样的电路为并联。并联电路中各用电器互不影响。 3. 拆除法:它的原理就是串联电路中各用电器互相影响,拆除任何一个用电器,其他用电器中就没有电流了;而并联电路中,各用电器独立工作,互不影响,拆除任何一个或几个用电器,都不会影响其他用电器。 4. 节点法:所谓“节点法”就是在识别不规范电路的过程中,不论导线有多长,只要中间没有电源、用电器等其他电路元件,则导线两端点均可以看成同一个点,从而找出各用电器两端的公共点,它的最大特点是通过任意拉长和缩短导线达到简化电路的目的。 5. 等效电路法:对于题目中给定的电路可能画法不规则,我们可综合上述方法通过移动、拉长、缩短导线,把它画成规则的电路,即画出它的等效图来进行识别。 练习: 1、将下图中的元件连接起来,形成串联电路并标出电流的方向。 2、将下图中的元件连接起来,形成并联电路并标出电流的方向。(要求每个开关控制一个灯泡) 3、如图所示,当S1,S2断开时,能亮的灯是______,它们是_______联的。当S1,S2闭合时,能亮的灯是______,它们是______联的。当S1闭合、S2断开时,能亮的灯是______。 题1 题2 题3 题3附加4、下列电路图,哪是串联电路?哪是并联电路?请把画出它们的等效电路图。

第三讲电阻串、并联连接的等效变换

《电工基础》教案 课 题: 第三讲 电阻串、并联连接的等效变换 教学目的: 1、了解电阻串联、并联和混联电路及其应用 2、掌握混联电路的等效变换和计算 教学重点: 电阻串联、并联和混联电路及其应用;混联电路的等效变换和计算 教学难点: 电阻的等效变换 教学方法: 讲授法 举例法 教学课时: 2课时 教学过程 时间分配 I 、新课导入: 什么是电阻?其常用的连接方式有哪几种?引入新课 4 II 、新授内容 一、电阻的串联 1. 定义:将两个或多个电阻一个一个地首尾相接,中间没有分支的连接方式叫做电阻的串联。 2. 特点: (1)等效电阻:R=R 1+R 2+…+R n (2)通过各电阻的电流相等 (3)分压关系:U 1/R 1=U 2/R 2=……=U n /R n =I (4)功率分配:P 1/R 1=P 2/R 2=……=P n /R n =I 2 分压公式:u k =R k i=R k /r ·u 因此两个电阻串联时: 80’ i R 1+u -R 2R n R i +u - +u 1 - + u 2 -+u n - u R R R u 2 11 1+=u R R R u 2 12 2+=

二、电阻的并联 1、定义:电路中两个或两个电阻联接在两个公共的节点之间,则这样的联接法称为电阻的并联。 2.特点: (1)各个电阻两端的电压相等,都等于端口电压,这是并联的主要 特征。 (2)电阻的并联端电流等于各电阻电流之和。 (3)电阻的并联等效电阻的倒数等于各电阻倒数之和。 (4)并联电路具有分流作用,且各电阻的电流与它们的电导成正 比,与它们的电阻成反比。 (5)并联电路中总功率等于各支路电阻消耗功率之和。各支路电阻 所消耗的功率与各支路电阻的阻值成反比,与它们的电导成正比。 分流公式: 两个电阻并联时: 二、电阻的混联 1、定义:电路中包含既有串联又有并联,电阻的这种连接方式称为电阻的混联。 2、应用: A 等电位分析法 等电位分析法等电位分析法等电位分析法 关键:将串、并联关系复杂的电路通过一步步地等效变换,按电阻串联、并联关系,逐一将电路化简。 等电位分析法步骤: ( 1)、确定等电位点、标出相应的符号。 导线的电阻和理想电流 i 1 i 2 i n R 1 i +u - R 2 R n R i +u - i R R R u i k k k == i R R R i 2 12 1+= i R R R i 2 11 2+=

