文档库 最新最全的文档下载
当前位置:文档库 › 污水厂污泥干化技术的运用研究

污水厂污泥干化技术的运用研究

污水厂污泥干化技术的运用研究
污水厂污泥干化技术的运用研究

污水厂污泥干化技术的运用研究

发表时间:2019-02-26T14:40:26.007Z 来源:《防护工程》2018年第33期作者:程善平[导读] 污泥是城市污水处理后的一种衍生物,其中含有大量的水、重金属、病原体、有机物质等。安徽省城建设计研究总院股份有限公司安徽合肥 230041 摘要:污泥是城市污水处理后的一种衍生物,其中含有大量的水、重金属、病原体、有机物质等。污泥处理的方法很多,但是不论哪种处理方法,都要经过干化,这是污泥减量化的重要途径。本文将对污泥干化技术及主要设备进行综述探讨。

关键词:污水厂;污泥干化;技术运用

导言

污泥是城市污水处理后的一种衍生物,其中含有大量的水、重金属、病原体、有机物质等。如果污泥处理不当,不仅会增加污泥运输和后续处理的难度,还会污染水体、土壤等,对周围环境和居民身体健康造成极大的威胁。我国常用的污泥处理方法有填埋、堆肥、焚烧及土地利用等,但污水厂污泥含水率高,无法直接处理和利用,因此,首先需要先对污水厂污泥进行干化处理以后才能进行后续处理、处置和综合利用。

1污泥干化机理

污泥干化的主要目的是去除或减少污泥中的水分。干化过程中,污泥的形态主要分为三个阶段:第一阶段,湿区阶段,污泥含水率较高,大于60%,具有很好的自由流动性,易于流入干化装置;第二阶段,黏滞区阶段,污泥含水率略有降低,在40%~60%的范围内,具有一定的黏性,不易自由流动,该区域是污泥干化处理过程中需要避免的区域;第三阶段,粒状区阶段,污泥含水率降至40%以下,污泥呈现颗粒状,极易与湿污泥或其它物质混合。

污泥水分的脱除过程主要分为两个阶段:污泥表面水分的汽化蒸发过程和污泥内部水分的扩散过程:(1)蒸发过程:它主要指的是污泥在干化的过程中,寄存在物料表面上的水分发生汽化。而介质中的水蒸气分压远远高于物料表面的水蒸气压。因此,在气压的差异作用下,水分从物料表面移入介质。(2)扩散过程:这个过程与汽化的关系非常密切,属于一种传质过程。当物料表面经历蒸发过程后,其表面上的水分会被蒸发掉,物料表面和内部发热湿度产生差异,这时就需要热量的推动力将水分从内部转移到表面。在污泥的干化处理中,蒸发过程和扩散过程的持续、交替就是污泥干化的机理。 2城市污水处理厂不同污泥干化工艺

2.1调理--压榨干化工艺

调理--压榨干化工艺的流程为:将污水处理厂浓缩池污泥泵送至综合调理池,投加专用调理剂和石灰后进行混合搅拌,使其充分混合,再经污泥泵送至板框压滤机进行压榨脱水,压榨干化后的污泥外运进行后续处置,污泥脱水滤液排入污水处理厂水处理单元。

调理--压榨干化工艺的特点及优势为:调理剂配方多样(包括化学类调理剂、生物类调理剂等),调理剂选择时可根据当地实际条件,选择价格合理、用量少、材料易得、调理效果好,也可根据后续污泥资源化利用方式不同来灵活调整调理剂配方;根据污泥特性,选择适宜的板框压滤机滤布,在保证处理效果的前提下有效延长滤布使用寿命;调理、进料、压榨均采用在线监测、自动控制全流程系统可实现智能控制。

2.2加钙稳定干化工艺

将机械脱水后污泥(含水率80%左右)与生石灰(CaO)等添加剂充分混合,生石灰与水发生反应,产生大量热量来蒸发污泥中的水分,降低污泥含水率。经加钙干化工艺处理后,污泥固化率提高且pH值发生变化,在碱性环境及放热反应下杀灭大量细菌、病毒,同时钝化重金属、分解污泥中的有机物,消除了污泥恶臭气味,污泥得到有效稳定。对脱水后污泥采用加钙稳定干化工艺进行处理,不必新增工程占地面积,污泥干化工艺系统设备可设置于污水处理厂污泥储运间内运行,对污水处理厂原污泥处理区平面布置、工艺流程设计基本未产生影响,在保证出料含水率≤60%的前提下,能够与原设计最佳适应与结合。

加钙稳定干化工艺也可以通过调整系统配置,灵活的与其它多种工艺进行衔接,满足污泥不同的处置要求。处理后的污泥泥质(pH、重金属、有机污染物含量、细菌和病毒等指标)满足与城市垃圾混合填埋或进行制砖、水泥填料及路基填料等资源化利用要求。

2.3生物沥浸干化工艺

生物沥浸干化工艺是一种新型的污泥深度脱水生物技术,城市污水处理厂污泥处理中,用具有特殊能力的微生物菌群(例如嗜酸性硫杆菌)接种浓缩污泥,同时供应少量的专用营养剂,对污泥进行改性处理。经改性处理后,污泥恶臭明显消除,大量致病菌被杀灭,污泥沉降性能增强,脱水性提高,重金属去除。

将生物沥浸干化工艺与污水处理厂处理工艺结合时,可设置在原污泥浓缩池后,污泥浓缩池排放直接通过污泥泵提升进入生物沥浸反应池,采用该技术可以处理含水率96%~98%左右的浓缩污泥;经生物改性后的污泥沉降性大大提高,经污泥沉淀池后可直接进入板框脱水机压滤脱水,脱水过程无需再添加传统絮凝剂,出料为含水率55%~60%左右的高干度泥饼。 3新型污泥干化技术

3.1水热干化技术

该方法通过水热反应对污泥改性,破坏污泥细胞结构和胶体结构,提高其脱水性能,该技术已趋成熟,污泥水热处理相变热和能耗较低,但也存在一些局限性。

3.2油炸干化技术

该工艺常用各种回收废弃油为热介质,将污泥浸于热油中煎炸,通过控制操作条件提高传热效率,实现污泥快速脱水干化。目前该技术尚处于起步阶段,其实际应用过程中的经济性和环境安全性尚有待探讨。 4污泥干化设备

