文档库 最新最全的文档下载
当前位置:文档库 › 中考数学圆的综合综合题汇编附答案解析

中考数学圆的综合综合题汇编附答案解析

中考数学圆的综合综合题汇编附答案解析
中考数学圆的综合综合题汇编附答案解析

一、圆的综合真题与模拟题分类汇编(难题易错题)

1.如图,在⊙O中,AB为直径,OC⊥AB,弦CD与OB交于点F,在AB的延长线上有点E,且EF=ED.

(1)求证:DE是⊙O的切线;

(2)若tan A=1

2

,探究线段AB和BE之间的数量关系,并证明;

(3)在(2)的条件下,若OF=1,求圆O的半径.

【答案】(1)答案见解析;(2)AB=3BE;(3)3.

【解析】

试题分析:(1)先判断出∠OCF+∠CFO=90°,再判断出∠OCF=∠ODF,即可得出结论;(2)先判断出∠BDE=∠A,进而得出△EBD∽△EDA,得出AE=2DE,DE=2BE,即可得出结论;

(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3

2

x,进而得出OE=1+2x,最后用勾股定理

即可得出结论.

试题解析:(1)证明:连结OD,如图.∵EF=ED,∴∠EFD=∠EDF.∵∠EFD=∠CFO,∴∠CFO=∠EDF.∵OC⊥OF,∴∠OCF+∠CFO=90°.∵OC=OD,∴∠OCF=∠ODF,

∴∠ODC+∠EDF=90°,即∠ODE=90°,∴OD⊥DE.∵点D在⊙O上,∴DE是⊙O的切线;(2)线段AB、BE之间的数量关系为:AB=3BE.证明如下:

∵AB为⊙O直径,∴∠ADB=90°,∴∠ADO=∠BDE.∵OA=OD,∴∠ADO=∠A,

∴∠BDE=∠A,而∠BED=∠DEA,∴△EBD∽△EDA,∴DE BE BD

AE DE AD

==.∵Rt△ABD

中,tan A=BD

AD

=

1

2

,∴

DE BE

AE DE

==

1

2

∴AE=2DE,DE=2BE,∴AE=4BE,∴AB=3BE;

(3)设BE=x,则DE=EF=2x,AB=3x,半径OD=3

2

x.∵OF=1,∴OE=1+2x.

在Rt△ODE中,由勾股定理可得:(3

2

x)2+(2x)2=(1+2x)2,∴x=﹣

2

9

(舍)或x=2,

∴圆O的半径为3.

点睛:本题是圆的综合题,主要考查了切线的判定和性质,等腰三角形的性质,锐角三角函数,相似三角形的判定和性质,勾股定理,判断出△EBD∽△EDA是解答本题的关键.

2.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形

(性质探究)如图1,试探究圆外切四边形的ABCD两组对边AB,CD与BC,AD之间的数量关系

猜想结论:(要求用文字语言叙述)

写出证明过程(利用图1,写出已知、求证、证明)

(性质应用)

①初中学过的下列四边形中哪些是圆外切四边形(填序号)

A:平行四边形:B:菱形:C:矩形;D:正方形

②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.

③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.

【答案】见解析.

【解析】

【分析】

(1)根据切线长定理即可得出结论;

(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;

②根据圆外切四边形的对边和相等,即可求出结论;

③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.

【详解】

性质探讨:圆外切四边形的对边和相等,理由:

如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.

求证:AD+BC=AB+CD.

证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,

∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.

故答案为:圆外切四边形的对边和相等;

性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.

∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.

故答案为:B,D;

②∵圆外切四边形ABCD,∴AB+CD=AD+BC.

∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.

故答案为:40;

③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.

∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为

4x=8cm,5x=10cm,7x=14cm,8x=16cm.

【点睛】

本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.

3.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为

4cm,求这个圆形截面的半径.

【答案】10cm

【解析】

分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在

Rt△AOD中,根据勾股定理求出这个圆形截面的半径.

详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,

∵OC⊥AB

∴BD=1

2

AB=

1

2

×16=8cm

由题意可知,CD=4cm

∴设半径为xcm,则OD=(x﹣4)cm

在Rt△BOD中,

由勾股定理得:OD2+BD2=OB2

(x﹣4)2+82=x2

解得:x=10.

答:这个圆形截面的半径为10cm.

点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.

4.如图1,已知AB是⊙O的直径,AC是⊙O的弦,过O点作OF⊥AB交⊙O于点D,交AC于点E,交BC的延长线于点F,点G是EF的中点,连接CG

(1)判断CG与⊙O的位置关系,并说明理由;

(2)求证:2OB2=BC?BF;

(3)如图2,当∠DCE=2∠F,CE=3,DG=2.5时,求DE的长.

【答案】(1)CG与⊙O相切,理由见解析;(2)见解析;(3)DE=2

【解析】

【分析】

(1)连接CE,由AB是直径知△ECF是直角三角形,结合G为EF中点知∠AEO=∠GEC=∠GCE,再由OA=OC知∠OCA=∠OAC,根据OF⊥AB可得∠OCA+∠GCE=90°,即

OC⊥GC,据此即可得证;

(2)证△ABC∽△FBO得BC AB

BO BF

,结合AB=2BO即可得;

(3)证ECD∽△EGC得EC ED

EG EC

=,根据CE=3,DG=2.5知

3

2.53

DE

DE

=

+

,解之可

得.

【详解】

解:(1)CG与⊙O相切,理由如下:

如图1,连接CE,

∵AB是⊙O的直径,

∴∠ACB=∠ACF=90°,

∵点G是EF的中点,

∴GF=GE=GC,

∴∠AEO=∠GEC=∠GCE,

∵OA=OC,

∴∠OCA=∠OAC,

∵OF⊥AB,

∴∠OAC+∠AEO=90°,

∴∠OCA+∠GCE=90°,即OC⊥GC,

∴CG与⊙O相切;

(2)∵∠AOE=∠FCE=90°,∠AEO=∠FEC,∴∠OAE=∠F,

又∵∠B=∠B,

∴△ABC∽△FBO,

∴BC AB

BO BF

=,即BO?AB=BC?BF,

∵AB=2BO,

∴2OB2=BC?BF;

(3)由(1)知GC=GE=GF,

∴∠F=∠GCF,

∴∠EGC=2∠F,

又∵∠DCE=2∠F,

∴∠EGC=∠DCE,

∵∠DEC=∠CEG,

∴△ECD ∽△EGC , ∴

EC ED

EG EC =, ∵CE =3,DG =2.5, ∴

32.53

DE

DE =+,

整理,得:DE 2+2.5DE ﹣9=0, 解得:DE =2或DE =﹣4.5(舍), 故DE =2. 【点睛】

本题是圆的综合问题,解题的关键是掌握圆周角定理、切线的判定、相似三角形的判定与性质及直角三角形的性质等知识点.

