文档库 最新最全的文档下载
当前位置:文档库 › JSGF HYW 005-2014 密封结构设计技术规范

JSGF HYW 005-2014 密封结构设计技术规范

JSGF HYW 005-2014 密封结构设计技术规范
JSGF HYW 005-2014 密封结构设计技术规范

前言

本技术规范起草部门:技术与设计部

本技术规范起草人:何龙

本技术规范批准人:唐在兴

本技术规范文件版本:A0

本技术规范于2014年8月首次发布

密封结构设计技术规范

1适用范围

本技术规范适用于灯具外壳防护使用密封圈的静密封结构设计。包括气密性灯具密封结构设计。2引用标准或文件

GB/T 3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差

GB/T 3452.3-2005 液压气动用O形橡胶密封圈沟槽尺寸

GB/T 6612-2008 静密封、填料密封术语

JB/T 6659-2007 气动用0形橡胶密封圈尺寸系列和公差

JBT 7757.2-2006 机械密封用O形橡胶圈

JB/ZQ4609-2006 圆橡胶、圆橡胶管及沟槽尺寸

《静密封设计技术》(顾伯勤编著)

《橡胶类零部件(物料)设计规范》(在PLM中查阅)

3基本术语、定义

3.1密封:指机器、设备的连接处没有发生泄露的现象(该定义摘自《静密封设计技术》)。

3.2静密封: 相对静止的配合面间的密封。密封的功能是防止泄漏。

3.3泄漏: 通过密封的物质传递。造成密封泄漏的主要原因:(1)机械零件表面缺陷、尺寸加工误

差及装配误差形成的装配间隙;(2)密封件两侧存在压力差。减小或消除装配间隙是阻止泄漏的主要途径。

3.4接触型密封:借密封力使密封件与配合面相互压紧甚至嵌入,以减小或消除间隙的密封。

3.5密封力(或密封载荷):作用于接触型密封的密封件上的接触力。

3.6填料密封:填料作密封件的密封。

3.7接触压力:填料密封摩擦面间受到的力。

3.8密封垫片:置于配合面间几何形状符合要求的薄截面密封件。按材质分有:橡胶垫片,金属垫

片、纸质垫片、石绵垫片、塑料垫片、石墨垫片等。

3.9填料:在设备或机器上,装填在可动杆件和它所通过的孔之间,对介质起密封作用的零部件。

注:防爆产品电缆引入所指的填料在GB3836.1附录A2.2条中另有定义,指粘性液体粘接材料。

3.10 压紧式填料:质地柔软,在填料箱中经轴向压缩,产生径向弹性变形以堵塞间隙的填料。

3.11 密封圈:电缆引入装置或导管引入装置中,保证引入装置与电缆或导管与电缆之间的密封所使

用的环状物(该定义摘自GB3836.1第3.5.3条对防爆产品电缆密封圈的定义)。

3.12 衬垫:用于外壳接合处,起外壳防护作用的可压缩或弹性材料。(该定义摘自GB3836.1第6.5

条和GB3836.2第5.4条对防爆产品密封衬垫的定义)。

3.13 压缩率:密封圈装入密封槽内受挤压,其截面受压缩变形所产生的压缩变形率。也称作压缩比。注1:上述术语除3.1、3.11和3.12条外,其余均摘自《GB/T6612-2008静密封、填料密封术语》。

注2:本规范所述的密封圈泛指用于密封作用的橡胶密封圈或橡胶密封垫片。

4我司灯具常见密封结构型式

4.1灯具外壳防护常见密封型式一般均属于静密封。

4.2灯具使用密封圈进行外壳防护密封的结构型式常分为平面密封、轴向密封、径向密封。

(1)平面密封:密封圈承受的压力方向垂直于密封接触面的密封结构,见图1。

(2)轴向密封:O型橡胶密封圈承受的压力方向平行于密封件回转轴线方向的密封结构,密封位置在轴或孔的端面。见图2。

(3)径向密封:O型橡胶密封圈承受的压力方向垂直于密封件回转轴线方向的密封结构,密封位置在轴或孔的径向。见图3。

图1 平面密封

图2 轴向密封

图3 径向密封

5 静密封基本原理

5.1密封泄露主要形式

密封泄露主要形式有两种:渗透泄露、界面泄露。 5.2 渗透泄露失效机理

密封件材料多孔、组织疏松、致密性差、产生裂纹时,内部组织之间会存在微小孔隙,容易被密封介质浸透,存在压力差时,被密封的介质会透过材料内部的孔隙渗透出来。材料内部微小孔隙与流体分子直径、流体的表面张力、作用在密封表面的流体压力差有关。当最小密封间隙大于流体分子直径时,作用在密封表面的流体压力大于流体的表面张力时,就会发生毛细孔渗露现象。以下是比较典型的毛细间隙渗露现象: (a )铸件砂眼、裂纹:如8100砂铸外壳

(b )塑胶嵌件裂纹:如RHJ60A

(c )电缆铜芯、导线之间毛细间隙:如带电缆灯具的电缆芯线间隙在负压下可以吸水。

5.3 界面泄露失效机理

作用在密封圏上的压应力不足,流体、气体介质压力P1大于密封接触面的最小密封接触力P2时,在密封接触表会发生界面泄露。 见下图4示意:

图4 最小密封接触力

密封接触面的最小密封接触力的大小与橡胶压缩弹性应力、壳体最大变形应力、壳体密封槽与橡胶密封件尺寸极限公差大小有关。以下是比较典型的界面泄露现象:

(1)无损泄露。橡胶密封圈没有发生任何损坏的情况下而产生的泄露。橡胶密封圈与密封

圈安装沟槽的尺寸不匹配、密封面粗糙、机械变形、振动、高温或低温变形等原因造成密封圈 安装后的压缩率太小没有产生足够的压力,密封面不能紧密贴合而产生的泄露。

(2)老化变形。橡胶密封圈长时间存在或长时间在高温、低温及介质压力的作用下,弹性降低,产

生塑性变形后,不能恢复到初始状态,密封效果下降;当塑性变形率大于40%时,密封圈失去密封能力,最终发生泄露。

(3)表面损伤。摩擦与摩损、密封零件表面粗糙、划痕、棱角边切伤、密封圈变形压缩率过大等原

因造成密封圈损伤或损坏,或工作环境的灰尘和杂质积聚在密封圈两侧形成磨料,加速密封圈磨损,使密封效果降低或失效。

(4)扭曲泄露。装配中橡胶密封圈沿周向发生扭转或扭曲而产生的泄露。密封圈扭曲后,其不同部

位的密封高度会不相等,使密封圈各部分所受压缩变形不等,使密封效果降低或失效。 (5)间隙咬伤。密封配合件之间存在着一定的间隙,橡胶密封圈在装配时或高压介质挤压作用下被

挤入间隙而咬伤、剪切或撕裂而导致密封效果降低或失效。

(6)介质腐蚀。密封圈橡胶材料与密封介质的相容性不好而出现密封圈的体积、硬度、强度、塑性

和重量等发生变化以及橡胶料发生腐蚀损烂,使密封效果降低或失效。 5.4 影响泄露的主要因素

(1)被密封介质的物性参数。采用同样的密封连接结构,相同的工况条件,被密封介质不同,其

泄露率不同。气体的泄露率大于液体的泄露率,氢气的泄露率大于氮气的泄露率。被密封流

体的粘度越大,其泄露阻力就越大,其泄露率就越小。

(2)工况条件影响。密封工况条件主要包括介质的压力和温度。压力越大,泄露阻力越小,泄露率越大;橡胶回弹性能随温度升高面下降,蠕变量随温度升高而增大,老化,松弛会严重。

液体粘度会降低,温度越高,泄露越容易发生。

(3)密封表面粗糙度影响。表面粗糙度越小,泄露率越小。

(4)最小密封接触力的影响。最小密封接触力越大,泄露率越小。

(5)密封圈材料基本性能及密封结构尺寸的影响。密封圈材料基本性能包括两部分,一是密封圈的力学性能(压缩回弹性、蠕变、应力松弛特性等物料性能);二是密封性能(材料组织致密性、压紧残余应力与温度的关系等性能)。密封结构尺寸是指密封圈和密封槽的结构尺寸。密封圈越厚,其压缩量越大,界面泄露率越小,但渗透泄露截面积变大,渗透泄露增大。密封圈宽度越大,其泄露阻力通道越长,泄露率越低,但密封圈的表面积增大,其表面最小密封接触力会越大,宽密封圈的螺栓紧固力则会增大。