并串联阻抗转换的快速实现方法

并-串联阻抗转换的快速实现方法 并-串联阻抗转换的快速实现方法 文章还说明作为频率函数的这一转换的图示看起来很像是史密斯圆图(Smith Chart)。在简化变压器等效电路或滤波器网络到两个端器件过程中,本文介绍的方法较为有用。图1显示了将并联电路转换为串联电路的转换方程式(推导过程请参见附录1)。 图1:这些电路为一个频率的等效电路。 有趣的是,如果并联组件之一固定而另一个从开路到短路均不同,则这些表达式在Rs/Xs串联层中会形成一些圆。差异可以来自组件值的改变,也可以产生自随频率变化的组件阻抗。图2显示的是这些差异的举例。X轴代表串联电阻,而Y轴代表串联电抗。 此处共有2个圆:一个代表恒定并联电阻,另一个代表恒定电抗。恒定电阻线在X轴附近对称。电抗在开路附近时,阻抗等于并联电阻。由于电抗降低,曲线路径沿圆圈至起点,其在电感分量时为正,而在电容分量时为负。由于电抗降低,曲线趋向于零。在1/2并联电阻距离处,圆以X轴为中心,其半径相同。 另外,需要注意的是,起点和圆上某点的连线的斜率便为该电路的Q。这就是说,最低Q出现时并联电抗的值更大,而最高Q出现时并联电抗较低。关于该圆的另一件有趣的事情是,它可以表明并联

谐振L-C-R电路的阻抗。参考恒定并联R曲线,在低频率下,电感阻抗较小,而您开始于起点。随着频率上升,阻抗在首个四分之一圆内为正,直到电容电抗等于谐振电感反应(X轴上的1)。之后,您转入第二个四分之一圆,并绕圆继续。 图2:恒定并联电阻映射为一个圆。 第二条曲线表明固定电抗和并联可变电阻的阻抗圆。它具有同恒定不变R曲线相同的形状,但其以Y轴为中心。 那么该如何使用它呢?在您需要估算电感DC电阻(DCR)和电容等效串联电阻(ESR)对电源滤波器输出阻抗影响程度时,其将会很有用处。图3对此进行了说明。输出阻抗在谐振时达到最高,因此必须首先计算出滤波器谐振频率。下一步,对电感-DCR组合和电容-ESR组合进行串-并联转换。最后,简单地组合三个已为并联的并联电阻。例如,如果您有了一个基本为0 Ohm ESR的47uF陶瓷电容,以及一个50 mOhm DCR的10μH输出电感。谐振频率为7kHz。这一频率下,电感有0.4 Ohm的电抗,从而得到Q为8,而并联电阻为3 Ohm。一种更快速的方法是将特性阻抗((L/C)0.5)用于谐振下的电感电抗。 图3:串-并联转换简化了电路分析。 下次,我们将讨论隔离电源补偿的一些方法,敬请期待。

串并变换

library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity kk is port ( rst,clk : in Std_Logic; ser: in Std_Logic; lout : out Std_Logic_Vector (7 downto 0 ) ); end entity; architecture Behavioral of kk is begin process (clk) variable i : integer range 0 to 7; begin if rst='1' then i:=0; elsif rising_edge(clk) then lout(i) <= ser; if (i=7)then i:=0; else i:=i+1; end if; end if; end process; end Behavioral;

`define data_width 32 module example( data_out, dout_en, data_in, data_wr, clk, rst_n ); //============================= //ports declaration //============================= output[`data_width -1 : 0] data_out; output dout_en; input data_in; input data_wr; input clk; input rst_n; //============================= //parameter declaration //============================= parameter UDLY = 1; //============================= //signals declaration //============================= reg[`data_width -1 : 0] shift_reg; reg[`data_width -1 : 0] shift_cnt; wire shift_done; wire dout_ne; //============================= //main code //============================= always @ (posedge clk or negedge rst_n) begin if(!rst_n) shift_reg <= {`data_width{1'b0}}; else if(data_wr) shift_reg <= #UDLY {shift_reg[`data_width -2 : 0],data_in};