5.如图,过⊙O 外一点P 作⊙O 的切线PA 切⊙O 于点A ,连接PO 并延长,与⊙O 交于C 、D 两点,M 是半圆CD 的中点,连接AM 交CD 于点N ,连接AC 、CM . (1)求证:CM 2=MN.MA ;

(2)若∠P=30°,PC=2,求CM 的长.

【答案】(1)见解析;(2)2 【解析】 【分析】

(1)由CM DM =知CAM DCM ∠=∠,根∠CMA=∠NMC 据证ΔAMC ∽ΔCMN 即可得;

(2)连接OA 、DM ,由直角三角形PAO 中∠P=30°知()11

22

OA PO PC CO =

=+,据此求得OA=OC=2,再证三角形CMD 是等腰直角三角形得CM 的长. 【详解】

(1)

O 中,M 点是半圆CD 的中点, ∴ CM DM =,

CAM DCM ∴∠=∠,

又CMA NMC ∠=∠, AMC CMN ∽∴??, ∴ CM AM MN CM

=,即2·CM MN MA =;

(2)连接OA 、DM ,

PA 是O 的切线,

90PAO ∴∠=?, 又30P ∠=?,

()11

22

OA PO PC CO ∴==+,

设O 的半径为r ,

2PC =,

()1

22

r r ∴=+,

解得:2r =, 又CD 是直径, 90CMD ∴∠=?, CM DM =,

CMD ∴?是等腰直角三角形,

∴在Rt CMD ?中,由勾股定理得222CM DM CD +=,即()2

22216CM r ==,

则28CM =,

22CM ∴=.

【点睛】

本题主要考查切线的判定和性质,解题的关键是掌握切线的性质、圆周角定理、相似三角形的判定和性质等知识点

6.

如图,△ABC 中,AC =BC =10,cosC =

3

5

,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E . (1)当⊙P 与边BC 相切时,求⊙P 的半径.

(2)连接BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围.

(3)在(2)的条件下,当以PE 长为直径的⊙Q 与⊙P 相交于AC 边上的点G 时,求相交所得的公共弦的长.

【答案】(1)

40

9

R=;(2)2

5

880

320

x

y x x

x

=-+

+

;(3)50105

-.

【解析】【分析】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=3

5

,则

sinC=4

5

,sinC=

HP

CP

10

R

R

-

4

5

,即可求解;

(2)首先证明PD∥BE,则EB BF

PD PF

=,即:20

2

4

588

x y

x

x

x

y

-+

--

=,即可求解;

(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.

【详解】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,

连接HP,则HP⊥BC,cosC=3

5

,则sinC=

4

5

sinC=HP

CP

10

R

R

-

4

5

,解得:R=

40

9

(2)在△ABC中,AC=BC=10,cosC=3

5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,

则BH =ACsinC =8,

同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,

DA =

25x ,则BD =45﹣25

x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,

tanβ=2,则cosβ5

,sinβ5

, EB =BDcosβ=(525

x )5=4﹣25

x ,

∴PD ∥BE ,

∴EB BF

PD PF

=,即:202

4588x y x x

x -+--=,

整理得:y 25x

x 8x 803x 20

-++

(3)以EP 为直径作圆Q 如下图所示,

两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,

∵点Q是弧GD的中点,

∴DG⊥EP,

∵AG是圆P的直径,

∴∠GDA=90°,

∴EP∥BD,

由(2)知,PD∥BC,∴四边形PDBE为平行四边形,

∴AG=EP=BD,

∴AB=DB+AD=AG+AD=5

设圆的半径为r,在△ADG中,

AD=2rcosβ

5DG

5

AG=2r,

5=52r

51

则:DG

5

50﹣5

相交所得的公共弦的长为50﹣5

【点睛】

本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.

7.如图,已知AB是⊙O的直径,BC是弦,弦BD平分∠ABC交AC于F,弦DE⊥AB于H,交AC于G.

①求证:AG=GD;

②当∠ABC满足什么条件时,△DFG是等边三角形?

③若AB=10,sin∠ABD=3

5

,求BC的长.

【答案】(1)证明见解析;(2)当∠ABC=60°时,△DFG是等边三角形.理由见解析;

(3)BC的长为14

5

【解析】

【分析】

(1)首先连接AD,由DE⊥AB,AB是O的直径,根据垂径定理,即可得到AD AE

=,然后根据在同圆或等圆中,同弧或等弧所对的圆周角相等,证得∠ADE=∠ABD,又由弦BD平分∠ABC,可得∠DBC=∠ABD,根据等角对等边的性质,即可证得AG=GD;

(2)当∠ABC=60°时,△DFG是等边三角形,根据半圆(或直径)所对的圆周角是直角与三角形的外角的性质,易求得∠DGF=∠DFG=60°,即可证得结论;

(3)利用三角函数先求出tan∠ABD

3

4

=,cos∠ABD=

4

5

,再求出DF、BF,然后即可求出

BC.

【详解】

(1)证明:连接AD,

∵DE⊥AB,AB是⊙O的直径,

∴AD AE

=,

∴∠ADE=∠ABD,

∵弦BD平分∠ABC,

∴∠DBC=∠ABD,

∵∠DBC=∠DAC,

∴∠ADE=∠DAC,

∴AG=GD;

(2)解:当∠ABC=60°时,△DFG是等边三角形.理由:∵弦BD平分∠ABC,

∴∠DBC=∠ABD=30°,

∵AB是⊙O的直径,

∴∠ACB=90°,

∴∠CAB=90°﹣∠ABC=30°,

∴∠DFG=∠FAB+∠DBA=60°,

∵DE⊥AB,

∴∠DGF=∠AGH=90°﹣∠CAB=60°,

∴△DGF是等边三角形;

(3)解:∵AB是⊙O的直径,

∴∠ADB =∠ACB =90°, ∵∠DAC =∠DBC =∠ABD , ∵AB =10,sin ∠ABD =

35

, ∴在Rt △ABD 中,AD =AB?sin ∠ABD =6, ∴BD =

22AB BD -=8,

∴tan ∠ABD =

34AD BD =,cos ∠ABD =4

=5

BD AB , 在Rt △ADF 中,DF =AD?tan ∠DAF =AD?tan ∠ABD =6×34=9

2

, ∴BF =BD ﹣DF =8﹣

92=72

, ∴在Rt △BCF 中,BC =BF?cos ∠DBC =BF?cos ∠ABD =72×45=145

. ∴BC 的长为:

14

5

【点睛】

此题考查了圆周角定理、垂径定理、直角三角形的性质、三角函数的性质以及勾股定理等知识.此题综合性较强,难度较大,解题的关键是掌握数形结合思想与转化思想的应用,注意辅助线的作法.