5.5灯具密封结构的三个基本要素

(1)压力:指密封接触面的密封接触力。见上图4所示。

防止泄漏方法:P2>P1

(2)密封圈横截面积:密封槽横截面积和密封圈横截面积计算如下:

(a)平面密封结构图示,见下图5

图5 端面密封结构图示

S圈=A×B ;S槽=C×D

(b) O型橡胶圈轴向密封结构图示,见图2和下图6

图6 轴向密封结构图示

S圈=πA2/4 ;S槽=C×D

(c) O型橡胶圈径向密封结构图示,见下图7

图7 径向密封结构图示

S圈=πA2/4 ;S槽=C×(φD –φd)/2

,尽量减小密封面装配间隙,防止密封圈被压溃损坏失效。

防止泄漏方法:S槽≥S圈

实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈和密封槽的最大横截面积和最小横截面积,并计算出密封圈在密封槽中的最大截面积占比和最小截面积占比。通常,密封圈在密封槽中的截面积占比为70%~85%之间(详见后面表5~表7分析)。

(3)橡胶密封圈压缩率(即压缩比):

(a)端面密封(见图5尺寸):

压缩量:△X= B-C

压缩率:δ= △X / B ×100%

(b)轴向密封(见图6尺寸):

压缩量:△X= A-C

压缩率:δ= △X / A×100%

(c) 径向密封(见图7尺寸):

压缩量:△X= A-(φD –φd)/2

压缩率:δ=△X / A ×100%

防止泄漏方法:合理选取密封圈材质、硬度,保证密封面有足够的压缩率,并使密封圈最大压率不超出材料的弹性形变范围。实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈的最大压缩率和最小压缩率。

6密封结构设计步骤

6.1 明确密封圈使用条件

(1)明确密封圈使用环境条件:灯具安装在室内还是室外、环境温度、污染油污、腐蚀气体和液体、耐磨、振动、结晶、聚合、光分解等条件。

(2)明确密封圈工作参数要求:灯具工作温度、灯腔压力、开启次数、维护要求、防护等级。

(3)明确灯具使用要求:灯具形状尺寸、密封部位结构尺寸要求和安装维护要求。

6.2 确定密封圈材料

根据6.1条密封圈使用条件选择合适的密封圈材料。常用橡胶圈的材料及代号见下表1:

注:表1内容摘自《JB/T7757.2-2006机械密封用O形橡胶圈》。

各种橡胶材料的主要特点和使用温度见下表2:

注:表2内容摘自《JB/T7757.2-2006机械密封用O形橡胶圈》。

注:此表内容摘自《橡胶类零部件(物料)设计规范》(在PLM中查阅)

各种橡胶胶料硫化胶的物理性能见下表3:

注:表3内容摘自《JB/T7757.2-2006机械密封用O形橡胶圈》。

6.3 确定密封结构型式和密封圈形状

(1)确定密封结构型式。根据6.1条使用条件确定密封结构型式,当密封结构尺寸要求较小(最小压缩量受尺寸限制)、外壳防护等级要求不高于IP66时,采用O形圈径向密封结构比较简单。当密封结构尺寸要求较大,外壳防护等级要求在IP65及以上时,

一般多采用平面密封,或采用O形圈密封轴向密封。平面密封圈主要结构如图8所示。

注1:(h)、(k)、(l)三种密封圈结构对法兰端盖螺栓预紧力计算要求较高,以防止密封圈长期处于较大压应力作用下压缩后发生永久变形,一般密封结构设计不推

荐使用。

注2:图8摘自《静密封设计技术》第七章。

(2)确定密封圈形状和尺寸。平面密封形状根据结构需要可设计为矩形密封圈、异形密封圈和O形圈。轴向密封和径向密封均选用O形圈。O形圈尺寸按《GB/T

3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差》中表2要求

选择合适直径的密封圈。

6.4 设定密封圈压缩率(即压缩比)

参考《静密封设计技术》第七章“真空和低温密封设计”内容,当橡胶邵氏硬度在50HA以上、最小压缩比15%时,无论密封圈形状如何,其气体渗透率可小于1.33×107Pa·L/s。该渗透率可满足普通真空系统的要求。我国通常把压缩比15%定为真空橡胶密封的最小压缩比。

下表4为国外部分国家真空密封设计常采用的压缩比,供参考。

由《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》径向密封沟槽尺寸(表1)可计算出以下关系表5:表5 径向密封圈压缩量

由《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》轴向密封沟槽尺寸(表2)可计算出以下关系表6:表6 轴向密封圈压缩量

由《JB/ZQ4609-2006圆橡胶、圆橡胶管及沟槽尺寸》中沟槽尺寸(表1)可计算出以下关系表7:

表7

综合表5、表6、表7内容可得出结论:在考虑密封圈和密封槽尺寸加工公差和装配公差等因素影响下,橡胶密封圈压缩率一般控制在20%~30%范围内比较合理。硬度则按图9要求确定。

6.5 确定密封圈硬度

参考《静密封设计技术》第七章“真空和低温密封设计”中橡胶密封圈压缩比与硬度之间关系图,下图9,一般可以根据图中曲线2来确定橡胶密封圈的压缩比。

注:图9内容摘自《静密封设计技术》第七章。

设计举例:说明密封圈压缩率计算和硬度选择。见下图10密封槽、密封圈结构尺寸。

图10 密封槽、密封圈结构尺寸

密封槽尺寸:槽宽:13.0mm 槽深:(4.5±0.2)mm 平面度:0.1 粗糙度:3.2

密封圈尺寸:宽度:(8.0±0.2 ) mm 高度:(6.5±0.2) mm

S圈= 6.5×8 = 52 mm2S槽= 13×4.5 = 58.5 mm2

即:S槽>S圈,说明密封槽和密封圈截面积设计合理。

最大压缩量:△X max=(6.5+0.2)-(4.5-0.2)= 2.4 mm

最小压缩量:△X min=(6.5-0.2)-(4.5+0.2)= 1.6mm

最大压缩率:δ=△X max / 6.5 ×100% =2.4/6.5×100% =37%

最小压缩率:δ=△X min / 6.5 ×100% =1.6/6.5×100% =25%

当密封圈压缩率范围:25%~37%,从图9中曲线2可看出应选用邵氏硬度20HA ~60HA的橡胶密封圈较为合理,以防止密封圈长期受压而发生塑性变形老化失效。

平面密封结构中,发泡橡胶密封圈材料首选硅橡胶,其它材料可结合灯具实际使用环境合理选择。邵氏A硬度一般大于15度,硬度大小主要看发泡程度(发泡粒径、个数等),硬度越低,工艺越难控制。发泡橡胶密封条截面形状多为实心,与透明件接触的截面形状可为波浪形、圆弧形、V形、矩形等,底面少量场合可采用异形结构。

6.6 密封结构设计

6.6.1 平面密封结构设计

(1)槽密封结构:如图8中的(a)、(b)、(c)、(d)、(e)密封形式。

(a)矩形槽:其结构如下图11所示:

图11 矩形槽

矩形槽尺寸可由下式确定:

式中:b—槽宽c—槽深;

H—矩形密封圈高度B—矩形密封圈宽度假;

d—O形圈直径;

—决定死区的无因次系数,即密封圈压入密封槽后留下的死区空隙系数。

举例:若设定橡胶密封圈压缩率为28%(邵氏硬度40HA~60HA),即C/H=1-28%=72%,或c/d=1-28%=72%,亦即c=0.72H或c=0.72d。假设k=1.05(死区为5%)。

从而计算可得:

矩形密封圈槽尺寸:c=0.72H ,b=HB/c=1.05HB/0.72H=1.46B

O形圈密封槽尺寸:c=0.72d ,b=1.05×3.14d2/(4×0.72d)=1.15d

目前采用的标准矩形槽尺寸可参考下表8:

注:表8内容摘自《静密封设计手册》第七章第1节“真空和低温密封设计”。

(b) 梯形槽:O形圈用密封槽常有三种形式,如下图12所示。图12(a)为燕尾槽,C/d=0.75~0.80;

A/d=0.9。图12(b)为开口梯形槽。图12(c)为平行边梯形槽,相比燕尾槽容易加工,其尺寸

可按下式求得:

式中:d min和d max—分别为O形圈最小及最大直径。

图12 梯形槽

也可以设计为底部为圆弧形的梯形槽,如图13所示。

图13 底部为圆弧槽的梯形槽

推荐的梯形槽尺寸可参考下表9:

注:表9内容摘自《静密封设计手册》第七章第1节“真空和低温密封设计”。

(2)其它形状的槽密封结构,如锥面密封结构、阶梯槽密封结构等设计方法在灯具密封结构中不常见。其常见结构详见《静密封设计手册》第七章相关内容。

6.6.2 轴向密封结构设计

(1)受内部压力的沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图4规定。

(2) 受外部压力的沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图5

规定。

(3)轴向密封沟槽尺寸,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》表2和6.22条要求的规定。

(4)轴向密封沟槽外径和沟槽内径尺寸,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第5.2.2规定。

(5)沟槽尺寸公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》表3的规定。(6)沟槽的同轴度公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第5.4条规定。

(7)密封沟槽和配合偶件表面的粗糙度,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟

槽尺寸》中表4的规定。

6.6.3 径向密封结构设计

(1)径向密封的活塞密封沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图1所示。

(2)径向密封的活塞杆密封沟槽型式,见《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》图2所示。

(3)径向密封的沟槽尺寸,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》中表1的规定。

(4)径向密封沟槽槽底直径,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第

5.1.2条规定。

(5)沟槽尺寸公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》表3和6.2.1条的规定。

(6)沟槽的同轴度公差,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》第5.4条规定。

(7)密封沟槽和配合偶件表面的粗糙度,应符合《GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》中表4的规定。

(8)径向静密封O形圈适用范围,应符合GB/T3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸》中表5的规定。

7密封结构设计原则

7.1 实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈的最大压缩率和最小压缩

率。在考虑密封圈和密封槽尺寸加工公差和配合公差、变形等因素影响下,橡胶密封圈压缩率一般控制在20%~30%范围内比较合理,见表5~7分析。根据图9压缩率与硬度之间关系图曲线2所示,橡胶密封圈硬度选择在邵氏硬度40HA~80HA之间较好。对于厚度2mm~3mm 平橡胶垫片,将其压缩率控制在15%~20%,防止平垫片太软受挤压后被挤出密封面,可将硬度可选在75HA~85HA之间。

7.2 实际设计计算时,应根据密封圈和密封槽尺寸公差分别计算出密封圈和密封发槽的最大横截面

积和最小横截面积,并计算出密封圈在密封槽中的最大截面积占比和最小截面积占比。通常,密封圈在密封槽中的截面积占比为70%~85%之间(详见表5~表7分析)。

7.3 橡胶密封O形圈选型优先符合《橡胶类零部件(物料)设计规范》中优选表的要求。

7.4 橡胶密封O形圈尺寸选择应符合《GBT 3452.1-2005液压气动用O形橡胶密封圈第1部分尺

寸系列及公差》中表2系列尺寸要求。

7.5 径向密封、轴向密封沟槽尺寸设计应优先符合《GB/T3452.3-2005液压气动用O形橡胶密封圈

沟槽尺寸》中表1和表2要求尺寸。

7.6 选用硅橡胶密封圈材料时,需在技术要求中明确提出二次硫化要求。

8 密封不良案例分析

(1) 密封圈硬度选取不合理。硬度选择不符合密封压缩率与硬度之间关系图9要求。 例1:

例2:

例3:

硅橡胶密封圈,压缩率:硬度选取不合理

例4:

(2) 密封结构设计不合理。密封槽表面不平整,密封接触面之间有间隙。 例1:

(3)O 型密封圈沟槽结构设计不符合《GB/T3452.3-2005液压气动用O 形橡胶密封圈沟槽尺寸》

中表1和表2

要求结构尺寸。

×

×

(4)O 型密封圈尺寸选型(内径尺寸或外径尺寸)不合理,与O 型密封圈沟槽尺寸不匹配。

(5)密封圈成型工艺选择不合理。导致装配不良。

油封密封 轴的设计

NOK油封安装部分设计 关于安装油封的轴与腔体的设计规格如下所示。对各型式轴的设计规格与倒角部分的规格及腔体孔的设计规格与形状、尺寸 轴 1.轴的设计规格与倒角(棱)部分的形状与尺寸轴的设计规格。 轴的设计规格 型式规格项目S型,T型,V型,K型,TCV型,TCN型 D型,SBB型,大直径SB型,大直径TB 型,MG型 J型T4型QLFY型 材质机械结构用碳素钢 表面硬度30HRC以上50HRC以上30HRC以上 表面粗糙度(0.63~0.2)Ra (2.5~0.8)Ry (0.4~0.1)Ra (1.6~0.4)Ry (3.2~ 1.6)Ra (12.5~ 6.3)Ry 加工方法无进给精磨热处理后,进行镀硬铬 层,磨削后进行抛光。 机械加工 尺寸公差JIS h9JIS h8注(1):对硅橡胶唇口材料,轴的表面粗糙度访加工至(1.6~0.6)Ry。 注(2):关于轴的加工方法的细节,尊照“适宜的轴的加工方法”。 注(3):Ry:轮廓最大高度,Ra:轮廓算术平均偏差(下同)。

轴倒角部分的形状与尺寸 型式 轴径分类 S 型.T 型,V 型,TCV 型,TCN 型,T4型,D 型,MG 型,VR 型, Z 型 J 型 QLFY 型 轴径d d1 10以下 d -1.5 d -3.5 大于10~20以下 d -2.0 d -4.0 大于20~30以下 d--2.5 d -4.5 d -1.5 大于30~40以下 d -3.0 d - 5.0 大于40~50以下 d -3.5 d -5.5 大于50~70以下 d -4.0 d -6.0 大于70~95以下 d -4.5 d -6.5 d -2.0 大于95~130以下 d -5.5 d -7.5 大于130~240以 下 d -7.0 d -9.0 大于240~300以 下 d--11.0 d -12.0 注: d1尺寸,设定比密封唇内径小。油封应确实装入,不得有唇口损伤、弹簧断开等 SBB 型,大直径SB 型,大直径TB 型轴倒角部分的形状与尺寸(轴径>300mm) 型式 轴径分类 SBB 型,大直径SB 型,大直径TB 型 轴径d d1 大于300~400以下 d -12 大于400 ~500以下 大于500~630以下 d -14 大于630~800以下 大于800~1000以下 d -18 大于1000~1250以下 大于1250~1600以下 d -20

减隔震建筑结构设计指南与工程应用

《减隔震建筑结构设计指南与工程应用》教学大纲 总教学课时:60 一、教学目的 贯彻中央城市工作会议精神,落实住房和城乡建设部印发的《关于房屋建筑工程推广应用减隔震技术的若干意见(暂行)》(建质[2014]25号)的工作要求,帮助结构工程师更好地了解与掌握减隔震技术的概念与发展历程、设计标准与研究现状、减隔震结构设计方法、减隔震技术在建筑工程中的应用。 二、教学要点 与结构工程师设计工作相关的减隔震技术概念与工作原理,减隔震建筑结构设计参考依据与设计关键要点、减隔震技术工程应用方法等。 三、重点内容与课时分配 第一章减隔震技术概述(4学时): 减隔震技术的概念与原理(1学时)、减隔震技术发展历程(1学时)、减隔震技术设计标准(1学时)、减隔震技术研究现状(1学时)。 第二章减震结构设计指南(12学时): 减震结构概念设计(2学时)、减震结构性能设计的基本要求(2学时)、减震结构计算分析的基本要求(2学时)、