4.1直接干化

4.1.1带有内破碎装置的回转圆筒干燥机

新型污泥干化技术在印染污泥处理上的应用分析

新型污泥干化技术在印染污泥处理上的应用分析 发表时间:2020-04-03T09:45:19.553Z 来源:《城镇建设》2020年3期作者:衣启坤[导读] 印染污泥是指污水处理厂在污水处理过程中产生的污泥摘要:印染污泥是指污水处理厂在污水处理过程中产生的污泥。近年来,印染污水处理的发展增加了污水污泥的数量,因此,污泥的安全处理处置问题日益突出。 关键词:新型污泥干化;印染污泥处理;应用前言 国内固废处理尚在发展阶段,干化焚烧联运工艺较为复杂,建设难度较高,近年来国内成功的案例不多,且含有多种重金属以及硫化物、苯系物、酚类等,散发恶臭气味,含有易燃易爆物质,在选择处理工艺时需考虑防爆问题。 1工艺流程污水处理场产生的有机泥经污泥浓缩罐重力浓缩脱水后送至离心脱水机,脱水后的湿污泥含水率约为80% ~85% ,经过干化处理后含水率降至30%。污泥的干化是基于薄层涡轮干化技术,利用1.0 MPa 蒸汽作为热源,从干化机出来的干泥和工艺气体一起进入旋风分离器,分离后的干泥通过冷却输送机送往焚烧炉,工艺气体进入文丘里洗涤塔除尘后,由离心风机抽取并循环到闭环干化回路中。为了保持闭环 干化回路微负压,与湿污泥水分蒸发量相等的一股工艺气体从闭环干化回路中抽出,经过冷凝后的臭气被送往污水处理场臭气处理系统进行处理。干化后的污泥进入回转窑中进行焚烧,回转窑的转速在0.2~1.5 r/min 间可调,污泥在850 ℃的环境下停留1.5~2.0 h,焚烧后的炉渣经水降温后外运,焚烧产生的烟气,由窑体尾部进入二燃室,烟气在1 100 ℃以上的高温条件,停留时间不小于2 s,避免二噁英产生。从二燃室出来的高温烟气进入余热锅炉,利用烟气中的余热加热除氧水生产1.0 MPa 的饱和蒸汽,换热后烟气进入经由急冷塔-布袋除尘器-湿式洗涤塔-烟气再热器等烟气处理后高空排放。 2材料和方法 2.1 实验材料和设备 铁粉取自某机械加工产生的废铁屑,经脱油处理后采用氮气保护的球磨机粉碎至100 目;污泥碳粉来自以热解法处理印染污泥制备的污泥碳粉;砂质页岩取自浙江湖州太湖周边的砂质页岩。污泥碳粉和砂质页岩分别放于105 ℃电热恒温鼓风干燥箱内干燥至恒重并粉碎至100目。污泥碳灰分(600 ℃,有氧煅烧)及砂质页岩的化学成分组成采用X 射线荧光光谱仪(XPS,S8TIGER,德国Bruker)进行测试;污泥碳和砂质页岩的总无机碳(TIC)测试采用日本岛津TOC-5000A 总有机碳分析仪进行测定.印染废水取自浙江省湖州市诚泽水务印染废水处理厂的气浮出水。实验使用的药剂均为AR 级,药剂配制使用的水为经RO 膜反渗透处理后的水.主要试剂有:硫酸(H2SO4,ρ=1.84 g/mL;重铬酸钾(K2Cr2O7)溶液,C=0.250 mol/L;硫酸汞(HgSO4)溶液,ρ=100 g/L;酒石酸钾钠(KNaC4H6O6·4H2O),ρ=500 g/L;实验设备有DHG-9246A 电热恒温鼓风干燥箱(上海精宏实验设备有限公司);BY-600 荸荠式包衣机(长沙旭朗机械科技有限公司);YQD-06 全自动制丸机(广州市杨鹰医疗器械有限公司);RTL1500×3 三段式转动管式炉(南京博蕴通仪器科技有限公司);5B-3B(V8)多参数水质测定仪(北京连华永兴科技发展有限公司)。 2.2自制微电解反应装置 自制微电解反应装置,反应装置截面积为50 cm2,高度500 mm,5 个单独的微电解反应装置均由聚丙烯材料制成.距反应器底部10 cm 设有滤板将反应器划分为进水区与反应区,进水区设置曝气头和进水口并分别与风机和蠕动泵相连,反应区填充400 mm 高度的污泥碳微电解材料(体积为2L),每隔10 cm 设置4 个取样管,在反应区顶端设置出水口。 2.3水质及为电解材料的测试方法 CODCr 依据重铬酸盐法测试方法(GB 11914-89),采用5B-3B(V8)多参数水质测定仪(北京连华永兴科技有限公司)测定,具体测试方法为:取水样2.5 mL 于消解管中,依次加入重铬酸钾(K2Cr2O7)溶液0.7 mL,H2SO4-Ag2SO4 溶液4.8 mL,摇匀后放入消解槽内于165℃消解10 min,水浴冷却至室温后放入仪器进行测试。氨氮采用5B-3B(V8)多参数水质测定仪(北京连华永兴科技有限公司),按照GB 7479-87 纳氏试剂比色法进行测定,具体测试方法为:取水样10 mL 于试管中,依次加入酒石酸钾钠(KNaC4H6O6·4H2O)溶液1 mL,纳氏试剂1.5 mL,混匀放置10 min 后放入仪器进行测试。为了测试的准确性,每个样本至少重复测试三次并取平均值。 3结果与讨论 3.1 污泥碳粉和砂质页岩化学组成分析 污泥碳粉和砂质页岩的TIC 测试结果分别为化学组成XPS 测试结果和TIC 测试结果表明,砂质页岩中的SiO2(62.47%)含量远超过污泥碳粉SiO2(15.29%)含量,但其Al2O3(25.37%)的含量远低于污泥碳分中Al2O3(46.07%)含量。污泥碳中高比例Al2O3 主要来源于污水处理过程中大量使用的聚合氯化铝絮凝剂(PAC)导致的,Si 和Al 元素是陶粒骨架成分的主要组成部分。而污泥碳粉中的气态组分(主要是Fe2O3)含量接近砂质页岩所含气态组分的两倍,因此推断污泥碳粉为陶粒的成孔性能具有极大的作用并且可以起到降低陶粒堆积密度的作用。需要尤其注意的是:污泥碳粉中重金属含量高,这与印染或者染料制造过程中的催化剂、金属类染料等有直接关系。最后,污泥碳粉中无机含碳量高,这主要与诚泽水务的印染废水主要是纤维类工艺品有关.因此,相比市政污泥碳,印染和染料污泥制备的污泥碳具有碳含量高和重金属含量高的特点。 3.2 污泥碳内电解材料性能影响参数分析 采用Minitab17 软件,进行三因素五水平L25(53)的设计(见表2)以考察各因素对污泥碳微电解材料性能的影响.以印染气浮池出水CODCr 和氨氮去除率作为相应值。烧结温度为800、900、1000 ℃,反应180 min 后,污泥碳材料对印染气浮池出水CODCr 去除率分别为42.85%、50.94%、44.55%,对氨氮的去除率分别为28.05%、41.38%、30.12%。在烧结温度低于900 ℃时,污泥碳材料对印染废水CODCr 和氨氮的去除率随着温度的升高在逐渐升高,当高于900 ℃时,随着温度的升高对废水CODCr 和氨氮的去除率在逐渐降低,这可能是由于烧结温度在800 ℃时,温度偏低,材料处理过程中容易松散脱落,脱落过程导致出水色度增大,同时材料稳定性差,都会降低处理效果。在1000 ℃时温度过高,材料内部已达到熔融状态,砂质页岩和污泥碳粉中的玻璃相组分会熔化,使铁屑和污泥碳粉表面活性降低,会阻碍铁碳原电池与氨氮和有机物的接触,从而影响CODCr 和氨氮处理效果。 4 结论