8.如图,AB 是⊙O 的直径,AD 是⊙O 的弦,点F 是DA 延长线上的一点,过⊙O 上一点C 作⊙O 的切线交DF 于点E ,CE ⊥DF . (1)求证:AC 平分∠FAB ;

(2)若AE =1,CE =2,求⊙O 的半径.

【答案】(1)证明见解析;(2)52

【解析】

试题分析:(1)连接OC ,根据切线的性质和圆周角定理,得出∠OCA =∠OAC 与

∠CAE =∠OCA ,然后根据角平分线的定义可证明;

(2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB ∽△AEC ,再根据相似三角形的对应边成比例求得AB 的长,从而得到圆的半径. 试题解析:(1)证明:连接OC . ∵CE 是⊙O 的切线,∴∠OCE =90° ∵CE ⊥DF ,∴∠CEA =90°,

∴∠ACE +∠CAE =∠ACE +∠OCA =90°,∴∠CAE =∠OCA ∵OC =OA ,∴∠OCA =∠OAC . ∴∠CAE =∠OAC ,即AC 平分∠FAB (2)连接BC .

∵AB 是⊙O 的直径,∴∠ACB =∠AEC =90°. 又∵∠CAE =∠OAC ,∴△ACB ∽△AEC ,∴AB AC

AC AE

=. ∵AE =1,CE =2,∠AEC =90°,∴2222125AC AE CE =+=+=

∴()

2

2

551

AC AB AE

==

=,∴⊙O 的半径为

52

9.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .

(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ?顺时针旋转60度,得到AMN ?.

①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上; ②求PA+PB+PC 的值.

(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.

【答案】(1)①详见解析;②27;(2)31312PQ PQ -≤≤+≠且; 【解析】 【分析】

(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;

②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可; (2)如图2中,由∠BPC=90°,推出点P 在以BC 为直径的圆上(P 不与B 、C 重合),设BC 的中点为O ,作直线OQ 交⊙O 与P 和P′,可得PQ 的最小值为3-1,PQ 的最大值为

3+1,PQ≠2,由此即可解决问题;

【详解】

(1)①证明:如图,

∵△APB ≌△AMN ,△APM 是等边三角形, ∴∠APM=∠APM=60°, ∵∠APB=∠BPC=∠APC=120°, ∴∠APB=∠BPC=∠APC=∠AMN=120°, ∴∠APC+∠APM=180°,∠AMN+∠AMP=180°, ∴C 、P 、M 、N 四点在同一条直线上; ②解:连接BN ,易得ΔABN 是等边三角形 ∴∠ABN=60°,∵∠ABC=30°, ∴∠NBC=90°, ∵AC=2,

∴AB=BN=4,3

∵PA=PM,PB=MN,

∴PA+PB+PC=PC+PM+MN=CN,

在Rt△CBN中,CN=22

BC BN27

+=,

∴PA+PB+PC=27.

(2) 如图2中,

∵∠BPC=90°,

∴点P在以BC为直径的圆上(P不与B、C重合),

设BC的中点为O,作直线OQ交⊙O与P和P′,

可得PQ的最小值为3-1,PQ的最大值为3+1,PQ≠2,

∴3-1≤PQ≤3+1且PQ≠2.

PQ31PQ31PQ2

的取值范围是且

∴-≤≤+≠

【点睛】

本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.

10.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.

(1)求证:AE是⊙O的切线;

(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.

【答案】(1)证明见解析;(2)

5

2 BE=

【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;

(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF

=3,在Rt △AFD 中求得DF =1,所以AB =AD = ,CD = CF +DF =4,再证明

△ABE ∽△CDA ,得出BE AB

DA CD

=

,即可求出BE 的长度; 试题解析:

(1)证明:连结OA ,OB , ∵∠ACB =45°, ∴∠AOB =2∠ACB = 90°, ∵OA=OB ,

∴∠OAB =∠OBA =45°, ∵∠BAE =45°,

∴∠OAE =∠OAB +∠BAE =90°, ∴OA ⊥AE . ∵点A 在⊙O 上, ∴AE 是⊙O 的切线.

(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD , ∴AB =AD ∴∠ACD =∠ACB =45°, 在Rt △AFC 中,

∵AC =∠ACF =45°, ∴AF=CF=AC ·sin ∠ACF =3, ∵在Rt △AFD 中, tan ∠ADC=3AF

DF

=, ∴DF =1,

∴AB AD == 且CD = CF +DF =4, ∵四边形ABCD 内接于⊙O , ∴∠ABE =∠CDA , ∵∠BAE =∠DCA , ∴△ABE ∽△CDA , ∴

BE AB

DA CD

=

∴10

=,

10

∴5

BE=.

2

2015中考数学分类汇编圆综合题学生版

2015中考数学真题分类汇编圆综合题 一.解答题(共30小题) 1.(2015?大连)如图,AB是⊙O的直径,点C,D在⊙O上,且AD平分∠CAB,过点D作AC的垂线,与AC的延长线相交于点E,与AB的延长线相交于点F. (1)求证:EF与⊙O相切; (2)若AB=6,AD=4,求EF的长. 2.(2015?潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE. (1)求证:直线DF与⊙O相切; (2)若AE=7,BC=6,求AC的长. 3.(2015?枣庄)如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心、OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE. (1)判断DE与⊙O的位置关系,并说明理由; (2)求证:BC2=CD?2OE; (3)若cos∠BAD=,BE=6,求OE的长. 4.(2015?西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM, AM. (1)求证:AD是⊙O的切线;

(2)若sin∠ABM=,AM=6,求⊙O的半径. 5.(2015?广元)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦于点E,交⊙O于点F,且CE=CB. (1)求证:BC是⊙O的切线; (2)连接AF、BF,求∠ABF的度数; (3)如果CD=15,BE=10,sinA=,求⊙O的半径. 6.(2015?北海)如图,AB、CD为⊙O的直径,弦AE∥CD,连接BE交CD于点F,过点E作直线EP与CD的延长线交于点P,使∠PED=∠C. (1)求证:PE是⊙O的切线; (2)求证:ED平分∠BEP; (3)若⊙O的半径为5,CF=2EF,求PD的长. 7.(2015?莆田)如图,在四边形ABCD中,AB=AD,对角线AC,BD交于点E,点O 在线段AE上,⊙O过B,D两点,若OC=5,OB=3,且cos∠BOE=.求证:CB是⊙O的切线.