减震装置的基本要求(2学时)、减震结构的抗震构造措施要点(2学时)、减震装置的施工、验收和维护(2学时)。 第三章隔震结构设计指南(12学时) 隔震结构概念设计(2学时)、隔震结构性能设计的基本要求(2学时)、隔震结构计算分析的基本要求(2学时)、隔震装置的基本要求(2学时)、隔震结构的抗震构造措施要点(2学时)、隔震装置的施工、验收和维护(2学时)。 第四章减震技术在建筑工程中的应用(16学时): 屈曲约束支撑应用案例(2学时)、黏滞阻尼支撑应用案例(3学时)、黏滞阻尼伸臂应用案例(3学时)、黏滞阻尼墙应用案例(4学时)、日本典型减震案例(4学时)。 第五章隔震技术在建筑工程中的应用(16学时): 基础隔震案例(6学时)、层间隔震案例(4学时)、组合减隔震案例(2学时)、日本典型隔震案例(4学时)。 四、教学延伸阅读参考书目 1.周福霖. 工程结构减震控制[M].北京:地震出版社, 1997. 2.李爱群,瞿伟廉. 工程结构减振控制[M]. 北京:机械 工业出版社,2007. 3.丁洁民,吴宏磊. 黏滞阻尼技术工程设计与应用[M]. 北京: 中国建筑工业出版社,2017. 4.日本隔震构造协会. 隔震结构入门[M]. 东京:OHM出

隔震设计指导

目录 隔震结构设计要点及流程---西昌彩云府隔震项目总结 (2) 一、隔震目标: (2) 二、隔震建筑要求: (2) 三、嵌固端: (2) 四、隔震层设计: (2) 1、隔震层层高: (2) 2、隔震层位置: (2) 3、隔震层结构体系: (3) 3、隔震层结构抗震等级: (3) 4、隔震支座类型: (4) 5、隔震支座设计: (4) 6、竖向隔震缝设计: (4) 6、上支蹲和下支蹲设计: (5) 7、隔震层的抗风验算: (6) 8、其他隔震措施: (6) 五、隔震层以上结构设计: (6) 1、隔震后地震作用的确定: (6) 2、隔震后抗震等级的确定: (6) 3、竖向地震作用: (7) 4、剪重比: (8) 5、计算模型: (8) 六、隔震层以下结构设计: (9) 1、计算模型: (9) 2、隔震层以下地面以上的结构的层间位移角: (9) 七、基础设计: (9) 1、计算模型: (10) 八、抗风设计: (10) 九、采取的加强和改进措施: (10)

十、隔震后楼梯和电梯设计: (11) 十一、隔震层建筑、机电专业做法 (13) 隔震结构设计要点及流程---西昌彩云府隔 震项目总结 一、隔震目标: 仅隔离水平地震,不隔离竖向地震。 通常采用隔震设计后,水平地震作用可以降低半度、1度、1度半。 根据以往大量隔震工程项目经验,场地条件较好,属于ⅠⅡ类场地,上部结构比较规则、质量和刚度分布均匀。层数6层及以下时,多采用框架结构,可以初步确定隔震目标为降低一度半;6~12层,位于高烈度区,一般会采用框剪结构或者剪力墙结构,可以初步确定隔震目标降低一度或者一度半以上;对于12~22层的隔震建筑,可以确定隔震目标降低一度。 具体隔震目标需计算确定。详下述。 二、隔震建筑要求: 建筑高宽比<4;建筑场地宜为ⅠⅡⅢ类。 对于剪力墙结构,结构周边要尽量少布置剪力墙,尽量降剪力墙布置在结构内部。 三、嵌固端: 通常取隔震层下面一层顶板为嵌固端 四、隔震层设计: 1、隔震层层高: 一般隔震层梁底到地面的净高不应小于600,建议不小于800,因此层高至少为“梁高+800”。 2、隔震层位置: A:有地下室结构,通常设置在地下室顶部设置一个隔震层

轴向密封和径向密封详解作者

轴向密封和径向密封详解作者:橙子雨 来源:知乎 轴向密封是密封特征分布在沿轴的方向的。如下图,红圈为密封件,可以简单的认为是O圈。红色箭头表示流体运动方向,可以看出是限制流体径向运动。 径向密封是密封特征分布在沿径的方向的。如下图,红圈为密封件,可以简单的认为是O圈。红色箭头表示流体运动方向,可以看出是限制流体轴向运动。 既然定义讲明白了,那就讲讲怎么“设计”O圈沟槽。这里的“设计”打引号是因为,一般情况称不上设计,只是选型。O圈是标准件,也就是说,除了定制,尺寸是规定好的,别问我谁规定的,我还年轻。而且特定尺寸的O圈,特定的工作状态,工作介质,沟槽尺寸有建议值。多数情况下,这些尺寸都能适用。(不得不说,前人的经验还是很丰富的。)如果不是特殊要求,不需要自己重新尝试新的尺寸。 一、选择O圈之后才能设计沟槽,所以首先是选择O圈. 1. O圈是有不同材料的,对应不同的工作温度,压缩率,工作介质,压强,对了还有硬度。硬度这个鬼我也不知道他们怎么做的,同样的材料硬度低的会软,变形率大。这些在选择的时候都是要考虑进去的。 2. 我这个简易的机械设计手册上O圈的选择只有尺寸一个选项,简化了其他引起困惑的因素,因为尺寸是要关键值,材料因素不影响尺寸。为什么说尺寸是关键值呢?因为我们在选择O圈的时候,很多尺寸都被限定了,尤其是轴径孔径,只能在一个范围内微调。如果你们工程师说先选O圈再定孔轴尺寸,我得向他学习学习。 3. 选择尺寸的时候安装结构有三个因素要筛选。轴向密封有一种,径向密封有两种,沟槽在轴上或沟槽在孔上。为啥要分在轴上还是在孔上嘞?空心轴厚度不够放沟槽的时候,沟槽就放孔上。孔壁太薄那沟槽就放轴上。都是壁厚很薄怎么

旋转轴唇形密封圈的结构

旋转轴唇形密封圈的结构及优点 旋转轴唇形密封圈通常称为油封,广泛应用于工程机械的变速箱、驱动桥等部件中,如变速箱的前后输出轴,驱动桥的主减速器、轮边等处,其功用在于把油腔和外界隔离,对内封油,对外防尘。目前国内大量采用的油封结构型式比较多,其基本结构包括橡胶密封部分、金属骨架或金属壳体和金属弹簧。 一、油封的密封机理 油封的密封是靠一挠性密封元件(皮革、橡胶、聚四氟乙烯、聚三氟氯乙烯或聚酰亚胺等)与旋转轴之间的过盈配合形成的。它的密封机理是:油封唇部和轴之间的接触表面上同时并存干摩擦、边界润滑和流体润滑三种情况,并不断交替产生。干摩擦产生磨损,流体润滑产生泄漏,在边界润滑下,油封唇部与轴的界面之间形成一层稳定的流体动压油膜,油膜厚度约00025mm;这层油膜除用作润滑之外,还起密封作用。油膜太厚,流体就会泄漏;油膜太薄,就不能形成流体润滑膜,唇部就会磨损。因此,为了获得良好的密封性能和比较长的工作寿命,就要求人们在结构设计、橡胶配方设计和安装使用上都要为形成薄而稳定的边界润滑油膜提供条件。其中在结构设计、安装使用方面,现国内常用油封所规定的条件是非常苛刻的,这也就为泄漏故障的频频发生埋下了隐患。 二、现有油封存在的不足 1.在结构设计上,由于目前大量采用的油封是与旋转轴直接进行过盈配合而实现动密封的,其对旋转轴的偏心度、尺寸偏差、不圆度、表面粗糙度等都有十分严格的要求: 1)轴的偏心度,偏心度大小直接影响油封唇部接触应力的分布状态,通常要求在0.3mm(轴径为50~80mm,油封线速度为10~15m/s)以内,然而在很多情况下是很难做到的。例如驱动桥主减速器油封的装配技术要求:输入法兰中心线对油封座孔中心线的偏心度小得超过0.1mm。但由于座孔中心线取决于轴承座与托架配合止口的中心位置,输入法兰中心线又取决于其与主动螺旋锥齿轮配合花键的中心位置,这两个中心线的偏移量很难控制在0.1mm的范围内。 2)轴的尺寸偏差:只有正确地选择轴的尺寸偏差才可能获得性能良好的密封效果。过大的轴会增加唇端的接触载荷,而过小的轴则会使唇端接触面上的密封压力不够。压力过大会促使密封过早失效,而接触压力过小则会引起泄漏。 3)轴的不圆度:轴的不圆度很可能会使弹性体密封唇按照轴的不规则运动而产生变形或失去弹性,从而引起疲劳破坏。 4)轴表面粗糙度,一般规定为Ra1.6~3.2um,表面太光滑,不利于形成和保持油膜,密封圈干磨擦,容易烧伤,引起泄漏;太粗糙,磨擦磨损加剧,同样会造成油封早期失效。 2.在安装使用方面:安装前必须在油封唇口上先涂少许润滑脂,由于油封唇部相对于轴有一个过盈量,安装时必须注意和预防诸如密封唇部的扭转、挤出,当轴端不带圆锥、圆角且有螺纹时,就更应注意,否则容易把唇口划伤而影响密封效果。 3.现有油封对轴表面的损伤较敏感,很轻微的损伤都可能对它的密封效果及工作寿命产生极大的影响,甚至直接带来泄漏。 三、新型油封的结构及其优点 新型油封的主要特点是在旋转轴与油封唇部之间设计了一个包覆一层波浪状橡胶的油封 内毂,工作时,内毂随同轴一起旋转,而油封在其唇部与内毂外表面之间实现动密封。其优点有: 1.在油封内毂部份包覆一层波浪状橡胶,能适应旋转轴比较大的偏心度(通常只要求在0.5mm左右)和轴较大范围的尺寸偏差,有较佳的轴向及径向缓冲性能。此种油封在轴的偏心度为0.5mm、转速为800rpm条件下的泥水试验中显示了良好的密封性能;同时在