的复用和分解方面原理上就是一个串并转换和并串转换

这个并串转换代码是依靠同步状态机来实现其控制的。其实并串转换在实际的电路中使用还是比较多的,尤其在通信线路方面的复用和分解方面,原理上就是一个串并转换和并串转换的过程。举个简单的例子,计算机串口发送数据的过程,如果满足发送条件了,其实就是一个并串转换的过程了。好了,废话不说,看代码就是。 -------------------------------------------------------------------------------- -- Engineer: skycanny -- Module Name: p2s - Behavioral -- Tool versions: ISE7.1 -- Description: This module is designed to implement parallel to serial conversion -------------------------------------------------------------------------------- library IEEE; use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL; use IEEE.STD_LOGIC_UNSIGNED.ALL; entity p2s is port( reset : in std_logic; clk : in std_logic; start : in std_logic; --low active,data_in valid data_in : in std_logic_vector(7 downto 0); data_valid : out std_logic; --high active,output data valid ready : out std_logic; --low active,ready to recieve data q : out std_logic ); end p2s; architecture Behavioral of p2s is signal reg : std_logic_vector(7 downto 0); signal cnt : std_logic_vector(3 downto 0); signal reg_en : std_logic; signal shift_start : std_logic; type state is (idle,recieve,shift,finish); signal current_state, next_state : state; begin counter: process(reset,clk,shift_start) begin

双电源切换应用电路(行业一类)

功率P-FET控制器LTC4414 LTC4414是一种功率P-EFT控制器,主要用于控制电源的通、断及自动切换,也可用作高端功率开关。该器件主要特点:工作电压范围宽,为3.5~36V;电路简单,外围元器件少;静态电流小,典型值为30μA;能驱动大电流P沟道功率MOSFET;有电池反极性保护及外接P-MOSFET的栅极箝位保护;可采用微制器进行控制或采用手动控制;节省空间的8引脚MSOP封装;工作温-40℃+125℃。 图1 LTC4414的引脚排列引脚排列及功能 LTC4414的引脚排列如图1所示,各引脚功能如表1所示。

图2 LTC4414结构及外围器件框图 基本工作原理 这里通过内部结构框图及外接元器件组成的电源自动切换电路来说明其工作原理。内部结构框图及外围元器件组成的电路如图2所示。其内部结构是由放大器A1、电压/电流转换电路、电源选择器(可由VIN端或SENSE端给内部电路供电)、模拟控制器、比较器C1、基准电压源(0.5V)、线性栅极驱动器和栅极电压箝位保护电路、开漏输出FET及在CTL 内部有3.5μA的下拉电流源等组成。外围元器件有P沟道功率MOSFET、肖特基二极管D1、上拉电阻RPU、输入电容CIN及输出电容COUT。 图2中有两个可向负载供电的电源(主电源及辅电源),可以由主电源单独供电,也可以接上辅电源,根据主、辅电源的电压由LTC4414控制实现自动切换。这两种供电情况分别如下。 1 主电源单独供电 主电源单独供电时,电流从LTC4414的VIN端输入到电源选择器,给内部供电。放大器A1将VIN和VSENSE的差值电压放大,并经过电压/电流转换,输出与VIN-VSESNSE 之值成比例的电流输入到模拟控制器。当VIN-VSESNE>20mV时,模拟控制器通过线性栅极驱动器及箝位保护电路将GA TE端的电压降到地电平或到栅极箝位电压(保证-VGS≤8.5V),使外接P-MOSFET导通。与此同时,VSESNE被调节到VSESNE=VIN-20mV,即外接P-MOSFET的VDS=20mV。P-MOSFET的损耗为ILOAD×20mV。在P-MOSFET导通时,模拟控制器给内部FET的栅极送低电平,FET截止,STAT端呈高电平(表示P-MOSFET 导通)。 2 加上辅电源 当加上辅电源(如交流适配器)后,如果VSESNE> VIN+20mV,则内部电源选择器由SENSE端向内部电路供电。模拟控制器使GA TE端电压升高到VSENSE,则P-MOSFET截止,辅电源通过肖特基二极管D1向负载供电。这种电源切换是自动完成的。 在辅电源向负载供电时,模拟控制器给内部FET的栅极送高电平,FET导通,STAT端呈低电平(表示辅电源供电)。上拉电阻RPU的阻值要足够大,使流过FET的电流小于5mA。

verilog实现串并并串转换的代码和仿真结果

题目:串并互换电路的设计 系(部):*** 专业班:*** 姓名:*** 学号:*** 指导教师:*** 完成比例:** 2011年12 月

摘要 本文主要讲述用verilog实现串并互换电路,在同步时钟的控制下,四位的并行数据和串行数据相互转换,通过一位的控制信号来控制该电路为串并或并串转换,最后由串并有效位来表示串并互换成功。 关键词:串转并并转串移位寄存器