中考数学圆综合题汇编

25题汇编 1. 如图,AB 是⊙O 的直径,BC 是⊙O 的切线,切点为B ,AD 为弦,OC ∥AD 。 (1)求证:DC 是⊙O 的切线; (2)若OA=2,求OC AD 的值。 2. 如图,⊙O 是△ABC 的外接圆,∠B=60°,CD 是⊙O 的直径,P 是CD 延长线上的一点,且AP=AC (1)求证:直线AP 是⊙O 的切线; (2)若AC=3,求PD 的长。 3. 如图,已知AB 是⊙O 的直径,AM 和BN 是⊙O 的两条切线,点E 是⊙ O 上一点,点D 是AM 上一点,连接DE 并延长交BN 于点C ,连接OD 、BE ,且OD ∥BE 。 (1)求证:DE 是⊙O 的切线; (2)若AD=1,BC=4,求直径AB 的长。 D C B A O C B M N E D B A O

4. 如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF=∠ABC 。 (1)求证:AB=AC ; (2)若EF=4,2 3 tan = F ,求DE 的长。 5. 在△ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC 于点D ,过点D 作DE ⊥AC ,垂足为E 。 (1)求证:DE 是⊙O 的切线; (2)若AE=1,52=BD ,求AB 的长。 6. 如图,AB 是⊙O 的直径,C 是⊙O 上一点,AD 垂直于过点C 的直线,垂足为D ,且AC 平分 ∠BAD 。 (1)求证:CD 是⊙O 的切线; (2)若62=AC ,AD=4,求AB 的长。 A

7. 如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点的切线互相垂直,垂足为点D ,AD 交⊙O 于点E 。 求证:(1)AC 平分∠DAB ; (2)若∠B=60°,32 CD ,求AE 的长。 8. 如图,⊙O 是△ABC 的外接圆,AC 是⊙O 的直径,弦BD=BA ,AB=12,BC=5,BE ⊥DC 交DC 的延长线于点E 。 (1)求证:BE 是⊙O 的切线; (2)求DE 的长。 9. 如图,在Rt △ABC 中,∠C=90°,CB=CA=6,半径为2的⊙F 与射线BA 相切于点G ,且AG=4,将Rt △ABC 绕点A 顺时针旋转135°后得到Rt △ADE ,点B 、C 的对应点分别是点D 、E 。 (1)求证:DE 为⊙F 的切线; (2)求出Rt △ADE 的斜边AD 被⊙ F 截得的弦PQ 的长度。 A E A D

(完整word版)初中的圆题型总结.doc

圆的基本题型 纵观近几年全国各地中考题,圆的有关概念以及性质等一般以填空题,选择 题的形式考查并占有一定的分值;一般在 10 分- 15 分左右,圆的有关性质,如垂径定理,圆周角,切线的判定与性质等综合性问题的运用一般以计算证明的形 式考查;利用圆的知识与其他知识点如代数函数,方程等相结合作为中考压轴题将会占有非常重要的地位,另外与圆有关的实际应用题,阅读理解题,探索存在性问题仍是热门考题,应引起注意 . 下面究近年来圆的有关热点题型,举例解析如下。 一、圆的性质及重要定理的考查 基础知识链接:( 1)垂径定理;( 2)同圆或等圆中的圆心角、弦、弧之间的关 系 .(3) 圆周角定理及推论(4)圆内接四边形性质 【例 1】(江苏镇江)如图, AB 为⊙ O直径, CD 为弦,且 CD AB ,垂足为 H .(1)OCD 的平分线 CE 交⊙ O于 E ,连结 OE .求证: E 为弧 ADB的中点; (2)如果⊙ O的半径为 1,CD 3 , ①求 O 到弦 AC 的距离; ②填空:此时圆周上存在个点到直线 AC 的距离为1.2 【解析】(1)OC OE ,E OCE C 又OCE DCE,E DCE.O E∥C.D A B O H E D 又 CD AB ,AOE BOE 90 .E 为弧 ADB的中点. (2)①CD AB , AB 为⊙ O的直径, CD 3 , 1 CD 3 .又OC CH 3 3 . CH 1 ,sin COB 2 2 2 OC 1 2 COB 60 ,BAC 30 . 作 OP AC于 P,则 OP 1 OA 1 .2 2 ②3.

【点评】本题综合考查了利用垂径定理和勾股定理及锐角三角函数求解问题的 能力 . 运用垂径定理时,需添加辅助线构造与定理相关的“基本图形”. 几何上把圆心到弦的距离叫做弦心距, 本题的弦心距就是指线段OD的长 . 在圆中解有关弦心距半径有关问题时, 常常添加的辅助线是连半径或作出弦心距, 把垂 径定理和勾股定理结合起来解题. 如图 , ⊙O的半径为r , 弦心距为 d , 弦长 a 之间 d 2a 2 的关系为 r 2 . 根据此公式 , 在 a 、r、d 三个量中 , 知道任何两个量就可 2 以求出第三个量 . 平时在解题过程中要善于发现并运用这个基本图形 . 【例】(安徽芜湖)如图,已知点 E 是圆 O上的点, 2 B、C分别是劣弧 AD 的三等分点,BOC 46 , 则 AED 的度数为. 【解析】由B、C 分别是劣弧 AD 的三等分点知,圆心角∠∠∠ AOB= BOC= COD, 又 BOC 46 ,所以∠AOD=138o. 根据同弧所对的圆周角等于圆心角的一半。从而有AED =69o. 点评本题根据同圆或等圆中的圆心角、圆周角的关系。 【强化练习】 【1】. 如图,⊙O是 ABC的外接圆, BAC 60 ,AD,CE分别是 BC,AB上的高,且 AD, CE交于点 H,求证: AH=AO 1 (1)如图,在⊙ O中,弦 AC⊥BD, OE⊥AB,垂足为 E,求证: OE= CD 2 1 2 2 (2)如图, AC, BD是⊙ O的两条弦,且 ACBD,⊙ O的半径为,求 AB+CD 的值。 2

中考数学圆的综合-经典压轴题及答案

中考数学圆的综合-经典压轴题及答案 一、圆的综合 1.如图,点A、B、C分别是⊙O上的点, CD是⊙O的直径,P是CD延长线上的一点,AP=AC. (1)若∠B=60°,求证:AP是⊙O的切线; (2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE·AB的值. 【答案】(1)证明见解析;(2)8. 【解析】 (1)求出∠ADC的度数,求出∠P、∠ACO、∠OAC度数,求出∠OAP=90°,根据切线判定推出即可; (2)求出BD长,求出△DBE和△ABD相似,得出比例式,代入即可求出答案. 试题解析:连接AD,OA, ∵∠ADC=∠B,∠B=60°, ∴∠ADC=60°, ∵CD是直径, ∴∠DAC=90°, ∴∠ACO=180°-90°-60°=30°, ∵AP=AC,OA=OC, ∴∠OAC=∠ACD=30°,∠P=∠ACD=30°, ∴∠OAP=180°-30°-30°-30°=90°, 即OA⊥AP, ∵OA为半径, ∴AP是⊙O切线. (2)连接AD,BD,