污泥干化详细方案

污泥干化方案 1.1 总体方案思路 本项目含铜污泥的处理处置流程为:污泥—收集运输—进场接收(称重计量)—鉴别—贮存—干化预处理—包装外售。 1.2 污泥干化工艺选择 根据调研资料,含铜污泥含水率一般在75%~80%,污泥呈半固态,需干化脱水后送至金属冶炼厂进一步提炼。污泥干化常规方法主要有自然干化、热力干化、高干脱水等。 1.2.1自然干化 自然干化是指将污泥摊铺晾晒于具有自然滤层或人工滤层的干化场中,借助自然力和介质(如太阳能、风能和空气),使得污泥中的水分因周边空气的蒸汽压的不同而形成从内向外的迁移(蒸发)。该方法适用于气候比较干燥、占地不紧张以及环境卫生条件允许的地区。由于气候条件(降雨量、蒸发量、相对密度、风速、年冰冻期)起着至关重要的作用,我国南方大多数具有多雨潮湿季节的地区难以适用。此外随着工业化、城市化的高速发展,很多北方的大中型发达城市也已难找到适当的土地。 自然干化的周期长(根据气候条件差异极大),可以采用频繁机械搅拌和翻到工艺的强化自然干化来缩短周期;但占地面积大,臭气污染严重等问题的存在,仍以处理小规模经过厌氧消化的脱水污泥为佳。1.2.2热力干化 污泥的大规模、工业化处理工艺中最常见的是热力干化。事实上,

通常人们所讨论的“干化”多数是指热力干化。热力干化是指利用燃烧化石燃料所产生的热量或工业余热、废热,通过专门的工艺和设备,使污泥失去部分或大部分水分的过程。这一过程具有处理时间短、占用场地小、处理能力大、减量率高、卫生化程度高、外部因素影响小(如气候、污泥性质等)、最终处置适用性好和灵活性高等优点。 污泥热力干化工艺通常有半干化(含水率不高于40%)和全干化(含水率低于20%)两种,热干化工艺一般仅用脱水污泥,主要技术性能指标(以单机升水蒸发量计)为:热能消耗2940~4200KJ/kgH2O,电能消耗0.04~0.90KW kgH2O。污泥含水率55%~65%时,热值为 4.8~6.5MJ/kg,可自持燃烧,这样不会受电厂热负荷的影响,真正达到无害化处理效果。 但热力干化的缺点在于初建投资大,具有一定的运行风险,采用化石燃料提供热能的成本因燃料价格而相对较高。因此,对于人口密集、土地资源紧张的大中型城市污水厂来说,热力干化成为一种首先的减量化工具。 1.2.3高干脱水 高干脱水一般是指采用化学和物理的综合方法对污泥颗粒进行表面化学改性,使其颗粒表面的水和毛细孔道中的束搏水使其成为自由水,然后通过高强度机械压滤析出达到高干的目的。一般污泥是通过加药改性和机械压滤方式把含水率从80%左右降低至50%以下,干化后的污泥或填埋或送至燃煤电厂或垃圾电厂与燃煤或生活垃圾混合焚烧发电。

