文档库 最新最全的文档下载
当前位置:文档库 › ST意法半导体代理

ST意法半导体代理

ST意法半导体代理
ST意法半导体代理

意法半导体-万联芯城全国供应,电子元器件采购网,就找万联芯城,万联芯城专售原装进口现货电子元器件,与国内外原厂达成深度合作,坐拥三千平方米现代化仓库,解决终端生产研发物料问题,专为客户节省采购成本。

点击进入万联芯城

意法半导体代理_ST代理是一家法国 - 意大利跨国电子和半导体制

造商,总部位于瑞士日内瓦。它通常被称为意法半导体代理_ST代

理,它是欧洲大的基于收入的半导体芯片制造商。虽然意法半导体代理_ST代理公司总部和EMEA地区总部设在日内瓦,但控股公司意法半导体代理_ST代理 N.V.在荷兰阿姆斯特丹注册。

意法半导体代理_ST代理的美国总部位于德克萨斯州的Coppell。亚太地区总部位于新加坡,日本和韩国业务总部位于东京。大中华区的公司总部位于上海。

意法半导体代理_ST代理成立于1987年,由意大利的半导体公司SGS Microelettronica(SocietàGeneraleSemiconduttori)和法国Thomson的半导体部门Thomson Semiconducteurs合并而成。在合并时,意法半导体代理_ST代理被称为SGS-THOMSON,但在Thomson SA 作为所有者撤回后于1998年5月取得现在的名称-意法半导体代理

_ST代理。

SGS Microelettronica和Thomson Semiconducteurs都是历史悠久的半导体公司。 SGS Microelettronica始于1972年,此前两家公司合并:

ATES(Aquila Tubi e Semiconduttori),一家真空管和半导体制造商,总部位于阿布鲁兹市的拉奎拉市,于1961年更名为Azienda

Tecnica ed Elettronica del Sud,并将其制造工厂迁至西西里城市郊区卡塔尼亚

SocietàGeneraleSemiconduttori(由Adriano Olivetti于1957年创立)。

Thomson Semiconducteurs于1982年由法国政府广泛的工业国有化创建。它包括:

法国电子公司Thomson的半导体业务。

Mo意法半导体代理_ST代理ek,一家美国公司,由德州仪器公司的一些前雇员于1969年创立。

Silec,成立于1977年。

Eurotechnique成立于1979年,位于Bouches-du-Rh?ne的Rousset,是法国Saint-Gobain和美国国家半导体公司的合资企业。

EFCIS成立于1977年。

SESCOSEM成立于1969年。

在1987年合并后,SGS-Thomson在前20大半导体供应商中排名第14位,销售额约为8.5亿美元。意法半导体代理_ST代理自成立以来一直参与半导体行业的整合,收购包括:

1989年,英国公司Inmos以其父母Thorn EMI的晶片机微处理器而闻名。

1994年,加拿大北电的半导体活动。

2002年,阿尔卡特的微电子部门与英国公司Synad Ltd等小型企业合并,帮助意法半导体代理_ST代理拓展无线局域网市场。

2007年,总部位于美国的Genesis Microchip。[2] Genesis Microchip 以其在视频处理技术(Faroudja)方面的优势而闻名,其设计中心位于台湾台北市多伦多圣克拉拉市。和班加罗尔。

1994年12月8日,公司在巴黎和纽约证券交易所完成首次公开募股。所有者Thomson SA于1998年出售其在意法半导体代理_ST代理的股份,当时意法半导体代理_ST代理还在米兰的Borsa Italiana上市。

收购VLSI Vision Ltd.

2002年,摩托罗拉和台积电加入了意法半导体代理_ST代理和飞利浦的新技术合作伙伴关系。 Crolles2联盟由位于法国Crolles的一个新的12“晶圆制造工厂创建。

到2005年,意法半导体代理_ST代理排名第五,仅次于英特尔,三星,德州仪器和东芝,但领先于英飞凌,瑞萨,NEC,恩智浦和飞思卡尔。意法半导体代理_ST代理是欧洲大的半导体供应商,领先于英飞凌和恩智浦。

2007年初,恩智浦(原飞利浦半导体)和飞思卡尔(原摩托罗拉半导体)决定停止参与Crolles2联盟。根据协议条款,联盟于2007年12月31日结束。[3]

2007年5月22日,意法半导体代理_ST代理和英特尔在名为Numonyx 的内存应用程序中创建了一家合资企业。这家新公司合并了意法半导体代理_ST代理和英特尔闪存活动。