∵CD是直径, ∴∠DBC=90°, ∵CD=4,B为弧CD中点, ∴BD=BC=, ∴∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°, 即∠BDE=∠DAB, ∵∠DBE=∠DBA, ∴△DBE∽△ABD, ∴, ∴BE?AB=BD?BD=. 考点:1.切线的判定;2.相似三角形的判定与性质. 2.如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC. (1)若∠G=48°,求∠ACB的度数; (2)若AB=AE,求证:∠BAD=∠COF; (3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2.若 tan∠CAF= 1 2,求1 2 S S的值. 【答案】(1)48°(2)证明见解析(3)3 4

中考数学专题复习圆的综合的综合题

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

九年级数学上册 圆 几何综合中考真题汇编[解析版]

九年级数学上册圆几何综合中考真题汇编[解析版] 一、初三数学圆易错题压轴题(难) 1.在直角坐标系中,A(0,4),B(4,0).点C从点B出发沿BA方向以每秒2个单位的速度向点A匀速运动,同时点D从点A出发沿AO方向以每秒1个单位的速度向点O 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点C、D运动的时间是t秒(t>0).过点C作CE⊥BO于点E,连结CD、DE. ⑴当t为何值时,线段CD的长为4; ⑵当线段DE与以点O为圆心,半径为的⊙O有两个公共交点时,求t的取值范围; ⑶当t为何值时,以C为圆心、CB为半径的⊙C与⑵中的⊙O相切? 【答案】(1); (2) 4-<t≤; (3)或. 【解析】 试题分析:(1)过点C作CF⊥AD于点F,则CF,DF即可利用t表示出来,在Rt△CFD中利用勾股定理即可得到一个关于t的方程,从而求得t的值; (2)易证四边形ADEC是平行四边形,过点O作OG⊥DE于点G,当线段DE与⊙O相切 时,则OG=,在直角△OEG中,OE可以利用t表示,则OG也可以利用t表示出来,当 OG<时,直线与圆相交,据此即可求得t的范围; (3)分两圆外切与内切两种情况进行讨论,当外切时,圆心距等于两半径的和,当内切时,圆心距等于圆C的半径减去圆O的半径,列出方程即可求得t的值. (1)过点C作CF⊥AD于点F, 在Rt△AOB中,OA=4,OB=4,

∴∠ABO=30°, 由题意得:BC=2t,AD=t, ∵CE⊥BO, ∴在Rt△CEB中,CE=t,EB=t, ∵CF⊥AD,AO⊥BO, ∴四边形CFOE是矩形, ∴OF=CE=t,OE=CF=4-t, 在Rt△CFD中,DF2+CF2=CD2, ∴(4-t-t)2+(4-t)2=42,即7t2-40t+48=0, 解得:t=,t=4, ∵0<t<4, ∴当t=时,线段CD的长是4; (2)过点O作OG⊥DE于点G(如图2), ∵AD∥CE,AD=CE=t ∴四边形ADEC是平行四边形, ∴DE∥AB ∴∠GEO=30°, ∴OG=OE=(4-t) 当线段DE与⊙O相切时,则OG=, ∴当(4-t)<,且t≤4-时,线段DE与⊙O有两个公共交点.∴当 4-<t≤时,线段DE与⊙O有两个公共交点; (3)当⊙C与⊙O外切时,t=; 当⊙C与⊙O内切时,t=;

2019中考数学辅导:圆的考点总结及题型分析

2019中考数学辅导:圆的考点总结及题型分析 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 一、考点分析考点 考点一、点和圆的位置关系 设⊙O的半径是r,点P到圆心O 的距离为d,则有: d d=r点P在⊙O上; d>r点P在⊙O外。 考点二、过三点的圆 1、过三点的圆 不在同一直线上的三个点确定一个圆。 2、三角形的外接圆 经过三角形的三个顶点的圆叫做三角形的外接圆。 3、三角形的外心

三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。 4、圆内接四边形性质 圆内接四边形对角互补。 考点三、直线与圆的位置关系 直线和圆有三种位置关系,具体如下: 相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点; 相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线, 相离:直线和圆没有公共点时,叫做直线和圆相离。 如果⊙O的半径为r,圆心O到直线l的距离为d,那么: 直线l与⊙O相交d 直线l与⊙O相切d=r; 直线l与⊙O相离d>r; 考点四、圆内接四边形

圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 1、切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 2、性质定理:切线垂直于过切点的半径 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。 以上三个定理及推论也称二推一定理: 即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就能推出最后一个。 考点五、切线长定理 切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆

初中数学圆的真题汇编及答案解析

初中数学圆的真题汇编及答案解析 一、选择题 1.如图,圆锥的底面半径为1,母线长为3,则侧面积为() A.2πB.3πC.6πD.8π【答案】B 【解析】 【分析】 圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解. 【详解】 解:圆锥的侧面积为:1 2 ×2π×1×3=3π, 故选:B. 【点睛】 此题考查圆锥的计算,解题关键在于掌握运算公式. 2.如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为() A.123B.1536π -πC.30312π -D.48336π -π【答案】C 【解析】 【分析】 易得AD长,利用相应的三角函数可求得∠ABD的度数,进而求得∠EOD的度数,那么一个阴影部分的面积=S△ABD-S扇形DOE-S△BOE,算出后乘2即可. 【详解】 连接OE,OF. ∵BD=12,AD:AB=1:2, ∴AD=43,AB=83,∠ABD=30°, ∴S△ABD=33,S扇形=60361 6,63393 3602 OEB S π π ? ==?= V

∵两个阴影的面积相等, ∴阴影面积=()224369330312ππ?--=- . 故选:C 【点睛】 本题主要是理解阴影面积等于三角形面积减扇形面积和三角形面积. 3.如图,已知AB 是⊙O 是直径,弦CD ⊥AB ,AC =22,BD =1,则sin ∠ABD 的值是( ) A .2 B .13 C 22 D .3 【答案】C 【解析】 【分析】 先根据垂径定理,可得BC 的长,再利用直径对应圆周角为90°得到△ABC 是直角三角形,利用勾股定理求得AB 的长,得到sin ∠ABC 的大小,最终得到sin ∠ABD 【详解】 解:∵弦CD ⊥AB ,AB 过O , ∴AB 平分CD , ∴BC =BD , ∴∠ABC =∠ABD , ∵BD =1, ∴BC =1, ∵AB 为⊙O 的直径, ∴∠ACB =90°, 由勾股定理得:AB ()22222213AC BC +=+=,