污泥干化焚烧技术及运用

污泥干化焚烧技术及运用 发表时间:2019-12-23T13:22:55.237Z 来源:《电力设备》2019年第18期作者:吴雪梅 [导读] 摘要:随着社会经济的发展和人们生活水平的提高,工业废水和城市污水的产量日益增多,污水在处理的过程中会产生大量的悬浮物质,这些物质统称为污泥。污泥的成分较为复杂,若任意堆放将会对人类及动植物的健康造成较大影响。 (华电青岛发电有限公司山东省青岛市 266032) 摘要:随着社会经济的发展和人们生活水平的提高,工业废水和城市污水的产量日益增多,污水在处理的过程中会产生大量的悬浮物质,这些物质统称为污泥。污泥的成分较为复杂,若任意堆放将会对人类及动植物的健康造成较大影响。减量化、稳定化和无害化是污泥处理的基本原则。污泥焚烧技术具有处理速度快、减量化程度高、能源可再利用等优点,在国内外被广泛应用。该技术是污泥处置最彻底的方式,当污泥中有毒有害物质含量很高且短期不可降低时尤为实用。 关键词:市政污泥;干化;焚烧;运用 一、污泥干化、焚烧技术介绍 1.1污泥干化技术 通过开展污泥干化能够有效降低污泥体积,通常能够缩小到4倍以上,生产出稳定、无菌、无臭的原生物,干化后的污泥产品用途非常广泛,不仅能够用作于肥料、土壤改良剂等,同时也能够替代部分能源。将污泥干化设备根据介质与接触方式进行划分,能够分为直接加热、间接加热两种形式。其中,直接加热又称之为对流干燥,主要通过热空气与污泥直接接触,从而蒸发污泥表面上的水分。该种方法利用率高、能够让污泥的含固率从25%提升到85%以上,但由于是直接与污泥接触,传热介质极其容易受到污泥污染,废气需要通过无害处理才能够排放。直接干燥设备主要是转鼓干燥器等。但由于直接干燥尾气处理的成本相对较高,因此可以采用尾气循环技术进行处理,也就是将尾气传输回热风炉中,其余会经过再生热氧化器加温处理后再次排放。间接加热不与污泥直接接触,而是通过热源加热容器表面所传递的热量接触污泥,从而实现干化目的。该种方式能够不接触热介质,避免了介质与污泥分离环节,但是热传输效率与蒸发率相对较差,污泥中的有机物质分解不够彻底,而且还需要配备单独热源系统,会大大提高维护成本。 1.2污泥焚烧技术 污泥焚烧需要在非常高的温度下进行,在氧气充足的环境下让污泥中的有机物质进行燃烧反应,从而转化为二氧化氮、二氧化碳、水蒸气等气体,焚烧产物主要是烟气与灰渣。焚烧处理技术能够将有机物质全部分解,并且能够彻底杀死病原体,提高重金属稳定性,并且焚烧后的污泥体积只有机械脱水污泥体积的1/10。污泥焚烧设备主要有阶梯焚烧炉、多段焚烧炉等。具有干化后焚烧和直接焚烧两种形式。其中,干化后焚烧设备前期投资相对较大,但处理成本相对较低,从长远角度和安全角度分析,干化后焚烧形式的经济性、应用性都非常高。 二、市政污泥干化焚烧技术的应用要点 2.1污染控制与尾气处理 根据污泥的特点与来源进行分析,不同泥质的污泥干化焚烧中所产生的气体多少都会对生态环境造成一定影响,包括酸性气体、重金属、二恶英等。因此,我们必须要加强废气的处理工作,保障所排放的气体能够达到国家要求标准。根据有关文献显示,在焚烧炉中添加石灰石或生石灰,能够有效降低烟气中的二氧化氮与二氧化硫等有害气体。其次,对于重金属来说,包括镉、汞、铅等,虽然经过干燥焚烧能够大大减少飞灰体积和灰渣,但重金属依然会残留在残渣当中,因此,如果重金属量没有超标,可以将残渣进行回收制作砌砖和水泥等;如果重金属含量超标,为了不对土地造成污染,不能直接填埋处理,需要采用飞灰再燃的形式进行处理,降低重金属含量后即可进行填埋,或者采用化学制剂将重金属分解后再利用。二恶英对环境的影响非常大,其主要是含有两个氧键连接两个苯环的有机氯化物,是一种毒性非常强的致癌物质。二恶英的产生渠道主要有两种,一是污泥中的氯有机物较高,通过高温分解能够产生二恶英,另一种是未完全燃烧所产生的二恶英。在污泥干化焚烧中,为了能够降低二恶英产生量,通常可以在干化焚烧中添加化学药剂,在燃烧过程中能够提高“3T”作用效果,从而使燃烧物和氧气充分混合,形成富氧燃烧状态,保障燃烧率,降低二恶英前驱物生成。其次,可以通过袋式除尘器或活性炭,这样能够降低二恶英物质重生和吸附率。再者,通过改进燃烧装置与废气处理系统,将被吸附二恶英的灰粒转移到灰渣系统中,之后对灰渣进行加热处理,加热温度至少在1200℃以上,这样能够在高温中迅速分解、燃烧二恶英。 2.2污泥焚烧产物利用 虽然污泥干化焚烧产物能够进行堆肥和填埋,但其污泥干化焚烧产品计数依然非常大。因此,为了避免污泥产品遇水或在潮湿环境下产生二次污染,我们必须要强化污泥产品的利用率。由于污泥焚烧后的化学成分与黏土化学成分类似,所以可以将污泥焚烧产物进行烧灰制砖,在制作过程中加入少量的硅砂、黏土,还能够制造出高质量的空心砖,具有质量轻、保温性好、强度高、抗震性强等特点,这样不仅能够降低填埋场所占用的土地空间,同时也能够为建筑行业提供更多的材料。 2.3降低污泥处理成本 由于不同的干化焚烧工艺所造成的成本不同。从本质上分析,污泥处理成本主要有设备成本与运行成本。例如流化床焚烧炉,国产设备相比国际要便宜25%~50%左右,因此,可以重点考虑国产焚烧设备。对于特殊行业所产生的污泥,需要根据污泥特点选择适用性强的污泥处理技术,这样能够降低污泥处理成本,提高热能利用效率,降低运行损耗。 三、问题与建议 3.1在现有燃煤锅炉上直接掺烧污泥。目前部分城市,尝试将不超过总燃料量10%的湿污泥直接掺入循环流化床燃煤锅炉中混烧。由于污泥组分复杂,污泥中的有害组分会导致尾部受热面腐蚀和二次污染物的潜在排放,对原有电厂运行和周边环境造成影响。此外,这种方式污泥处理量不能太大,对于污泥产生量多的城市难以满足要求。目前尚无相应的污泥燃煤锅炉排放标准,从环境保护和能源利用综合考虑,目前的研究积累还不足以支撑大规模工业性推广活动,只能在个别项目中因地制宜,谨慎实施。 3.2来料污泥脱水不到位。从温州项目的实际运行情况来看,来料污泥脱水不到位是影响污泥干化焚烧项目处理处置成本的关键原因。大多数污水处理厂仅重视净化水的指标参数是否满足相应规范的要求,而忽视所产生污泥的品质是否满足国家标准规范。例如污泥的含水率、矿物油脂含量等指标大部分污水处理厂无法达到,这将大大增加了污泥处理处置的难度。因此,建议对污水处理厂产生的污泥进行统

污泥干化焚烧处理技术.

污泥干化焚烧处理技术 公司简介: 华西能源工业股份有限公司(原东方锅炉工业集团有限公司)位于四川省自贡市,是我国大型电站锅炉、大型电站辅机、特种锅炉研发制造商和出口基地之一。华西能源一直专注于各类大中型电站锅炉以及世界先进动力技术的研发、设计和制造,开发了具有国内领先水平的以煤粉、煤矸石、水煤浆、油页岩、石油焦、油气、高炉煤气及工业废弃物与生活废弃物等为燃料的高新锅炉技术,并发展成为我国专业从事电站锅炉、碱回收锅炉、生物质燃料锅炉、垃圾焚烧锅炉、油泥砂锅炉、高炉煤气锅炉、工业锅炉以及其它各类特种锅炉研发、设计、制造的大型骨干企业。 污泥干化焚烧技术来源 华西能源和韩国HANSOL EME等国外知名公司合作,可以提供湿污泥直接焚烧系统、污泥干化焚烧系统、污泥全干化系统及污泥半干化系统的设计、供货、建设、运营、维护的全方位服务,也可提供技术咨询、工艺设计、核心及配套设备集成供货等多种形式服务。

污泥热处理的优势 焚烧 (最大程度的 细菌和微生

污泥处理技术 干化: 间接水平转碟式干化机 焚烧: 具有高效能量回收的流化床炉 污泥含水率和有机物含量对燃烧的影响 我国污水处理厂机械脱水污泥含水率多在80~83%(含固率在17~20%),有机物含量大多数在60%以下。从污泥的含固率和有机物含量对燃烧的影响曲线可以看到,污泥直接焚烧不能依靠自身的热量维持燃烧温度,要自持燃烧,污泥的含水率要小于70%。

污泥含固率和有机物含量对燃烧的影响曲线 “全干化”和“半干化”的选择 ?“全干化”指较高含固率的类型,如含固率85%以上;而半干化则主要指含固率在50-65%之间的类型。 ?将含固率20%的湿泥干化到90%或干化到60%,其减量比例分别为78%和67%,相差仅11个百分点。但全干化对干化系统的安全监测和措施要求更高,同样处理能力的干化机换热面积更大。这是因为污泥在不同的干燥条件下失去水分的速率是不一样的,当含湿量高时失水速率高,相反则降低。 ?含固率的选择要根据最终处置目的。对于干化焚烧,根据能量平衡和燃烧温度计算,一般采用半干化较为经济。 污泥干化焚烧 污泥干化焚烧系统组成

东莞市生活污水处理厂污泥处置管理手册

东莞市生活污水处理厂污泥处置管理手册东莞市生活污水处理厂污泥处置管理规定 第一章总则 第一条为加强对本市污泥处置工作的管理,预防和减少污泥二次污染,根据《中华人民共和国固体废物污染环境防治法》、《广东省固体废物污染环境防治条例》、《广东省严控废物处理行政许可实施办法》等有关规定,结合本市实际,制定本规定。 第二条本规定所称污泥,是指城市生活污水处理厂在污水处理过程中产生的半固态或固态物质,不包括栅渣、浮渣和沉砂。 第三条本市辖区内的城市生活污水处理厂(含樟村水质净化厂,下称污泥产生单位)产生的污泥的收集、运送、贮存、处置及监督管理适用本规定。工业污泥的处理处置按有关法律法规要求执行。 第四条本市污泥的处置,应遵循集中化、减量化、无害化及资源化的原则。 第五条市环保部门负责对污泥处置活动实施统一监督管理。市水务部门配合市环保部门对污泥产生单位进行日常监督管理,财政部门按程序对污泥处置费进行拨付。上述部门在各自职责范围内做好污泥处置的有关监督管理工作。 第二章污泥管理的一般规定