半导体市场整合继续,意法半导体代理_ST代理和恩智浦于2008年4月10日宣布成立新的移动活动合资企业,意法半导体代理_ST代理拥有80%的新公司和恩智浦20%的股份。该合资企业于2008年8月20日开始。

2009年2月10日,成立意法半导体代理_ST代理-NXP无线和爱立信移动平台的合资企业意法半导体代理_ST代理爱立信成立。

2011年,意法半导体代理_ST代理宣布与Sant'Anna高级研究学院建立联合实验室。该实验室将专注于生物机器人,智能系统和微电子领域的研究和创新。[4]过去与Sant'Anna高级研究学院的合作包括Du 意法半导体代理_ST代理Bot,这是一个集自动导航“服务机器人”用于废物收集的平台。[4]

意法半导体代理_ST代理 Ericsson是一家为移动设备制造商提供无线产品和半导体的跨国制造商。[5] 意法半导体代理_ST代理

-Ericsson是爱立信和意法半导体代理_ST代理于2009年2月3日成立的50/50合资企业,于2013年8月2日解散。总部位于瑞士日内瓦,是一家无晶圆厂公司,将半导体制造业务外包给代工公司。

在早先的失败之后,意法半导体代理_ST代理已经远离DRAM和PC微处理器的动荡市场。 1994年,它试图与美国公司Cyrix合作推出兼容的Intel 80486微处理器。只完成了个模型,即1995年的Cyrix M1微处理器,旨在与英特尔的奔腾系列竞争。[引证需要]

然而,它在与PC兼容的x86嵌入式系统市场上取得了一些成功,其意法半导体代理_ST代理PC SoC系列终达到了486级意法半导体代理_ST代理PC Atlas,终达到了2008年的寿命终结。

格勒诺布尔是意法半导体代理_ST代理重要的研发中心之一,拥有约4,000名员工。 Polygone工厂拥有2200名员工,是意法半导体代理_ST代理的历史基地之一(来自SGS)。所有历史悠久的晶圆生产线现已关闭,但该工厂拥有许多部门(营销,设计,工业化)的总部和一个重要的研发中心,专注于芯片和软件设计以及晶圆厂工艺开发。

Crolles工厂拥有一个200毫米(8英寸)和一个300毫米(12英寸)工厂,初是作为亚微米技术的共同研发中心而建造的,是SGS-Thomson 和CNET,研发中心1990年Grenoble 92合作伙伴关系的一部分。法国电信公司法国电信。这家名为Crolles 1的200毫米(8英寸)工厂是意法半导体代理_ST代理的家工厂,是1991年SGS-Thomson与飞利浦合作开发新制造技术的一部分。 Crolles 1于1993年9月9日由法国工业部长GérardLonguet开放。

300毫米(12英寸)晶圆厂于2003年2月27日由法国总裁雅克·希拉克(Jacques Chirac)落成。它包括一个研发中心,专注于开发使用300毫米(12英寸)晶圆的90纳米至32纳米规模的新纳米技术工艺它是为The Crolles 2 Alliance'开发的。意法半导体代理_ST 代理,台积电,恩智浦半导体(前身为飞利浦半导体)和飞思卡尔(前身为摩托罗拉半导体)的这一联盟于2002年合作开发该设施并在工艺开发方面开展合作。该工厂开发的技术也被台湾的全球半导体代工厂台积电使用,允许台积电代表需要此类代工能力的联盟合作伙伴建造在Crolles开发的产品。自2015年以来,一座新工厂正在建设中。

Rousset拥有约3,000名员工,拥有多个部门总部,包括智能卡,微控制器和EEPROM以及多个研发中心。 Rousset还拥有一个8英寸(200

毫米)的晶圆厂,由法国总理莱昂内尔·若斯潘于2000年5月15日开业。

该工厂于1979年开业,由法国圣戈班和美国国家半导体合资的欧洲技术公司运营的100毫米(3.9英寸)工厂。 Rousset于1982年被出售给Thomson-CSF,作为法国政府1981 - 82年几个行业国有化的一部分。作为国有化的一部分,自20世纪60年代以来,位于普罗旺斯地区艾克斯市中心的一家前汤姆森工厂关闭,工作人员被转移到新的Rousset工厂。初的100毫米(4英寸)工厂于1996年升级为130毫米(5英寸)和后来的150毫米(6英寸)工厂。现在它正在关闭。