中考数学综合题专题【圆】专题训练含答案

中考数学综合题专题【圆】专题训练含答案 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 ( ) (A ) 15 (B ) 30 (C ) 45 (D ) 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的 41,那么这个圆柱的侧面积是 ( ) (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用 现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =寸,求直径CD 的长”.依题意,CD 长为 ( ) (A )2 25寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘 米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘 米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C = 90,AO 的延长线交BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

人教中考数学圆的综合综合题汇编及详细答案

一、圆的综合 真题与模拟题分类汇编(难题易错题) 1.如图,AB 是半圆的直径,过圆心O 作AB 的垂线,与弦AC 的延长线交于点D ,点E 在OD 上DCE B ∠=∠. (1)求证:CE 是半圆的切线; (2)若CD=10,2 tan 3 B = ,求半圆的半径. 【答案】(1)见解析;(2)413 【解析】 分析: (1)连接CO ,由DCE B ∠=∠且OC=OB,得DCE OCB ∠=∠,利用同角的余角相等判断出∠BCO+∠BCE=90°,即可得出结论; (2)设AC=2x ,由根据题目条件用x 分别表示出OA 、AD 、AB ,通过证明△AOD ∽△ACB ,列出等式即可. 详解:(1)证明:如图,连接CO . ∵AB 是半圆的直径, ∴∠ACB =90°. ∴∠DCB =180°-∠ACB =90°. ∴∠DCE+∠BCE=90°. ∵OC =OB , ∴∠OCB =∠B. ∵=DCE B ∠∠, ∴∠OCB =∠DCE . ∴∠OCE =∠DCB =90°. ∴OC ⊥CE . ∵OC 是半径, ∴CE 是半圆的切线. (2)解:设AC =2x ,

∵在Rt △ACB 中,2 tan 3 AC B BC ==, ∴BC =3 x . ∴()() 22 2313AB x x x = +=. ∵OD ⊥AB , ∴∠AOD =∠A CB=90°. ∵∠A =∠A , ∴△AOD ∽△ACB . ∴ AC AO AB AD =. ∵1132OA AB x = =,AD =2x +10, ∴ 1 132210 13x x x = +. 解得 x =8. ∴13 8413OA = ?=. 则半圆的半径为413. 点睛:本题考查了切线的判定与性质,圆周角定理,相似三角形. 2.如图,在平面直角坐标系xoy 中,E (8,0),F(0 , 6). (1)当G(4,8)时,则∠FGE= ° (2)在图中的网格区域内找一点P ,使∠FPE=90°且四边形OEPF 被过P 点的一条直线分割成两部分后,可以拼成一个正方形. 要求:写出点P 点坐标,画出过P 点的分割线并指出分割线(不必说明理由,不写画法). 【答案】(1)90;(2)作图见解析,P (7,7),PH 是分割线. 【解析】 试题分析:(1)根据勾股定理求出△FEG 的三边长,根据勾股定理逆定理可判定△FEG 是直角三角形,且∠FGE="90" °. (2)一方面,由于∠FPE=90°,从而根据直径所对圆周角直角的性质,点P 在以EF 为直径

数学九年级上册 圆 几何综合中考真题汇编[解析版]

数学九年级上册 圆 几何综合中考真题汇编[解析版] 一、初三数学 圆易错题压轴题(难) 1.如图,以A (0,3)为圆心的圆与x 轴相切于坐标原点O ,与y 轴相交于点B ,弦BD 的延长线交x 轴的负半轴于点E ,且∠BEO =60°,AD 的延长线交x 轴于点C . (1)分别求点E 、C 的坐标; (2)求经过A 、C 两点,且以过E 而平行于y 轴的直线为对称轴的抛物线的函数解析式; (3)设抛物线的对称轴与AC 的交点为M ,试判断以M 点为圆心,ME 为半径的圆与⊙A 的位置关系,并说明理由. 【答案】(1)点C 的坐标为(-3,0)(2)2343333 y x x =++3)⊙M 与⊙A 外切 【解析】 试题分析:(1)已知了A 点的坐标,即可得出圆的半径和直径,可在直角三角形BOE 中,根据∠BEO 和OB 的长求出OE 的长进而可求出E 点的坐标,同理可在直角三角形OAC 中求出C 点的坐标; (2)已知了对称轴的解析式,可据此求出C 点关于对称轴对称的点的坐标,然后根据此点坐标以及C ,A 的坐标用待定系数法即可求出抛物线的解析式; (3)两圆应该外切,由于直线DE ∥OB ,因此∠MED=∠ABD ,由于AB=AD ,那么 ∠ADB=∠ABD ,将相等的角进行置换后可得出∠MED=∠MDE ,即ME=MD ,因此两圆的圆心距AM=ME+AD ,即两圆的半径和,因此两圆外切. 试题解析:(1)在Rt△EOB 中,3 cot60232EO OB =??==, ∴点E 的坐标为(-2,0). 在Rt△COA 中,tan tan60333OC OA CAO OA =?∠=??==, ∴点C 的坐标为(-3,0). (2)∵点C 关于对称轴2x =-对称的点的坐标为F (-1,0), 点C 与点F (-1,0)都在抛物线上. 设()()13y a x x =++,用(03A ,代入得 ()()30103a =++,

中考数学-圆经典必考题型中考试题集锦(附答案)解答题

中考数学 圆经典必考题型中考试题(附答案)解答题 1.(已知:如图,△ ABC 内接于O O 过点B 作的切线,交 CA 的延长线于点 E / EB & 2 ① 求证:AB= AC 1 AB ② 若tan / ABE=丄,(i )求 的值;(ii )求当 AC= 2时,AE 的长. 2 BC =4cm 求O o 的半径. 2.如图, PA 为O O 的切线, A 为切点,O 0的割线PBC 过点0与O O 分别交于B 、C, PA= 8 cm PB 3.已知:如图,BC 是O 0的直径,AC 切O 0于点C AB 交O 0于点D,若 AD : DB= 2 : 3, AC= 10,求 sin B 的值. 4.如图,PC 为O 0的切线,C 为切点,PAB 是过0的割线,

1 若tan B= _ , PC= 10cm 求三角形BCD的面积. 2 5?如图,在两个半圆中,大圆的弦MNW小圆相切,D为切点,且MN AB MN a, ON CD分别为两圆的半径,求阴影部分的面积. 6.已知,如图,以△ ABC的边AB作直径的O O分别并AC BC于点D E,弦FG// AB S A CDE S △ ABC= 1 : 4, DE= 5cm FG= 8cm,求梯形AFG啲面积. 7.如图所示:PA为O O的切线,A为切点,PBC是过点O的割线, PA= 10, PB= 5,求: (1)O O的面积(注:用含n的式子表示); (2)cos / BAP的值.