Abstract This paper deals with verilog realize string and swap circuit, in synchronous clock under the control of four parallel data and serial data transformation, through a control signals to control the circuit for the series and or and string of conversion, finally by string and effective to say a string and swap success. Key W ords:Parallel turns to serial serial turns to parallel Shift register

目录 摘要.............................................................................................................................................................................. I ABSTRACT ..................................................................................................................................................................... II 1 选题背景. (1) 1.1本课题的意义 (1) 2 方案论证 (2) 2.1串并并串选择的分析 (2) 2.2串并并串转换是否成功的标志位及表达 (2) 3、程序的具体实现及仿真结果 (3) 4、本人完成部分及对该部分的理解 (9) 5结论或总结 (9) 致谢 (10) 参考文献 (10)

闭合电路中的能量转化

闭合电路中的能量转化 教学目标 1.理解电路中的能量转化情况,即在电路中哪部分发生由什么能转化成什么能的问题.加深对能的转化和守恒定律的认识. 2.掌握分析、计算电路中功率及能量的转化的方法. 教学重点、难点分析 1.对电路中各部分做功情况(什么力做功)、能量转换情况(什么能之间的转化)的分析、理解. 2.认清电源输出功率与效率的联系与区别. 3.对非纯电阻电路中能量转化问题的理解、应用. 教学过程设计 教师活动 一、电路中的功与能 能的转化和守恒定律是自然界普遍适用的规律.在电路中能量是怎么转化的?请参照图3-4-1所示电路回答并举例. 学生活动 答:电源是把其它能转化为电能的装置.内阻和用电器是电能转化为热能等其它形式能的装置.如化学电池将化学能转化成电能,而电路中发光灯泡是将电能转化成光、热能. 对于一个闭合电路,它的能量应该是守恒的,但又在不同形式间转化,通过什么方式完成呢?(请结合电动势和电压的定义回答)

答:做功.在电源部分,非静电力做正功W非=q ,将其它形式的能转化成电能.而 内阻上电流做功,将电能转化成内能W内=qU′(U′为内阻上的电势降),在外电路部分,电流做功W外=qU(U为路端电压),电能转化成其它形式的能. 这些功与能量间的定量关系如何? 总结:可见,整个电路中的能量循环转化,电源产生多少电能,电路就消耗多少,收支平衡.答:W非=W内+W外 或q =qU′+qU 二、电功与电热 这部分知识初中学过,可以列出一些问题,让学生回答,教师补充说明即可. 如图3-4-2所示,用电器两端电压U,电流I. 回答:(1)时间t内,电流对用电器做功; (2)该用电器的电功率; (3)若用电器电阻为R,时间t内该用电器产生的热量; (4)该用电器的热功率; (5)电功与电热是否相等?它们的大小关系如何?为什么? 答: (1)W=UIt (2)P=W/t=UI (3)Q=I2Rt(焦尔定律) (4)P热=Q/t=I2R (5)若电路为纯电阻电路,则