隔震结构设计实例

隔震结构工程设计 1工程概况 某商业办公楼,地上6层,首层5.1m,其余层高度皆为3.6m,总高24.6m,隔震支座设置于基础顶部。上部结构为钢框架结构,楼盖为普通梁板体系,基础采用独立基础。丙类建筑,设防烈度7度,设计基本加速度0.15g,场地类别Ⅱ类,地震分组第一组,不考虑近场影响。 表1.1 上部结构重量及侧移刚度 侧移刚度KN/m815796796796796796 2 初步设计 2.1是否采用隔震方案 (1)不隔震时,该建筑物的基本周期为0.45s,小于1.0s。 (2)该建筑物总高度为24.6m,层数6层,符合《建筑抗震设计规范》的有关规定。 (3)建筑场地为Ⅱ类场地,无液化。 (4)风荷载和其他非地震作用的水平荷载未超过结构总重力的10%。 以上几条均满足规范中关于建筑物采用隔震方案的规定。 2.2确定隔震层的位置 隔震层设在基础顶部,橡胶隔震支座设置在受力较大的位置,其规格、数量和分布根据竖向承载力、侧向刚度和阻尼的要求通过计算确定。隔震层在罕遇地震下应保持稳定,不宜出现不可恢复的变形。隔震层橡胶支座在罕遇地震作用下,不宜出现拉应力。 2.3隔震层上部重力设计 上部总重力为如表1.1所示。 3 隔震支座的选型和布置 确定目标水平向减震系数为0.50,进行上部结构的设计,并计算出每个支座上的轴向力。根据抗震规范相应要求,丙类建筑隔震支座平均应力限制不应大于15MPa,由此确定每个支座的直径(隔震装置平面布置图如图1.1所示,即各柱底部分别安置橡胶支座)。

隔震支座布置图1.1 图确定轴向力3.1. ?GF?=19261kN 竖向地震作用vevk kNN84679?竖向地震作用??活载) ?1.31?.2?(恒载?0.5柱底轴力设计kNN2057.92?中柱柱底轴力 中kNN1884.86?边柱柱底轴力边.2确定隔震支座类型及数目3,共20个。中柱支座:LRB600型,竖向承载力2673KN ,共20个。边柱支座:LRB600型,竖向 承载力2673KN 其支座型号及参数如表3.1。 表3.1 隔震支座参数 ?水平向减震系数的计算4 的水平刚度和等效粘滞阻尼比。多遇地震时,采用隔震支座剪切变形为50% 由式 ?kNmmKK/?83.68092??40?2.jh由式 ?K?292092?0..40?2jj?2920?.??。eg K83.68h由式G??1.27S?5T?5?0.T?24?2.0s。g1Kg h??.050eg??1??0.57 2?7.06?10.eg??050.eg??0.9??0.78?5?.50eg由式 ?0.9???0.37?)0(T/T).5?2T(/T gg210即水平向减震系数满足预期效果。

密封结构设计技术规范

密封结构设计技术规范

前言 本技术规范起草部门:技术与设计部 本技术规范起草人:何龙 本技术规范批准人:唐在兴 本技术规范文件版本:A0 本技术规范于2014年8月首次发布

密封结构设计技术规范 1适用范围 本技术规范适用于灯具外壳防护使用密封圈的静密封结构设计。包括气密性灯具密封结构设计。 2引用标准或文件 GB/T 3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差 GB/T 3452.3-2005 液压气动用O形橡胶密封圈沟槽尺寸 GB/T 6612-2008 静密封、填料密封术语 JB/T 6659-2007 气动用0形橡胶密封圈尺寸系列和公差 JBT 7757.2-2006 机械密封用O形橡胶圈 JB/ZQ4609-2006 圆橡胶、圆橡胶管及沟槽尺寸 《静密封设计技术》(顾伯勤编著) 《橡胶类零部件(物料)设计规范》(在PLM中查阅) 3基本术语、定义 3.1密封:指机器、设备的连接处没有发生泄露的现象(该定义摘自《静密封设计技术》)。 3.2静密封: 相对静止的配合面间的密封。密封的功能是防止泄漏。 3.3泄漏: 通过密封的物质传递。造成密封泄漏的主要原因:(1)机械零件表面缺陷、尺寸加工误 差及装配误差形成的装配间隙;(2)密封件两侧存在压力差。减小或消除装配间隙是阻止泄漏 的主要途径。 3.4接触型密封:借密封力使密封件与配合面相互压紧甚至嵌入,以减小或消除间隙的密封。 3.5密封力(或密封载荷):作用于接触型密封的密封件上的接触力。 3.6填料密封:填料作密封件的密封。 3.7接触压力:填料密封摩擦面间受到的力。 3.8密封垫片:置于配合面间几何形状符合要求的薄截面密封件。按材质分有:橡胶垫片,金属垫 片、纸质垫片、石绵垫片、塑料垫片、石墨垫片等。 3.9填料:在设备或机器上,装填在可动杆件和它所通过的孔之间,对介质起密封作用的零部件。 注:防爆产品电缆引入所指的填料在GB3836.1附录A2.2条中另有定义,指粘性液体粘接材料。 3.10 压紧式填料:质地柔软,在填料箱中经轴向压缩,产生径向弹性变形以堵塞间隙的填料。 3.11 密封圈:电缆引入装置或导管引入装置中,保证引入装置与电缆或导管与电缆之间的密封所使 用的环状物(该定义摘自GB3836.1第3.5.3条对防爆产品电缆密封圈的定义)。 3.12 衬垫:用于外壳接合处,起外壳防护作用的可压缩或弹性材料。(该定义摘自GB3836.1第6.5 条和GB3836.2第5.4条对防爆产品密封衬垫的定义)。 3.13 压缩率:密封圈装入密封槽内受挤压,其截面受压缩变形所产生的压缩变形率。也称作压缩比。注1:上述术语除 3.1、3.11和3.12条外,其余均摘自《GB/T6612-2008静密封、填料密封术语》。