参考答案 1.( 1)v BE 切O O 于点 B ,「. / ABE=Z C. / EBC= 2/ C,即 / ABH / ABC= 2/C, / C +Z ABO 2 / C, / ABC=Z C, ??? AB= AC. (2)①连结AO 交BC 于点F , AB- AC , AOL BC 且 BF = FC. AF 在 Rt A ABF 中, =tan / ABF BF 1 又 tan / ABF= tan C = tan / ABE= 2 AF = 1 BF. AB AB .5 BC 2BF 4 ②在△ EBA M^ ECB 中 , ^EA 2- EA- (EA^ AC ),又 EA M 0 , 5 11EA= AC EA= — x 2 = 10 . 5 11 11 2 2 ?设O 的半径为r ,由切割线定理,得 PA = PB- PC AC 切O O 于点C,线段ADB 为O O 的割线, 2 AC = AD- AB AB= AM DB= 2k + 3k = 5k , 2 2 10 = 2k X 5k,??? k = 10, AB= AF 2 * * * BF 2 BF 2 AF = 1 BF 2 / E =Z E , / EBA=Z ECB △ EBA^A ECB EA EB BE 2 AB BC ,解之,得 EA EC

中考数学圆的综合综合经典题及详细答案

中考数学圆的综合综合经典题及详细答案 一、圆的综合 1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题: (1)求证:CD 是⊙O 的切线; (2)若BC=4,CD=6,求平行四边形OABC 的面积. 【答案】(1)证明见解析(2)24 【解析】 试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可; (2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解. 试题解析:(1)证明:连接OD , ∵OD=OA , ∴∠ODA=∠A , ∵四边形OABC 是平行四边形, ∴OC ∥AB , ∴∠EOC=∠A ,∠COD=∠ODA , ∴∠EOC=∠DOC , 在△EOC 和△DOC 中, OE OD EOC DOC OC OC =?? ∠=∠??=? ∴△EOC ≌△DOC (SAS ), ∴∠ODC=∠OEC=90°, 即OD ⊥DC , ∴CD 是⊙O 的切线; (2)由(1)知CD 是圆O 的切线, ∴△CDO 为直角三角形, ∵S △CDO = 1 2 CD?OD , 又∵OA=BC=OD=4,

∴S△CDO=1 2 ×6×4=12, ∴平行四边形OABC的面积S=2S△CDO=24. 2.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O). (1)求⊙M的半径; (2)若CE⊥AB于H,交y轴于F,求证:EH=FH. (3)在(2)的条件下求AF的长. 【答案】(1)4;(2)见解析;(3)4. 【解析】 【分析】 (1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长; (2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论; (3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】 (1)如图(一),过M作MT⊥BC于T连BM, ∵BC是⊙O的一条弦,MT是垂直于BC的直径, ∴BT=TC=1 2 3 ∴124 ; (2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB, ∴∠HBC+∠BCH=90°

圆中考真题精选汇编二A

圆中考真题精选汇编二 1、(2010苏州)如图1,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是( ) A 、2 B 、1 C 、222- D 、22- 2、(2010临沂)如图2,直径AB 为6的半圆,绕A 点逆时针旋转60°,此时点B 到了点B ',则图中阴影部分的面积是 ( ) A 、6π B 、5π C 、4π D 、3π 3、(2010陕西)如图3,点A 、B 、P 在⊙O 上,且50APB ∠=。若点M 是⊙O 上的动点,要使△ABM 为等腰三角形,则所有符合条件的点M 有( ) A 、 1个 B 、 2个 C 、 3个 D 、 4个 ~ 4、(2010上海)已知圆O 1、圆O 2的半径不相等,圆O 1的半径长为3,若圆O 2上的点A 满足AO 1 = 3,则圆O 1与圆O 2的位置关系是( ) A 、相交或相切 B 、相切或相离 C 、相交或内含 D 、相切或内含 5、(2010武汉)如右图,⊙O 的直径AB 的长为10,弦AC 长为6,ACB ∠的平分线 交⊙O 于D ,则CD 长为( ) A 、7 B 、72 C 、82 D 、 9 6、(2010年山西)如图6是以AB 为直径的半圆形纸片,AB =6cm ,沿着垂直于AB 的半径OC 剪开, 将扇形OAC 沿AB 方向平移至扇形O ’A ’C ’ .如图2,其中O ’是OB 的中点.O ’C ’交BC ⌒ 于点F ,则BF ⌒ 的长为_______cm 。 B ' 第1题 第2题 |

(完整)初三数学有关圆的经典例题

初三数学 有关圆的经典例题 1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。132O AB AC BAC 分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。 解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示, 过O 作OD ⊥AB 于D ,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE = == = 32322 2 ∵,∴∠,OA OAD AD OA == =132 cos cos ∠OAE AE OA = = 22 ∴∠OAD=30°,∠OAE=45°,故∠BAC=75°, 当AB 、AC 在圆心O 同侧时,如下图所示, 同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15° 点拨:本题易出现只画出一种情况,而出现漏解的错误。 例2. 如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R ,⊙O 与AC 交于D , 如果点既是的中点,又是边的中点,D AB AC ? (1)求证:△ABC 是直角三角形; ()22 求的值AD BC 分 析 : ()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ? 则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;

(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB ,∴△ADF ∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC 2 2 122=== 解:(1)证明,作直径DE 交AB 于F ,交圆于E ∵为的中点,∴⊥,D AB AB DE AF FB ? = 又∵AD=DC ∴∥,DF BC DF BC = 12 ∴AB ⊥BC ,∴△ABC 是直角三角形。 (2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90° 而AB ⊥DE ,∴△ADF ∽△EDA ∴ ,即·AD DE DF AD AD DE DF ==2 ∵,DE R DF BC ==21 2 ∴·,故AD BC R AD BC R 2 2 == 例3. 如图,在⊙O 中,AB=2CD ,那么( ) A A B CD B AB CD ..?>? ?