第六条污泥产生单位应当将污泥交由有严控废物经营资格的单位处置。污泥产生单位和污泥处置单位,应当建立、健全污泥管理责任制,切实履行职责,防止由污泥引发的环境污染事故。 第七条污泥产生单位和污泥处置单位,应当制定与污泥处置有关的规章制度和发生意外事故时的应急方案,并报市环保部门备案。 第八条污泥产生单位和污泥处置单位,应当对从事污泥收集、运送、贮存、处置等工作的人员进行相关法律和专业技术、安全防护及紧急处理等知识培训。 第十七条在特殊情况下,污泥产生单位按照规定设置的贮存点不足以容纳产生的污泥的,污泥产生单位应当及时通知污泥处置单位收运,处置单位应当增加收运频次或者车次,保证污泥的及时收运。 第十八条污泥运输车辆需依法取得相关道路运营资质后,方可进行污泥运输。 第十九条污泥产生单位在转移污泥前,应向市环保部门报批污泥转移计划,并申领严控废物污泥转移联单。污泥产生单位可委托污泥处置单位办理转移联单申报手续。禁止污泥运输单位、处置单位接收无转移联单的污泥。 第二十条污泥产生单位、运输单位和污泥处置单位应当如实填写严控废物污泥转移联单,并加盖公章。联单一式五联,并交由环保部门等相关部门存档留底。 第二十一条运送污泥,实行《污泥运送登记卡》管理制度。《污泥运送登记卡》按照一车(次)一卡,由污泥产生单位和污泥处置单位

低温污泥干化技术知识交流

低温污泥干化技术? 2009年以来,我国环境保护部、住房和城乡建设部以及科技部等部委,纷纷颁布了《污泥处理处置及污染防治技术政策》、《污泥处理处置污染防治最佳可行技术指南》以及《城镇污水厂污泥处理处置技术规范》等多项污泥处理处置的相关政策、规范及标准。这些文件明确了污泥干化焚烧技术在我国的定位及应用条件。其中,《污泥处理处置及污染防治技术政策》(2009年)明确提出:经济较为发达的大中城市,可采用污泥焚烧工艺。鼓励污泥焚烧厂与垃圾焚烧厂合建;在有条件的地区,鼓励污泥作为低质燃料在火力发电厂焚烧炉、水泥窑或砖窑中混合焚烧。该技术政策的颁布促进了污泥干化焚烧项目的建设,据不完全统计,目前已建成的项目接近40个,主要在建项目有30个。环保部出台的《城镇污水处理厂污泥处理处置污染防治最佳可行技术指南》(2010年)则确定了两个污泥处理最佳可行技术:厌氧消化和污泥堆肥;确定了两个污泥处置最佳可行技术:土地利用和污泥干化焚烧。文件细化了单独焚烧、混烧和掺烧的排放限值,以及相关环节的污染控制策略及技术经济适用性等。之后出台的《城镇污水处理厂污泥处理处置技术指南》(2011年)给出了不同技术应用的优先序。例如,厌氧消化后污泥优先考虑土地利用;不具备土地利用条件时,采用焚烧和建材利用。综上所述,干化焚烧技术是政策标准范围内规定的一项最佳可行技术,是我国污泥处理处置的主流技术之一。

低温污泥干化技术是一种通过低温干化系统产生的干热空气在系统内循环流动对污泥进行干化的处理技术。可把经板框压滤机、带式压滤机和离心脱水机的含固量20%的污泥干燥为含固率90%的干化泥块。该技术能够将污泥体积缩减4分之1,只需要消耗电能,不需要其他辅助能源,而且能耗是常规干化设备的1/3。进料时也无需特别对污泥进行均匀分布的装置,对湿度也没有任何要求,只要外界的温度在10-35摄氏度之间,整个系统就能保持高效率的运动。这种技术所集成的全智能自动控制系统,在提高运行效率的同时也具有良好的运行环境,用于处置特别是中小型污水厂产生的各类污泥。 污泥干化焚烧热处理技术作为最快捷、最彻底实现污泥减量化、稳定化、无害化的最终处置技术,在国外已发展成为主流的成熟技术之一。而在我国,雾霾问题的日益加剧,对污泥干化焚烧热处理技术而言成为一个挑战,社会舆论也俨然已把生活垃圾焚烧妖魔化,污泥干化焚烧热处理技术着“去”和“留”的局面。 低温污泥干化技术的设备结构 污泥除湿干化=热风循环+冷凝除湿烘干(除湿热泵)。其核心过程有二。其一:污泥水份吸热(热空气)汽化=湿空气+干料(汽化);其二:★湿空气经过除湿热泵=冷凝水+干燥热空气(冷凝)

污泥干化处理新技术

污泥干化处理新技术(伯特利污泥干化法) 伯特利是一家美国公司,专注于洁净技术,主要是矿业、化工、市政以及电力行业的涉及脱水、干化等方面的工艺处理。伯特利在天津设有工厂,在北方设有代表处。伯特利的产品线,包括干化系统,其一是低温射流干化,其二是微波干化。除此之外,还有干法分选设备、筛分设备、离心脱水设备,它们更多的是应用于矿业领域。伯特利之所以敢于突破自我、以后来者的身份强力进入污泥干化领域,其核心竞争力在于一套“污泥低温射流干化系统”。而该系统,则是完全不同于传统的热干化工艺的全新工艺系统。 干化过程耗时仅为3秒 该系统采取全新的机械干化方法,它能够在常温不借助外界热源的情况下,将物料中的水分分离,达到干化的目的。这是一种高效的非热传递原理的干燥方法。樊京念称,该工艺利用音障原理,热水解的过程全部在管道中完成,80%湿污泥从进入管道,到干化出来,全部过程只需3秒钟。“其原理与大家常见的‘爆米花’类似,在从加压到释放压力的过程中,水分瞬间消失”,樊京念补充到。7大特点造就便捷、高效 据介绍,伯特利的理念是致力于提供更经济、高效的污泥干化与资源化利用技术,为客户寻求经济效益与社会效益的最佳平衡点。而“污泥低温射流干化系统”具有的7大特点为行业便捷与高效地处置污泥提供了一种可能。 特点一:非蒸发工艺。整个干化过程温度控制在60℃以内,干化过程中不需要外接加热设备,完全是非蒸发工艺。 特点二:安全可靠。处理过程在常温常压之下,因此安全性方面没有任何隐患,可以做到安全可靠。 特点三:不需要添加任何的调理剂。包括石灰、三氯化铁等。 特点四:低温工艺。可以有效降低恶臭气体的排放。 特点五:有杀菌的作用。在热水解的过程中突然释放压力,压差的变化会让细胞壁破裂,经第三方机构检测,热水解过程对于大肠杆菌的灭活率可以达到95%以上。 特点六:有机质损失率低。由于只是低温加热,其中的有机质挥发损失极小,经