1988年,来自Thomson Rousset工厂的一小组员工(包括董事Marc Lassus)成立了一家初创公司Gemalto(前身为Gemplus),后者成为智能卡行业的领导者。

半导体材料发展情况

实用标准文案 1、硅材料 从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。 从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smart cut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。 理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al 引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

半导体裸片以及电子系统的制作流程

本公开涉及半导体裸片以及电子系统。半导体裸片包括:MEMS设备,包括具有通孔腔体的结构本体、在结构本体的第一侧处悬置在腔体之上的膜;以及过滤模块,在与第一侧相对的第二侧处直接耦合至结构本体,过滤模块的第一部分在腔体之上延伸,并且过滤模块的第二部分无缝地延伸为结构本体的延长部,其中过滤模块的第一部分包括多个通孔开口,多个通孔开口被配置为使腔体与半导体裸片的外部环境进行流体连通,并且同时阻挡污染颗粒从外部环境传到声室。 权利要求书 1.一种半导体裸片,其特征在于,包括: MEMS设备,包括具有通孔腔体的结构本体、在所述结构本体的第一侧处悬置在所述腔体之上的膜;以及 过滤模块,在与所述第一侧相对的第二侧处直接耦合至所述结构本体,所述过滤模块的第一部分在所述腔体之上延伸,并且所述过滤模块的第二部分无缝地延伸为所述结构本体的延长部,

其中所述过滤模块的第一部分包括多个通孔开口,所述多个通孔开口被配置为使所述腔体与所述半导体裸片的外部环境进行流体连通,并且同时阻挡污染颗粒从所述外部环境传到声室。 2.根据权利要求1所述的半导体裸片,其特征在于,所述多个通孔开口中的每一个均具有阻挡至少一个尺寸大于5μm的污染颗粒通过的形状和尺寸。 3.根据权利要求1所述的半导体裸片,其特征在于,所述过滤模块直接耦合至所述结构本体,而在所述结构本体和所述过滤模块之间没有中间层。 4.根据权利要求1所述的半导体裸片,其特征在于,所述过滤模块通过位于所述结构本体和所述过滤模块之间的一个或多个中间氧化硅层直接耦合至所述结构本体。 5.根据权利要求1所述的半导体裸片,其特征在于,所述过滤模块由半导体材料制成,并且具有在声波的传播方向上测量的1μm和100μm之间的厚度。 6.根据权利要求1所述的半导体裸片,其特征在于,所述过滤模块在远离所述腔体的一侧上包括疏水材料层。 7.根据权利要求1所述的半导体裸片,其特征在于,所述MEMS设备是声换能器设备,并且所述腔体是所述声换能器设备的声室。 8.一种电子系统,其特征在于,包括: 半导体封装件,包括: 基底,具有与所述封装件的外部环境进行声连通的声端口; 覆盖元件,与所述基底一起限定所述封装件的内部空间;以及 半导体裸片,位于所述封装件的内部空间中,所述半导体裸片包括直接耦合至过滤模块的

意法半导体(ST)

ROM,提高了产品制造的灵活性,缩短了从设计到制造的准备时间,同时90nm 技术还提高了成本效益。 新的ST21F系列产品使卡制造商能够对飞速变化的手机市场需求做出快速的注重成本效益的反应,然后在制造工序的智能卡个性化阶段自定义应用程序,用一个产品解决多家移动通信网络运营商(MNOs)的要求。因为与一个特定的运营商无关,所以新产品降低了供应链的风险和复杂性。 ST21F384的内核是一个8/16位CPU,线性寻址宽度16MB,典型工作频率21MHz。芯片内置7KB用户RAM存储器,以及128字节页面的384KB闪存,耐擦写能力与早期安全微控制器的EEPROM存储器相当。电流消耗完全符合2G和3G的电源规格,达到了(U)SIM的应用要求。该微控制器含有一个硬件DES (数据加密标准)加速器和用户可以访问的CRC (循环冗余代码)计算模块。 如果采用了这个闪存安全型微控制器,卡制造商将能够缩短在整个制造工序中从设计到投产的准备时间,验证卡上的操作系统(OS)和向运营商提供样片所需的时间会更短。因为可以库存没有编程的空白芯片,所以新产品还有助于缩短产品的量产周期,同时还会大幅度缩短操作功能升级和实现新的MNO要求所需的周期。 由于应用程序保存在闪存内,卡制造商无需再支付ROM掩模成本;此外,因为只需实现最终客户需要的功能,而不必设计一个标准解决方案,应用软件本身可以写得更小。ST的片上闪存装载器提供一个成本低廉的操作系统装载功能。 ST21F384的样片现已上市,定于2007年12月量产。ST的封装能力在业界堪称独一无二,其智能卡IC有两种封装形式:切割过的晶片和先进微型模块,其中模块的集成度和安全性都非常出色。 ST21F384产品分为切割过的晶片或没切割过的晶片,模块封装分为6触点(D17)和8触点(D95)两个规格,符合欧洲RoHS环保标准,触点排列符合ISO 7816-2标准。订购100000颗晶片,每颗0.45美元。