DC-DC转换器原理及应用

DC-DC转换器原理及应用 当您电池的最后一焦耳电能被耗尽时,功耗和效率就将真正呈现出新含义。以一款典型的手机为例,即使没有用手机打电话,LCD屏幕亮起、显示时间及正在使用的网络运营商等任务也会消耗电力。如果它是一款更高级的手机,还可以播放您喜爱的MP3音乐或浏览视频数据。不过,每为手机增加一种功能,实际上也增加了电池的负担。对于大多数手机设计者来说,能否延长可用电力的使用时间是您的手机在下次充电前能够持续多久的关键。这意味着电力需要在各种功能模块间小心谨慎地保护和预算,以最大限度地延 长电池寿命和使用。 要实现真正的效率,并不仅仅意味着DC-DC转换器在负载指定的某个操作点可以获得多高的效率,而是在DC-DC转换器整个载荷范围内这种高效率能够维持多久。一般来说,大部分DC-DC转换器都指定可以达到的最大效率数字,而且人们也通过选择一个非常大的数字(如95%),毫不犹豫地选择一个合适的转换器。然而,要真正地充分利用这个效率,还需要把转换器的曲柄转到可以实现最大功率转换的操作点上。如果未转到这个点,就不能达到95%的效率。而且因为这个问题,根据所应用的载荷,有时甚至达不 到60%的效率。 图1 典型效率曲线 图1显示在A点可达到95%的效率,在B点却只能达到60%甚至更低的效率。对于便携式消费产品,操作点或负载标尺上的这种差异将非常重要,因为大部分这些电子器件都有多种功能(如播放音乐、拍照或拨打电话),每种功能都要求一个不同的操作点或不同的DC-DC调节器有效负载。对于那些用户未调用的功能,DC-DC源的功率负载会非常轻,95%的效率将会锐减为50%甚至更低,因为是在图1中的B点。 以智能手机为例,在智能手机中,为AP(应用处理器)IO或核心电压供电的DC-DC转换器将在多长时间内把电池内的电力耗尽,这点非常重要。假设您的手机电池在正常使用时(即主要是拨打语音电话)可持续供电最多2~3天。在这段时间(48~72小时),通常只有一小部分电力用于娱乐活动,如照片的拍摄和浏览或者MP3音乐的播放。它意味着在剩余时间,手机不需要AP完成太多任务;可能只是在AP 处于待机或休眠模式中用来刷新DDR存储器。因此,如果AP经常处于这些模式中,它带给转换器的负载将在标尺的轻负载一端,即B点。这表示,AP调节器的功率将永远以50%甚至更低的功效运行,使它成为电池的一个最大消耗源。可见,仅选择一个具有高效率规范的DC-DC调节器是不够的。还需要确保调节器在整个负载范围内都能提供高效率,尤其在轻负载和满负载时。

串并转换

实验五串并转换实验 一、实验目的 1、掌握串并行转换的原理及采用74LS164扩展端口的方法。 2、掌握数码管显示的原理及方法。 3、学习用任意两根I/O口线进行数据传输的方法。 二、实验要求 利用实验箱的显示电路,在数码管上循环显示0-9这10个数,每个数显示1秒。完成后修改程序,仅在一个数码管上显示0-F这16个数(其它三个数码管不显示)。 三、实验原理 实验设备中数码管为共阴接法,接线确定了各段从左 至右的排列顺序为:abcdefgh。如果要显示数字1,应该 是b c段发光,所以b c段对应的位写1,其它不发光的位写0。因此1的显示码为 60H。其它显示码可按此规律得出。 实验原理图见图二,串并转换芯片74LS164的A、B端为串行数据输入端,将其接到数据线P1.0上,CLK为时钟端接到时钟线P1.1上,Q0~Q7为并行输出端接数码管。在P1.1产生的时钟脉冲的作用下,数据的显示码从74LS164输入端一位一位的输入,经164转换后,串行数据变为8位并行数据经其输出端Q0~Q7加到数码管上,数码管就能显示相应的数字。 下面是数据60H的传输及显示过程: 1、将A中数据的最低位送到串口的数据线P1.0上。 2、在时钟线P1.1上产生一个脉冲。 3、在这个脉冲的作用下,P1.0上的数据被打入164的Q0输 出端,原来Q0上的数据移到Q1,Q1的数移到Q2…, 完成一位数的传输。 4、第1步到第3步重复8次,这样一个字节的数据就输出 完毕,同时74LS164将接收到的串行数据转换成并行数据 在数码管上显示出来。 四、实验框图 实验框图见图一。 五、实验连线及步骤 1、DIN接P1.0,CLK接P1.1,打开实验箱电源,打开串并 转换数码管显示模块上的开关。 2、启动KEIL软件界面,根据框图编程。 在初始化框中有两个内容,它们分别是: * 送表指针初值---寄存器 MOV R1,#0 * 送表首地址---DPTR 图一串并转换程序框图