城市污水处理厂污水污泥排放标准

城市污水处理厂污水污泥排放标准 GJ3025-93 中华人民共和国建设部 1993-07-17批准 1994-01-01实施 1、主题内容与适用范围 本标准规定了城市污水处理厂排放污水污泥的标准值及检测、排放与监督。本标准适用于全国各地的城市污水处理厂。地方可根据本标准并结合当地特点制订地方城市污水处理厂污水污泥排放标准。如因特殊情况,需宽余本标准时,应报请标准主管部门批准。 2、引用标准 GJ18 污水排入城市下水道水质标准 GB3838 地表水环境质量标准 GB4284 农用污泥中污染物控制标准 GB3097 海水水质标准 GJ26 城市污水水质检验方法标准 GJ31 城镇污水处理厂附属建筑和附属设备设计标准 3、引用标准 3.1进入城市污水处理厂的水质,其值不得超过GJ18标准的规定。 3.2城市污水处理厂,按处理工艺与处理程度的不同,分位一级处理和二级处理。 3.3经城市污水处理厂处理的水质排放标准,应符合表1的规定。 城市污水处理厂水质排放标准(mg/L) 表1

注:1、pH、生化需氧量和化学需氧量的标准值系指24h定时均量混合水样的检测值; 其它项目的标准值为季均值。 2、当城市污水处理厂进水悬浮物,生化需氧量或化学需氧量处于GJ18中的高浓度范 围,且一级处理后的出水浓度大于表1中一级处理的标准值时,可只按表1中一级处理的处 理效率考核。 3、现有城市二级污水处理厂,根据超负荷情况与当地环保部门协商,标准值可适当 放宽。 3.4 城市污水处理厂处理后的污水应排入GB3838标准规定的Ⅳ、Ⅴ类地面水水域。 4、污泥排放标准 4.1城市污水处理厂污泥应本着综合利用,化害为利,保护环境,造福人民的原则进行妥善处理和处置。 4.2 城市污水处理厂污泥应因地制宜采取经济合理的方法进行稳定处理。 4.3 在厂内经稳定处理后的城市污水处理厂污泥宜进行脱水处理,其含水率宜小于80%。 4.4 处理后的城市污水处理厂污泥,用于农业时,应符合GB4284标准的规定。用于其它方面时,应符合相应的有关现行规定。 4.5 城市污水处理厂污泥不得任意弃置。禁止向一切地面水体及其沿岸、山谷、洼地、溶洞以及划定的污泥堆场以外的任何区域排放城市污水处理厂污泥。城市污水处理厂污泥排海时应按GB3097及海洋管理部门的有关规定执行。 5、检测、排放与监督 5.1 城市污水处理厂应在总进、出口处设置监测井、对进、出水水质进行检测。检测方法应按GJ26的有关规定执行。 5.2 城市污水处理厂应设置计量装置,以确定处理水量。 5.3 城市污水处理厂排放污泥的质和量的检测应按有关规定执行。 5.4 城市污水处理厂化验室及其化验设备应按GJJ31的规定配备。 5.5 城市污水处理厂的检验人员,必须经技术培训,并经主管部门考核合格后,承担检验工作。 5.6 处理构筑物或设备等到发生故障,使未经处理或处理不合格的污水污泥排放时,应及时排除故障,做好监测记录并上报主管部门处理。 5.7 当进水水质超标或水量超负荷时,必须上报主管部门处理。

污水处理厂污泥处理分析

污水处理厂污泥处理分析 摘要:随着现代化建设的发展和城市化进程的加速,城市污水的排放量与日俱增,同时也带来了污水处理副产品污泥产量的增加,如果污泥处置不当,将对大气、水体、土壤等都造成污染和危害,导致在处理污水的同时制造出新的更为严 重的污染。但城市污水处理厂项目的可研和环评阶段普遍存在“重水轻泥”现象, 对污泥处理处置的论述均过于简单;本文通过对污泥处理经济方面,技术可行性,环境因素等方面进行比选分析,得到污水处理厂污泥处理的最佳方案。 关键词:污泥处理污泥干化比选城镇污水处理厂 1 调研背景 据估算,目前我国城市污水处理厂每年排放的污泥量(干重)大约为130× 10? t,而且年增长 率大于10%,特别是在我国城市化水平较高的几个城市与地区,污泥出路问题已经十分突出。如果城市污水全部得到处理,则将产生污泥量(干重)为840× 10? t,占我国总固体废弃物的3.2%。 因此,对处理厂水处理过程中产生的污泥进行处理是一项紧迫而重要的工作。随着国家对污 泥处理处置的重视,污泥处理技术不断创新发展。实现污泥处理多元化,但各种处理工艺存 在一定的优缺点,各项污泥处理工艺的选择就成为了关键所在。 2 污泥处理基本工艺及处置方法 2.1 污泥处理 (1)污泥浓缩。 污泥处理系统产生的污泥,含水率高,体积大,对于输送、处理或处置都不方便。污泥 浓缩可使污泥初步减容,减轻后续工艺的处理或处置压力。目前城市污水处理厂污泥浓缩的 主流工艺是传统的重力浓缩、气浮浓缩和离心浓缩。对于重力浓缩工艺,适用于单独处理初 沉污泥,而对剩余污泥的浓缩效果不理想,由于占地面积大、操作维护简单,比较适用中小 城市新建的污水处理厂; 离心浓缩和气浮浓缩比较适合处理剩余污泥及剩余污泥与初沉污泥组成的混合污泥。这两种工艺占地面积小、易于改造,比较适合大中城市新建或改扩建的污水 处理厂。 (2)污泥脱水。 污泥经过浓缩后,其含水率依然较高,一般在 97% ~99. 6% ,是流动的粒状或絮状的疏 松结构,体积庞大,难以处置消纳,为此需要进行污泥脱水处理,降低后续污泥的处置难度,污泥脱水的方法,一般有机械脱水、污泥干化污泥烘干及焚烧等方法。目前国内城市污水处 理厂常用的污泥脱水方式为机械脱水,处理后的污泥含水率一般只能达到 78% 左右。污泥经 过化学药剂调理后再通过板框压滤机处理,泥饼的含水率下限可达60% 以下。但仅靠单独的 机械脱水已经不能满足我国污泥处理处置的长期发展。 (3)厌氧消化。 污泥厌氧消化是一个多级过程阶段,利用兼性菌和厌氧菌进行厌氧生化反应,分解污泥 中有机质,并产生可以再次利用的甲烷气体,实现污泥的稳定化、无害化和资源化。污泥厌 氧消化是目前国际上常用的污泥生物处理方法,同时也是一种应用于大型污水处理厂中较为 经济的污泥处理方法。 (4)污泥好氧消化污泥。 好氧消化实质上是活性污泥法的继续,其工作原理是污泥中的微生物有机体的内源代谢 过程。传统污泥好氧消化工艺主要通过曝气使微生物在进入内源呼吸期后进行自身氧化,从 而使污泥减量。剩余污泥好氧消化具有稳定和灭菌的双重作用,而且具有投资少、运行管理 方便、工艺简单等优点,多用于一些小型的污水厂。 2.2 污泥处置 (1)卫生填埋。 污泥填埋分位单独填埋和混合填埋,目前我国经常采用的是脱水污泥和城市垃圾混合填埋。填埋是一项具有投资少、容量大、见效快和适应性强等优点的污泥处置技术。但是其需 占用土地面积大,渗滤液很容易进入地表水和地下水,造成水体污染,再次,污泥含有的很