o型圈密封原理及焦耳效应

O形密封圈简称O形圈,是一种截面为圆形的橡胶圈。O形密封圈是液压、气动系统中使用最广泛的一种密封件。O形圈有良好的密封性,既可用于静密封,也可用于往复运动密封中;不仅可单独使用,而且是许多组合式密封装置中的基本组成部分。它的适用范围很宽,如果材料选择得当,可以满足各种运动条件的要求,工作压力可从1.333×105Pa的真空到400MPa高 压;温度范围可从-60?到200?。 与其它密封型式相比,O形密封圈具有以下特点: 1)结构尺寸小,装拆方便。 2)静、动密封均可使用,用作静密封时几乎没有泄漏。 3)使用单件O形密封圈,有双向密封作用。 4)动摩擦阻力较小。 5)价格低廉。 O形密封圈是一种挤压型密封,挤压型密封的基本工作原理是依靠密封件发生弹性变形,在密封接触面上造成接触压力,接触压力大于被密封介质的内压,则不发生泄漏,反之则发生泄漏。在用于静密封和动密封时,密封接触面接触压力产生原因和计算方法不尽相同,需分别说明。 1、用于静密封时的密封原理 在静密封中以O形圈应用最为广泛。如果设计、使用正确,O形密封圈在静密封中可以实现无泄漏的绝对密封。 O形密封圈装入密封槽后,其截面承受接触压缩应力而产生弹性变形。对接触面产生一定的初始接触压力Po。即使没有介质压力或者压力很小,O形密封圈靠自身的弹性力作用而也能实现密封;当容腔内充入有压力的介质后,在介质压力的作用下,O形密封圈发生位移,移向低压侧,同时其弹性变形进一步加大,填充和封闭间隙δ。此时,坐用于密封副偶合面的接触压力上升为Pm: Pm=Po+Pp 式中Pp——经O形圈传给接触面的接触压力(0.1MPa) Pp=K·P K——压力传递系数,对于橡胶制O形密封圈K=1; P——被密封液体的压力(0.1MPa)。 从而大大增加了密封效果。由于一般K≥1,所以Pm>P。由此可见,只要O形密封圈存在初始压力,就能实现无泄漏的绝对密封。这种靠介质本身压力来改变O形密封圈接触状态,使之实现密封的性质,称为自封作用。 理论上,压缩变形即使为零,在油压力下也能密封,但实际上O形密封圈安装时可能会有偏心。所以,O形圈装入密封沟槽后,其断面一般受到7%—30%的压缩变形。静密封取较大的压缩率值,动密封取较小的压缩率值。这是因为合成橡胶在低温下要压缩,所以静密封O 形圈的预压缩量应考虑补偿它的低温收缩量。 2、用于往复运动密封时的密封原理 在液压转动、气动元件与系统中,往复动密封是一种最常见的密封要求。动力缸活塞与缸体、活塞干预缸盖以及各类滑阀上都用到往复运动密封。缝隙由圆柱杆与圆柱孔形成,杆在圆

旋转轴唇形密封圈的结构

旋转轴唇形密封圈的结构 一、油封的密封机理油封的密封是靠一挠性密封元件(皮革、橡胶、聚四氟乙烯、聚三氟氯乙烯或聚酰亚胺等)与旋转轴之间的过盈配合形成的。它的密封机理是:油封唇部和轴之间的接触表面上同时并存干摩擦、边界润滑和流体润滑三种情况,并不断交替产生。干摩擦产生磨损,流体润滑产生泄漏,在边界润滑下,油封唇部与轴的界面之间形成一层稳定的流体动压油膜,油膜厚度约00025mm;这层油膜除用作润滑之外,还起密封作用。油膜太厚,流体就会泄漏;油膜太薄,就不能形成流体润滑膜,唇部就会磨损。因此,为了获得良好的密封性能和比较长的工作寿命,就要求人们在结构设计、橡胶配方设计和安装使用上都要为形成薄而稳定的边界润滑油膜提供条件。其中在结构设计、安装使用方面,现国内常用油封所规定的条件是非常苛刻的,这也就为泄漏故障的频频发生埋下了隐患。 二、现有油封存在的不足1.在结构设计上,由于目前大量采用的油封是与旋转轴直接进行过盈配合而实现动密封的,其对旋转轴的偏心度、尺寸偏差、不圆度、表面粗糙度等都有分严格的要求: 1)轴的偏心度,偏心度大小直接影响油封唇部接触应力的分布状态,通常要求在0、3mm(轴径为50~80mm,油封线速度为10~15m/s)以内,然而在很多情况下是很难做到的。例

如驱动桥主减速器油封的装配技术要求:输入法兰中心线对油封座孔中心线的偏心度小得超过0、1mm。但由于座孔中心线取决于轴承座与托架配合止口的中心位置,输入法兰中心线又取决于其与主动螺旋锥齿轮配合花键的中心位置,这两个中心线的偏移量很难控制在0、1mm的范围内。 2)轴的尺寸偏差:只有正确地选择轴的尺寸偏差才可能获得性能良好的密封效果。过大的轴会增加唇端的接触载荷,而过小的轴则会使唇端接触面上的密封压力不够。压力过大会促使密封过早失效,而接触压力过小则会引起泄漏。 3)轴的不圆度:轴的不圆度很可能会使弹性体密封唇按照轴的不规则运动而产生变形或失去弹性,从而引起疲劳破坏。 4)轴表面粗糙度,一般规定为Ra1、6~3、2um,表面太光滑,不利于形成和保持油膜,密封圈干磨擦,容易烧伤,引起泄漏;太粗糙,磨擦磨损加剧,同样会造成油封早期失效。 2.在安装使用方面:安装前必须在油封唇口上先涂少许润滑脂,由于油封唇部相对于轴有一个过盈量,安装时必须注意和预防诸如密封唇部的扭转、挤出,当轴端不带圆锥、圆角且有螺纹时,就更应注意,否则容易把唇口划伤而影响密封效果。 3.现有油封对轴表面的损伤较敏感,很轻微的损伤都可能对它的密封效果及工作寿命产生极大的影响,甚至直接带来泄漏。

密封圈结构设计技术规范方案

WORD格式可编辑

1适用范围 本技术规范适用于灯具外壳防护使用密封圈的静密封结构设计。包括气密性灯具密封结构设计。2引用标准或文件 GB/T 3452.1-2005 液压气动用O形橡胶密封圈第1部分:尺寸系列及公差 GB/T 3452.3-2005 液压气动用O形橡胶密封圈沟槽尺寸 GB/T 6612-2008 静密封、填料密封术语 JB/T 6659-2007 气动用0形橡胶密封圈尺寸系列和公差 JBT 7757.2-2006 机械密封用O形橡胶圈 JB/ZQ4609-2006 圆橡胶、圆橡胶管及沟槽尺寸 《静密封设计技术》(顾伯勤编著) 《橡胶类零部件(物料)设计规范》(在PLM中查阅) 3基本术语、定义 3.1密封:指机器、设备的连接处没有发生泄露的现象(该定义摘自《静密封设计技术》)。 3.2静密封: 相对静止的配合面间的密封。密封的功能是防止泄漏。 3.3泄漏: 通过密封的物质传递。造成密封泄漏的主要原因:(1)机械零件表面缺陷、尺寸加工误 差及装配误差形成的装配间隙;(2)密封件两侧存在压力差。减小或消除装配间隙是阻止泄漏的主要途径。 3.4接触型密封:借密封力使密封件与配合面相互压紧甚至嵌入,以减小或消除间隙的密封。 3.5密封力(或密封载荷):作用于接触型密封的密封件上的接触力。 3.6填料密封:填料作密封件的密封。 3.7接触压力:填料密封摩擦面间受到的力。 3.8密封垫片:置于配合面间几何形状符合要求的薄截面密封件。按材质分有:橡胶垫片,金属垫 片、纸质垫片、石绵垫片、塑料垫片、石墨垫片等。 3.9填料:在设备或机器上,装填在可动杆件和它所通过的孔之间,对介质起密封作用的零部件。 注:防爆产品电缆引入所指的填料在GB3836.1附录A2.2条中另有定义,指粘性液体粘接材料。 3.10 压紧式填料:质地柔软,在填料箱中经轴向压缩,产生径向弹性变形以堵塞间隙的填料。 3.11 密封圈:电缆引入装置或导管引入装置中,保证引入装置与电缆或导管与电缆之间的密封所使 用的环状物(该定义摘自GB3836.1第3.5.3条对防爆产品电缆密封圈的定义)。 3.12 衬垫:用于外壳接合处,起外壳防护作用的可压缩或弹性材料。(该定义摘自GB3836.1第6.5 条和GB3836.2第5.4条对防爆产品密封衬垫的定义)。 3.13 压缩率:密封圈装入密封槽内受挤压,其截面受压缩变形所产生的压缩变形率。也称作压缩比。