中考数学圆的综合提高练习题压轴题训练附详细答案

中考数学圆的综合提高练习题压轴题训练附详细答案 一、圆的综合 1.如图,点P在⊙O的直径AB的延长线上,PC为⊙O的切线,点C为切点,连接AC,过点A作PC的垂线,点D为垂足,AD交⊙O于点E. (1)如图1,求证:∠DAC=∠PAC; (2)如图2,点F(与点C位于直径AB两侧)在⊙O上,?? BF FA =,连接EF,过点F作AD 的平行线交PC于点G,求证:FG=DE+DG; (3)在(2)的条件下,如图3,若AE=2 3 DG,PO=5,求EF的长. 【答案】(1)证明见解析;(2)证明见解析;(3)EF=32. 【解析】 【分析】 (1)连接OC,求出OC∥AD,求出OC⊥PC,根据切线的判定推出即可; (2)连接BE交GF于H,连接OH,求出四边形HGDE是矩形,求出DE=HG,FH=EH,即可得出答案; (3)设OC交HE于M,连接OE、OF,求出∠FHO=∠EHO=45°,根据矩形的性质得出 EH∥DG,求出OM=1 2 AE,设OM=a,则HM=a,AE=2a,AE= 2 3 DG,DG=3a, 求出ME=CD=2a,BM=2a,解直角三角形得出tan∠MBO= 1 2 MO BM =,tanP= 1 2 CO PO =,设 OC=k,则PC=2k,根据OP=5k=5求出k=5,根据勾股定理求出a,即可求出答案.【详解】 (1)证明:连接OC, ∵PC为⊙O的切线,

∴OC⊥PC, ∵AD⊥PC, ∴OC∥AD, ∴∠OCA=∠DAC, ∵OC=OA, ∴∠PAC=∠OCA, ∴∠DAC=∠PAC; (2)证明:连接BE交GF于H,连接OH, ∵FG∥AD, ∴∠FGD+∠D=180°, ∵∠D=90°, ∴∠FGD=90°, ∵AB为⊙O的直径, ∴∠BEA=90°, ∴∠BED=90°, ∴∠D=∠HGD=∠BED=90°, ∴四边形HGDE是矩形, ∴DE=GH,DG=HE,∠GHE=90°, ∵?? BF AF =, ∴∠HEF=∠FEA=1 2 ∠BEA=190 2 o ?=45°, ∴∠HFE=90°﹣∠HEF=45°, ∴∠HEF=∠HFE, ∴FH=EH, ∴FG=FH+GH=DE+DG; (3)解:设OC交HE于M,连接OE、OF, ∵EH=HF,OE=OF,HO=HO, ∴△FHO≌△EHO, ∴∠FHO=∠EHO=45°,

圆中考试题整理汇编(附规范标准答案)

圆中考试题 一、选择题 1.(北京市西城区)如图,BC 是⊙O 的直径,P 是CB 延长线上一点,PA 切⊙O 于点A ,如果PA =3,PB =1,那么∠APC 等于 () (A )ο 15 (B )ο 30 (C )ο 45 (D )ο 60 2.(北京市西城区)如果圆柱的高为20厘米,底面半径是高的4 1 ,那么这个圆柱的侧面积是 () (A )100π平方厘米 (B )200π平方厘米 (C )500π平方厘米 (D )200平方厘米 3.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为E ,CE =1寸,AB =10寸,求直径CD 的长”.依题意,CD 长为 ( ) (A ) 2 25 寸 (B )13寸 (C )25寸 (D )26寸 4.(北京市朝阳区)已知:如图,⊙O 半径为5,PC 切⊙O 于点C ,PO 交⊙O 于点A ,PA =4,那么PC 的长等于 ( ) (A )6 (B )25 (C )210 (D )214 5.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于 ( ) (A )2厘米 (B )22厘米 (C )4厘米 (D )8厘米 6.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为 ( ) (A )7厘米 (B )16厘米 (C )21厘米 (D )27厘米 7.(重庆市)如图,⊙O 为△ABC 的内切圆,∠C =ο 90,AO 的延长线交 BC 于点D ,AC =4,DC =1,,则⊙O 的半径等于 ( )

2017年江苏省中考数学真题《圆》专题汇编(解)

2017年江苏省中考数学真题《圆》专题汇编(解答) 1.(2017·南京第22题)“直角”在初中几何学习中无处不在.如图,已知 AOB .请仿照小丽的方式,再用两种不同的方法判断AOB 是否为直角(仅 限用直尺和圆规). 2.(2017·南京第24题)如图,PA 、PB 是⊙O 的切线,A 、B 为切点.连接AO 并延长, 交PB 的延长线于点C .连接PO ,交⊙O 于点D .(1)求证:PO 平分APC .(2)连结DB .若 30C ,求证DB ∥AC . 小丽的方法 如图,在OA 、OB 上分别取点C 、D ,以C 为圆心,CD 长为半径画弧,交 OB 的反向 延长线于点 E.若OD OE , 则 90AOB . (第1题图) (第2题图)

3.(2017·无锡第24题)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列 要求作图(不要求写作法,但要保留作图痕迹): (1)作△ABC的外心O; (2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC 和AC上. (第3题图) 4.(2017·无锡第27题)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2,求点P的坐标. (第4题图)

5.(2017·常州第28题)如图,已知一次函数 4 4 3 y x的图像是直线l,设直线l分别 与y轴、x轴交于点A B 、. (1)求线段AB的长度; (2)设点M在射线AB上,将点M绕点A按逆时针方向旋转90°到点N,以点N为圆心,NA的长为半径作N. ①当N与x轴相切时,求点M的坐标; ②在①的条件下,设直线AN与x轴交于点C,与N的另一个交点为D,连接MD交x 轴于点E,直线m过点N分别与y轴、直线l交于点P Q 、,当APQ与CDE相似时,求点P的坐标. (第5题图)

初中数学圆知识梳理 题型归纳附答案-(详细知识点归纳 中考真题)

圆 【知识点梳理】 一、圆的概念 集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念: 1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆; (补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线); 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 二、点与圆的位置关系 1、点在圆内 ? d r < ? 点C 在圆内; 2、点在圆上 ? d r = ? 点B 在圆上; 3、点在圆外 ? d r > ? 点A 在圆外; 三、直线与圆的位置关系 1、直线与圆相离 ? d r > ? 无交点; 2、直线与圆相切 ? d r = ? 有一个交点; 3、直线与圆相交 ? d r < ? 有两个交点; 四、圆与圆的位置关系 外离(图1)? 无交点 ? d R r >+; 外切(图2)? 有一个交点 ? d R r =+; 相交(图3)? 有两个交点 ? R r d R r -<<+; 内切(图4)? 有一个交点 ? d R r =-; 内含(图5)? 无交点 ? d R r <-; A

五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中,∵AB ∥CD ∴弧AC =弧BD 六、圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOB DOE ∠=∠;②AB DE =; ③OC OF =;④ 弧BA =弧BD 图4 图5 B D

相关文档
相关文档 最新文档