欧洲污泥干化焚烧处理技术的应用与发展趋势

欧洲污泥干化焚烧处理技术的应用与发展趋势 黄凌军 杜 红 鲁承虎 黄国民 提要 介绍了德国、意大利、奥地利、比利时及荷兰欧洲五国共八个代表性的污泥处理处置厂的工艺要点及运行状况,分析论述了欧洲污泥处理处置方式的发展趋势。结合我国国情特点及个人工程经验,对污泥干化焚烧技术在我国的应用从技术路线发展、工艺选择、规划、建设等方面进行了具体的探讨。 关键词 污泥处理 干化焚烧 应用 欧洲 污泥干化焚烧技术在欧洲应用已有20多年。该技术是多学科与技术应用领域的交叉融合,主要利用热力学与流体力学的原理,结合机械与材料技术,进行污泥处置,可以很好地达到“减量化、无害化、资源化”的污泥处理处置目标。本文针对德国、意大利、奥地利、比利时及荷兰欧洲五国的八个污泥处理处置厂的情况,介绍污泥干化焚烧技术在欧洲的应用及欧洲污泥处理处置方式的发展前景,对该技术在我国的应用进行了探讨。1 污泥处理处置厂介绍 目前污泥干化焚烧的主要工艺有:对流方式传热的流化床(WABA G)、转鼓干燥器(Andritz),传导加热方式的立式转盘(SEGHERS)、卧式转盘(Atlas2 stord),对流与传导加热相结合的涡轮薄膜干化(VOMM)及INNO二级干化(Schwing)。用于污泥处理的焚烧炉主要是流化床焚烧炉。以下介绍采用上述工艺在欧洲污泥处理处置厂的应用与运行状况。 八个厂的基本情况见表1。 表1 污 泥 处 理 处 置 厂 概 况 序号名 称国家处理能力主要设备投产时间设备制造商最终处置 1CONSORZIO CUOIO DEPUR S1P1A1 意大利100tDS/d涡轮薄膜干燥器 一期1996 二期2001 意大利VOMM公司填埋 2Graz2G ossendorf Sewage Sludge Drying Plant 奥地利约33tDS/d转鼓干燥器1997奥地利Andritz焚烧 3PVS Wien奥地利115tDS/d 薄膜蒸发器+带 式干燥器 2001美国Schwing焚烧 4Aquafin N.V. Dijkstraat8-B-2630 Aartselaar 比利时10000tDS/a流化床2001德国WABA G焚烧 5WWWTP Stuttgart德国84tDS/d 转盘式干燥机, 流化床焚烧炉 Ⅰ线1984 Ⅱ线1992 德国BAMA G公司总包, 干化设备分别由Atlas2 stord与WUL FF提供。 灰分填埋 6Aquafin N1V1 Waterzuiveruing W1Z1K1 比利时20000tDS/a 硬颗粒造粒机, 流化床焚烧炉 造粒机2001 焚烧炉1985 比利时SEGHERS表面覆土 7Aquafin N1V1 RWZI Deurne Antwerpen 比利时10000tDS/a硬颗粒造粒机1998比利时SEGHERS焚烧 8SNB N.V.Slibverwerking Noord Brabant 荷兰365tDS/d 转盘式干燥机, 流化床焚烧炉 1997 德国BAMA G总包 焚烧炉THYSSEN 干燥器Atlas2stord 建筑材料 给水排水 V ol129 N o111 200319

污水处理厂的污泥干化方式总结

污水处理厂的污泥干化方式总结 污泥所含的污染物一般均有很高的热值,但是由于大量水分的存在,使得这部分热值无法得到利用。如果焚烧高含水率的污泥,不但得不到热值,还需要大量补充燃料才能完成燃烧。 如果将污泥的含水率降到一定程度,燃烧就是可能的,而且,燃烧所得到的热量可以满足部分甚至全部进行干化的需要。同样的道理,无论制造建材还是其他利用,减少含水率是关键。因此,可以说污泥干化或半干化事实上是污泥资源化利用的第一步。 目前主要运用的污泥干化模式有: 自然干化、传统人工污泥干化和太阳能污泥干化。现分别叙述如下:自然干化: 污泥自然干化,即将污水厂湿污泥铺垫在自然地面上,一般为远离城市的荒地或戈壁等。通过太阳照射、风干等作用将污泥干化。这种方式可以节约能源,降低运行成本。但要求当地降雨量少、蒸发量大、可使用的土地多、环境要求相对宽松等条件,故受到一定限制。由于目前城市用地的紧张、环境保护要求的不断提高,这种方式已经越来越少使用了。 人工干化: 污泥人工干化,采用最多最普遍的是热干化,降低污泥的含水率。在我国大连开发区、秦皇岛、徐州等污水厂已经采用热干化工艺烘干污泥达到污泥减量效果,目前这些工程均运行良好。 但是污泥热干化工艺因消耗热量较大,一般应与利用余热相结合,利用工业余热、发电厂余热或其他余热作为污泥干化处理的热源;若采用优质一次能源作为主要干化热源,则会造成燃料消耗大、运行成本高以及投资过大等问题; 污泥热干化一般均需要专门的污泥干化设备,在生产过程中要严格防范热干化可能产生的安全事故,对设备技术要求及生产管理的要求很高。根据目前的运行经验,一般在大型集中式的污泥干化处理工程中采用此方式,小型干化处理工程极少采用。 太阳能干化:

全封闭污泥干化技术与设备

全封闭污泥干化技术与设备 一、污泥干燥焚烧 污泥焚烧工艺依照焚烧方式又分为直截了当焚烧和干燥焚烧两种。 污泥的直截了当焚烧是将高湿污泥在辅助燃料作为热源的情形下直截了当在焚烧炉内焚烧。由于污泥的含水量大、热值低,只有加入辅助燃料(煤、重油、柴油等)的情形下,污泥才能燃烧,耗费大量能源。由于污泥含水量大,焚烧后的尾气量也比较大,后续尾气处理需要庞大的设备,操作操纵难度大,相应造成后续喷淋塔、除雾塔等设备处理量大大增加,同时使设备投资和系统运行费用大大提高。 为了降低污泥处理运行费用和提高污泥焚烧效率,将污泥的直截了当焚烧改造为污泥经干燥后焚烧,因此需要配套污泥干燥设备系统。 污泥的干燥焚烧目的是高效、安全的实现污泥的完全矿化。在焚烧工艺前面采纳污泥干燥工艺的目的是实现污泥的减量化,节约后续焚烧处置的费用。污泥中大量的水分在干燥时期被除去,后续的焚烧炉将比直截了当燃烧时的体积减小,尾气处理系统在设备体积减小的同时,由于水蒸气含量的减少,处理难度会降低而效率会增加。 污泥干燥焚烧把污泥中的水分进行干燥处理后,配以适当比例的煤灰,焚烧产生热能发电。尽管一次性投资稍高,但由于它具有其它工艺不可代替的优点,专门在污泥量的消减上,卫生化,最终出路上,处置占地面积上,都有其他工艺无法比拟的优势,是一种污泥最终出路的解决方法,在污泥的最终处置方面将有着广泛的前景。 污泥的干燥最早是在二十世纪四十年代开发的,通过几十年的进展,污泥干燥的优点正逐步显现出来:干燥后的污泥与湿污泥相比,能够大幅度减小体积,从而减小了储存空间,以含水的湿污泥为例,干燥至含水30%时,体积能够减小;形成颗粒或粉状的稳固产品,使污泥形状大大改善;最终产品无臭且无病原体,减轻了污泥的有关负面效应,使处理的污泥更容易被同意;干化后的高热值污泥也能够替代能源,实现变废为宝。 1、污泥干燥的机理 干燥是为了去除水分,水分的去除要经历两个要紧过程: (1)蒸发过程:物料表面的水分汽化,由于物料表面的水蒸气压低于介质(气体)中的水蒸气分压,水分从物料表面移入介质。 (2)扩散过程:是与汽化紧密相关的传质过程。当物料表面水分被蒸发掉,形成物料表面的湿度低于物料内部湿度,现在,需要热量的推动力将水分从内部转移到表面。 上述两个过程的连续、交替进行,差不多上反映了干燥的机理。

污水处理厂污泥产生及处理情况

污水处理厂污泥产生及处理情况 随着城市化的进展,环境质量标准的日益提高,污水处理率和污水处理程度也日益得到提高和深化,污泥的产量也因此而大大提高,如何加强污泥处置和利用,也就成了一个不容忽视的大问题。 我厂所采用的污水处理工艺是活性污泥法,经反应池沉淀后的剩余污泥进入储泥池进行厌氧硝化,硝化后的剩余污泥进脱泥间压滤脱水。我厂污泥脱水设备为带宽1米的宜兴格力压滤式脱水机,一用一备,每天运行8小时。经带式压滤机脱水处理后,污泥含水率在70%~80%,含水率仍然很高,给填埋造成了较大的困难,露天堆置的污泥散发出恶臭给大气造成了污染,为解决污泥稳定化,无害化并降低含水率,我厂对脱水后的污泥进行了加钙干化处理。 加钙干化处理工艺基本流程:带式压滤机脱水后含水率约为70%~80%的脱水污泥,经原有的水平螺旋输送机和污泥提升输送机经计量后进到混合反应器,同时,生石灰从储料罐中通过输送机精密投加至混合反应器,密闭的混合反应器中安装有特殊的犁耙混合原件,通过机械力将污泥抛起并使其分散,形成一个流化床的效果,在疏松的状态下与氧化钙相混合,两者充分混合后进入回转式干燥器进行干化脱水,混合反应器、旋转式干燥器上方配置有气体出口,可将反应中产生的水蒸气、氨气引入除臭系统进行除臭处理,处理后的废气达标排放。成品污泥通过链板式输送机输出后在应急堆放场堆放,晾晒后装车外运。 我厂的剩余污泥经加钙干化后达到了以下效果:一是脱水污泥进

一步脱水;含水率由80%左右已降到30%左右,满足污泥混合填埋标准《城镇污水处理厂污泥处置混合填埋泥质》的要求。二是杀菌;温度和PH的升高起到了杀菌的作用,从而保证在利用或处置过程中的卫生安全性。三是钝化重金属离子;投加一定的氧化钙使污泥成碱性,结合污泥中的部分金属离子形成的化合物钝化重金属离子。我厂加钙干化后的污泥经普尼公司检测,重金属离子的含量符合卫生填埋标准。四是改性,颗粒化;进一步改善了储存和运输条件,避免二次飞灰,渗滤液泄漏。五是含水率的降低便于不同的再利用或填埋。 我厂加钙干化的污泥量日均为6吨左右,全部运往香河安洁垃圾填埋场进行卫生填埋。

城市污泥干化处理课程设计

城市污泥干化处理课程设计 一、课程设计基础资料 广州污水处理厂污泥干化工程即将大规模启动,广州市水务局计划推动西朗污水厂、沥滘污水厂、京溪地下净水厂、大坦沙污水厂和猎德污水厂等污泥干化减量工程。按照计划,将要求相关污水处理厂建设污泥干化减量设施,再将干化污泥运输至水泥厂、电厂和垃圾焚烧厂直接焚烧。从而实现所有污泥都可以在广州本地处理,不再产生臭气扰民的同时还能够实现资源化利用。 某污水处理厂按照污水厂规模10万立方米/日(20万立方米/日、50万立方米/日),配套建设污泥处理系统,折合干基污泥约15吨/日(30吨/日、75吨/日)。将在厂内新建污泥脱水干化车间,配套物料分选系统、板框压滤系统、热干化系统、热源供给和回收系统、废气净化除湿系统,生物除臭系统,以及浓缩、调理、出料等相关辅助设备。污泥在厂内进行处理后,含水率从原来的80%以上,降低到30%~40%。 本课程设计的目的和要求:能够将数学、自然科学、工程基础和专业知识用于解决固体废物处理与资源化方面的复杂工程问题。运用深入的工程原理通过系统分析解决复杂工程问题,重点如下:1、设计多种技术、工程和其他因素,分析其中存在的冲突,做到扬长避短,尽量做到互相借鉴;2、通过建立合适的抽象模型解决工程问题,建模过程中需要体现出创造性(建立模型可理解为利用有关工程原理进行合理的情景分析和预测,提出解决思路);3、以常用的技术方法为基础,从多学科交叉和方法移用方面体现出创新性,以推动问题的解决;4、分析有关专业标准和规范中所涉及的因素是否全面,找出或发掘解决复杂问题的关键因素,并对标准和规范进行拓展;5、技术方法的确定方面,既要考虑处理效率和环保政策要求,又要考虑经济成本的可接受性,还需考虑短期和长远的发展预期;6、提出解决方案需要综合考虑经济、环境和社会效益,也需要采用综合性的解决思路和多学科工程技术的集成,还需考虑固体废物、废水、废气的全面有效处理,也需考虑技术的可行性、选用设备的处理能力和组合方式、工程应用的安全性等,即从多角度、多层次、多阶段、整体性等方面综合性解决。

相关文档
相关文档 最新文档