隔震结构设计指导手册

建筑结构隔震设计指导 宋廷苏、管庆松 编写 王广宇 审核 云南震安减震技术有限公司 二零一二年四月

目录 一、前期咨询..........................................................- 1 - 二、建筑结构隔震设计..................................................- 2 - 1 隔震设计流程...................................................- 2 - 2 确定隔震层位置.................................................- 3 - 2.1 隔震层层高...............................................- 3 - 2.2 隔震层一般设置位置.......................................- 3 - 2.3 人防建筑隔震层设置位置...................................- 3 - 2.4 大底盘多塔结构隔震层设置位置.............................- 3 - 2.5 其他.....................................................- 4 - 3 初定隔震目标...................................................- 4 - 4 上部结构设计...................................................- 5 - 4.1 隔震设计一般原则.........................................- 5 - 4.2 结构模型底层柱下端改为铰接约束...........................- 6 - 4.3 竖向地震作用考虑.........................................- 7 - 4.4 最小层间剪力............................................- 12 - 4.5 底层柱弯矩放大系数......................................- 12 - 4.6 抗震措施................................................- 12 - 4.7 抗震构造措施............................................- 13 - 5 隔震层以下结构设计............................................- 14 - 6 基础设计......................................................- 14 - 三、隔震构造措施.....................................................- 14 - 四、鸣谢.............................................................- 30 - 五、参考资料和图集...................................................- 30 -

隔震设计指导手册

对抗地震,爱惜生命,用科技创造安全幸福的生活。 建筑结构隔震设计指导手册 二〇一五年七月二日

目录 1.前言 (3) 2.隔震原理 (7) 2.1隔震技术 (7) 2.2隔震原理 (8) 3.隔震橡胶支座 (11) 3.1支座结构 (11) 3.2基本参数 (12) 3.3支座检验 (12) 4.建筑隔震初步设计 (13) 4.1设计流程 (13) 4.2隔震目标 (14) 4.3隔震层位置 (15) 5.结构隔震设计PKPM实现 (17) 5.1上部结构设计一般原则 (17) 5.2上部结构设计 (18) 5.3下部结构 ........................................................................... 错误!未定义书签。 5.4地基基础 ........................................................................... 错误!未定义书签。 5.5小结................................................................................... 错误!未定义书签。 6.隔震分析ETABS实现 .......................................................... 错误!未定义书签。 6.1隔震设计一般原则 ........................................................... 错误!未定义书签。 6.2隔震橡胶支座模拟 ........................................................... 错误!未定义书签。 6.3隔震橡胶支座布置 ........................................................... 错误!未定义书签。 6.4地震动时程选择 ............................................................... 错误!未定义书签。 6.5设防地震分析 ................................................................... 错误!未定义书签。 6.6罕遇地震分析 ................................................................... 错误!未定义书签。 6.7抗风验算 ........................................................................... 错误!未定义书签。 7.隔震构造措施......................................................................... 错误!未定义书签。 7.1建筑结构........................................................................... 错误!未定义书签。 7.2给排水............................................................................... 错误!未定义书签。 7.3电气................................................................................... 错误!未定义书签。

机械密封设计中的选型

机械密封设计中的选型 机械密封结构型式的选择是设计环节中的重要步骤,必须先进行调查:①工作参数—介质压力、温度、轴径和转速。②介质特性—浓度、粘度、腐蚀性、有无固体颗粒及纤维杂质,是否易汽化或结晶等。③主机工作特点与环境条件—连续或间歇操作;主机安装在室内或露天;周围气氛性质及气温变化等。④主机对密封的允许泄漏量、泄漏方向(内漏或外漏)要求;寿命及可靠性要求。⑤主机对密封结构尺寸的限制。⑥操作及生产工艺的稳定性。 1.根据工作参数p、v、t选型 这里p是指密封腔处的介质压力,根据p值的大小可以初步确定是否选择平衡式的结构以及平衡程度。对于介质粘度高、润滑性好的,p≤0.8MPa,或低粘度、润滑性较差的介质,p≤0.5MPa时,通常选用非平衡式结构。p值超过上述范围时,应考虑选用平衡式结构。当p>15MPa时,一般单端面平衡式结构很难达到密封要求,此时可选用串联式多端面密封.υ是指密封面平均直径的圆周速度,根据υ值的大小确定弹性元件是否随轴旋转,即采用弹簧旋转式或弹簧静止式结构,一般υ<20~30m/s的可采用弹簧旋转式,速度更高的条件下,由于旋转件的不平衡质量易引起强烈振动,最好采用弹簧静止式结构。若p和υ的值都高时,可考虑选用流体动压式结构。t是指密封腔内的介质温度,根据t的大小确定辅助密封圈的材质、密封面的冷却方法及其辅助系统。温度t在0~80℃范围内,辅助密封圈通常选用丁腈橡胶O 形密封圈;-50℃≤t<150℃,根据介质腐蚀性强弱,可选用氟橡胶、硅橡胶或聚四氟乙烯成型填料密封圈:温度<-50或t≥150℃时,橡胶和聚四氟乙烯会产生低温脆裂或高温老化,此时可采用金属波纹管结构。介质浊度高于80℃时,在密封领域中通常就要按高温来考虑,此时必须采取相应的冷却措施。 2.根据介质特性选型 腐蚀性较弱的介质,通常选用内置式机械密封,其端面受力状态和介质泄漏方向都比外置式合理。对于强腐蚀性介质,由于弹簧选材较困难,可选用外置式或聚四氟乙烯波纹管式机械密封,但一般只适用p≤0.2~0.3MPa的范围内。易结晶、易凝固和高粘度的介质,应采用大弹簧旋转式结构。因为小弹簧容易被固体物堵塞,高粘度介质会使小弹簧轴向补偿移动受阻。易燃、易爆、有毒介质,为了保证介质不外漏,应该采用有封液(隔离液)的双端面结构。 按上述工作参数和介质特性选定的结构往往只是一个初步方案,最终确定还必须考虑主机的特征和对密封的某些特殊要求。例如,火箭发动机的密封寿命只需几分钟,但要求短时间内绝对不漏。舰船上的主机有时为了获得更有效的空间,对密封的尺寸和安装位置往往提出十分苛刻的要求,又如潜艇上的排水泵,在潜艇沉浮过程中,压力变化幅度很大等。在这些情况下,就不能按常规选择标准结构,而必须对具体工况作特殊设计,同时采取必要的辅助措施。 机械密封件-1 104型/109型/108型/FBD型材质:

应用PKPM进行隔震结构设计手册

北京构力科技有限公司 应用PKPM进行隔震结构设计—隔震结构设计一站式解决方案 北京构力科技有限公司 2017/6/6

目录 第 1 章隔震结构的基本概念 (4) 一引言 (4) 二隔震结构的基本原理 (5) 1从加速度反应谱分析隔震原理 (5) 2隔震结构的原理详细分析 (7) 三隔震结构减震效果及经济性分析 (7) 四隔震结构的适用范围 (7) 五对隔震结构设计的基本要求 (7) 第 2 章隔震结构设计的完整流程及详细步骤 (9) 一隔震设计的总体流程 (9) 二结构隔震层位置的确定 (10) 三初步确定隔震结构的隔震目标 (12) 四隔震支座介绍 (13) 五非隔震结构上部方案布置 (14) 1非隔震结构上部方案总体布置要求 (14) 2非隔震结构构件截面选择 (14) 3对于非隔震结构底部上支墩层的布置 (15) 4非隔震结构相关特殊情况下的布置要求 (16) 5非隔震结构计算的各项指标的控制 (17) 六隔震支座的初步选择及布置 (17) 七隔震层的设计及验算 (21) 1隔震模型中输入隔震层 (22) 2隔震结构地震作用参数及相关参数修改 (23) 3非隔震模型柱底铰接改刚接,组装隔震层形成隔震模型 (25) 4隔震支座柱的布置及参数输入 (25) 5 隔震信息下设置阻尼比的确定方法 (27) 6 SATWE软件对于等效线性模型的处理 (29) 7 隔震支座验算结果的查看与校核 (29) 八隔震结构的抗风及抗倾覆验算 (40) 1隔震结构抗风验算 (40) 2隔震结构弹性水平恢复力验算 (40) 3隔震结构在罕遇地震下的抗倾覆验算 (41) 九隔震层隔震支座的优化 (42) 十减震系数的计算 (43) 1隔震结构减震系数计算规范要求 (43)