串转并和并转串实验

实验五串转并与并转串实验 一、实验目的 1.掌握使用74LS164 扩展输出的方法。 2.掌握使用74LS165 扩展输入的方法。 二、实验内容 使用74LS165 扩展输入数据,使用74LS164 扩展输出数据。74LS165 的并行口接八位逻辑电平输出(开关),CPU 使用P1.0、P1.1 和P1.2 串行读入开关状态;74LS164 的并行口接一只数码管,CPU 使用P1.3 和P1.4 串行输出刚读入的开关状态,使之在数码管上显示出来。 三、实验要求 根据实验内容编写一个程序,并在实验仪上调试和验证。 四、实验说明和电路原理图 1)74LS165 为8 位移位寄存器,其引脚功能如下: S/L:移位/置数端,低电平有效。 P0~P7:并行数据输入端。 QH、QH:串行数据输出端。 CLK、CKLINH:时钟信号输入端。 2)74LS164 为串行输入并行输出移位寄存器,其引脚功能如下: A、B:串行输入端; Q0~Q7:并行输出端; MR:清零端,低电平有效; CLK:时钟脉冲输入端,上升沿有效。 3)用P1 端口输出数据时,要编程位移数据,每操作一个数据位,对应一个移位脉冲。 4)本实验需要用到CPU 模块(F3 区)、八位逻辑电平输出模块(E4 区)和静态数码管显示模块(B4 区)。74LS165 电路原理图参见图5-1,74LS164 电路原理图参见图8-2。 注:74LS164 集成电路芯片在主板反面。 图5-1 74LS165 电路

图5-2 74LS164电路 五、实验步骤 1)系统各跳线器处在初始设置状态。 用导线对应连接八位逻辑电平输出模块的QH165、CLK165、SH/LD 到CPU 模块的P10、P11、P12。用导线对应连接静态数码管显示模块的DIN、CLK 到CPU 模块的P13、P14。 2)启动PC 机,打开THGMW-51 软件,输入源程序,并编译源程序。编译无误后,下载程序运行。 3)观察数码(八段码)管的亮灭与拨动开关的状态是否一致。拨动开关拨下输出为低电平,段码点亮。 QH165 BIT P1.0 ;位定义 CLK165 BIT P1.1 SH_LD BIT P1.2 DAT164 BIT P1.3 CLK164 BIT P1.4 MEMORY EQU 30H ORG 0000H AJMP START ORG 00B0H START: SETB CLK165 ;开关数据置入165 CLR SH_LD ;低电平置数 SETB SH_LD ;高电平移位 MOVR7, #8 Input: RRA MOVC, QH165 ;读数 MOV ACC.7, C ;把C送到累加器最高位 CLR CLK165 ;脉冲

12.1 电路中的能量转化 练习题(解析版)

第十二章电能能量守恒定律 12.1 电路中的能量转化 一、单选题: 1.小明同学家里部分电器的消耗功率及每天工作时间如下表所示,则这些电器一天消耗的电能约为( ) A.6.1×103 W B.6.1×102 J C.2.2×104 W D.2.2×107 J 答案 D 解析根据题表数据可知,每天消耗的电能为W=2 kW×1 h+1.2 kW×3 h+0.1 kW×2 h+0.016 kW×4 h+0.009 kW×24 h=6.08 kW·h≈2.2×107 J,故D正确. 2.关于电功W和电热Q的说法正确的是( ) A.在任何电路中都有W=UIt、Q=I2Rt,且W=Q B.在任何电路中都有W=UIt、Q=I2Rt,但W不一定等于Q C.W=UIt、Q=I2Rt均只有在纯电阻电路中才成立

D.W=UIt在任何电路中都成立,Q=I2Rt只在纯电阻电路中才成立 答案 B 解析W=UIt是电功的定义式,适用于任何电路,Q=I2Rt是焦耳热的定义式,也适用于任何电路,如果是纯电阻电路W=Q,在非纯电阻电路中W>Q,B对,A、C、D错. 3.图中的路灯为太阳能路灯,每只路灯的光伏电池板有效采光面积约0.3 m2.晴天时电池板上每平方米每小时接收到的太阳辐射能为3×106 J.如果每天等效日照时间约为6 h,光电池一天产生的电能可供30 W的路灯工作8 h.光电池的光电转换效率为( ) A.4.8% B.9.6% C.16% D.44% 答案 C 解析太阳能电池板每天(6 h)吸收的太阳能:W总=0.3×3×106×6 J=5.4×106 J,路灯正常工作,P=P额=30 W,路灯正常工作8 h消耗的电能:W有=Pt=30 W×8×3 600 s=8.64 ×105 J,则光电池的光电转换效率为:η=W 有 W 总 ×100%= 8.64×105 5.4×106 ×100%=16%. 4.如图所示为甲、乙两灯泡的I-U图象,根据图象,计算甲、乙两灯泡并联在电压为220 V 的电路中,实际发光的功率约为( )

相关文档