油封密封_轴的设计

NOK 油封安装轴设计 关于安装油封的轴与腔体的设计规格如下所示。对各型式轴的设计规格与倒角部分的规格及腔体孔的设计规格与形状、尺寸 1.轴的设计规格与倒角(棱)部分的形状与尺寸轴的设计规格。 轴的设计规格 型式规格项目 S 型,T 型,V 型,K 型,TCV 型,TCN 型 D 型,SBB 型, 大直径SB 型,大直径TB 型 ,MG 型 J 型 T4型 QLFY 型 材质 机械结构用碳素钢 表面硬度 30HRC 以上 50HRC 以上 30HRC 以上 表面粗糙度 (0.63~0.2)Ra (2.5~0.8)Ry (0.4~0.1)Ra (1.6~0.4)Ry (3.2~1.6)Ra (12.5~6.3)Ry 加工方法 无进给精磨 热处理后,进行磨削后镀硬铬 层,进行抛光。 机械加工 尺寸公差 JIS h9 JIS h8 轴倒角部分的形状与尺寸 型式轴径类 S 型.T 型,V 型,TCV 型,TCN 型,T4型,D 型,MG 型,VR 型,Z 型 J 型 QLFY 型 轴径d d1 10以下 d -1.5 d -3.5 大于10~20以下 d -2.0 d -4.0 大于20~30以下 d--2.5 d -4.5 d -1.5 大于30~40以下 d -3.0 d -5.0 大于40~50以下 d -3.5 d -5.5 大于50~70以下 d -4.0 d -6.0 大于70~95以下 d -4.5 d -6.5 d -2.0 大于95~130以下 d -5.5 d -7.5 大于130~240以下 d -7.0 d -9.0 大于240~300以下 d--11.0 d -12.0 注: d1尺寸,设定比密封唇内径小。油封应确实装入,不得有唇口损伤、弹簧断开等 SBB 型,大直径SB 型,大直径TB 型轴倒角部分的形状与尺寸(轴径>300mm) 型式轴径分类 SBB 型,大直径SB 型,大直径TB 型 轴径d d1 大于300~400以下 d -12 大于400 ~500以下 大于500~630以下 d -14 大于630~800以下 大于800~1000以下 d -18 大于1000~1250以下 大于1250~1600以下 d -20

车身密封结构设计

第一节 概述 第二节 车身前后风窗玻璃的安装与密封 第三节 轿车车门密封结构设计 第四节 发动机罩与行李箱盖的密封 第二节车身前后风窗玻璃的安装与密封 车身前后风窗玻璃的安装有两种方法:橡胶密封条镶 嵌法和玻璃直接粘接固定法。 一、前后风窗玻璃橡胶密封条镶嵌法

断面上设计出具有较大弹性的“唇边”,使它与玻璃和窗框贴紧以防止雨水和灰尘的漏入。1、断面形状和尺寸设计要求 各部分有必要的断面厚度,以满足对风窗玻璃的支承功能和装配关系。 二、前后风窗玻璃直接粘接固定法 目前在前后风窗玻璃的安装上广泛采用直接用粘接剂将风窗玻璃粘到窗框上的玻璃安装方法。1、特点?玻璃通过粘接剂粘接在窗框的止口上?使用密封胶加以密封?在玻璃外侧的四周安装装饰条,以提高美观性和装饰性。?装饰条的装配结构有通过扣件固 定或直接粘接等方法。

单层密封 2、密封结构和装配方式 密封条安装在车门上 密封条安装在车门上密封条安装在门框上 密封条安装在门框上双层密封密封条安装在车门上密封条安装在车门上混合安装混合安装三层密封 近年来,由于车辆高速行 驶时对风动噪声隔音性能 要求的提高和防止高压洗 车时水的浸入,轿车车门多采用三层密封。 ?装配方式:粘着式、嵌入式、卡夹式和镶嵌式3、车门密封条的断面形状 一般分中空形和唇形两种。 ?中空形密封条是通过空腔的变形来调节面接触强度的,其密封性及缓冲防振性均好,多作为结构的主要密封部分。 ?唇形密封条一般为线接触,接触强度主要取决于根部的厚度。二、门窗玻璃的密封结构及密封条1、车门玻璃与窗框之间,除要保证密封性外,还要使玻璃能平稳地沿升降面移动,降低车辆在行驶中玻璃的振动及噪声。这在结构上通过安装在窗框内的导槽来实现。?通常采用绒毛织物粘接在表面上的方法,来实现橡胶与 玻璃的非直接接触,以减小 摩擦系数。 ?导槽的两侧通过弹性的唇边 或较软的压缩面贴紧玻璃, 使玻璃升降平稳、振动小, 又能保证升降轻便。

密封结构设计技术规范

密圭寸结构设计技术规沱

本技术规范起草部门:技术与设计部本技术规范起草人:何龙本技术规范批准人:唐在兴本技术规范文件版本:A0 本技术规范于2014年8月首次发布 密封结构设计技术规范 1 适用范围 本技术规范适用于灯具外壳防护使用密封圈的静密封结构设计。包括气密性灯具密封结构设计。 2 引用标准或文件 GB/T 3452.1-2005液压气动用O形橡胶密封圈第1部分:尺寸系列及公差 GB/T 3452.3-2005液压气动用O形橡胶密封圈沟槽尺寸 GB/T 6612-2008 静密封、填料密封术语 JB/T 6659-2007 气动用0 形橡胶密封圈尺寸系列和公差 JBT 7757.2-2006 机械密封用O形橡胶圈 JB/ZQ4609-2006 圆橡胶、圆橡胶管及沟槽尺寸 《静密封设计技术》(顾伯勤编著) 《橡胶类零部件(物料)设计规范》(在PLM中查阅) 3 基本术语、定义 3.1 密封:指机器、设备的连接处没有发生泄露的现象(该定义摘自《静密封设计技术》)。 3.2 静密封:相对静止的配合面间的密封。密封的功能是防止泄漏。 3.3 泄漏:通过密封的物质传递。造成密封泄漏的主要原因:(1)机械零件表面缺陷、尺寸加工误 差及装配误差形成的装配间隙;(2)密封件两侧存在压力差。减小或消除装配间隙是阻止泄漏

的主要途径。 3.4 接触型密封:借密封力使密封件与配合面相互压紧甚至嵌入,以减小或消除间隙的密封。 3.5 密封力(或密封载荷):作用于接触型密封的密封件上的接触力。 3.6 填料密封:填料作密封件的密封。 3.7 接触压力:填料密封摩擦面间受到的力。 3.8 密封垫片:置于配合面间几何形状符合要求的薄截面密封件。按材质分有:橡胶垫片,金属垫 片、纸质垫片、石绵垫片、塑料垫片、石墨垫片等。 3.9 填料:在设备或机器上,装填在可动杆件和它所通过的孔之间,对介质起密封作用的零部件。 注:防爆产品电缆引入所指的填料在GB3836.1 附录A2.2 条中另有定义,指粘性液体粘接材料。 3.10 压紧式填料:质地柔软,在填料箱中经轴向压缩,产生径向弹性变形以堵塞间隙的填料。 3.11 密封圈:电缆引入装置或导管引入装置中,保证引入装置与电缆或导管与电缆之间的密封所使用的环状物(该定 义摘自GB3836.1 第3.5.3 条对防爆产品电缆密封圈的定义)。 3.12衬垫:用于外壳接合处,起外壳防护作用的可压缩或弹性材料。(该定义摘自GB3836.1第6.5 条和GB3836.2第5.4条对防爆产品密封衬垫的定义)。 3.13 压缩率:密封圈装入密封槽内受挤压,其截面受压缩变形所产生的压缩变形率。也称作压缩比 注1:上述术语除3.1、3.11和3.12条外,其余均摘自《GB/T6612-2008静密封、填料密封术语》

相关文档
相关文档 最新文档