半导体制冷片工作原理

半导体制冷片工作原理 致冷器件是由半导体所组成的一种冷却装置,随着近代的半导体发展才有实际的应用,也就是致冷器的发明。其工作原理是由直流电源提供电子流所需的能量,通上电源后,电子负极(-)出发,首先经过P型半导体,于此吸热量,到了N型半导体,又将热量放出,每经过一个NP模块,就有热量由一边被送到令外一边造成温差而形成冷热端。冷热端分别由两片陶瓷片所构成,冷端要接热源,也就是欲冷却之。在以往致冷器是运用在CPU的,是利用冷端面来冷却CPU,而热端面散出的热量则必需靠风扇来排出。致冷器也应用于做成车用冷/热保温箱,冷的方面可以冷饮机,热的方面可以保温热的东西。 半导体致冷器的历史 致冷片是由半导体所组成的一种冷却装置,于1960左右才出现,然而其理论基础Peltier effect可追溯到19世纪。下图(1)是由X及Y两种不同的金属导线所组成的封闭线路,通上电源之后,A点的热量被移到B点,导致A点温度降低,B点温度升高,这就是着名的Peltier effect。这现象最早是在1821年,由一位德国科学家Thomas Seeback首先发现,不过他当时做了错误的推论,并没有领悟到背后真正的科学原理。到了1834年,一位法国表匠,同时也是兼职研究这现象的物理学家JeaNPeltier,才发现背后真正的原因,这个现象直到近代随着半导体的发展才有了实际的应用,也就是「致冷器」的发明。 一、因半导体致冷片薄而轻巧,体积很小,不占空间,并可以携带,做成车用电冷/热保温箱,放置车上,不占空间,并可变成冰箱及保温箱,夏天可以摆上几瓶饮料,就可以便冰饮,在冬天就可以变成保温箱。 图(1) 致冷器件的作用原理致冷器的名称相当多,如 Peltier cooler、thermoelectric、thermoelectric cooler (简称或、thermoelectric module,另外又称为热帮浦 (heat pump)。 二、致冷器件的结构与原理

意法半导体基于Cortex-M3的STM32L微控制器开始供货

意法半导体基于Cortex-M3的STM32L微控制器开始供 货 意法半导体今天宣布开始向主要客户提供STM32L 系列微控制器样片,STM32L 系列产品是业界首款来自全球十大半导体供应商之一的超低功耗 ARM Cortex-M3 微控制器。STM32L 系列产品采用意法半导体独有的两大节能技术:130nm 专用低泄漏电流制造工艺和优化的节能架构,提供业界领先的节 能性能。全新STM32L 系列产品属于意法半导体的EnergyLite 超低功耗产品平台,设计人员能够优化终端产品的性能、功能和电池使用寿命,达到相关的 能效标准,如环保型设计目标。意法半导体微控制器产品部总经理Michel Buffa 表示:“在全球半导体公司提供的产品中,STM32L 系列产品实现最佳的 功耗性能比。STM32L 将会成为消费电子、工业应用、医疗仪器或能源计量表 等市场上低功耗应用设计的首选微控制器。”除极高能效外,STM32L 还具备提高数据安全性,促进系统安全操作的诸多安全功能,包括灵活的欠压复位、片 上闪存支持纠错码(ECC)、存储器保护单元(MPU)和JTAG 熔断器。这些 功能被推荐用于所有的需要安全产品特性和高度安全的代码及用户数据管理的 应用。片上集成的USB 2.0 Full Speed 支持模块使STM32L 还能支持移动外设。此外,STM32L 系列微控制器内置的LCD 驱动器,可轻松实现更低廉、更小的应用设计。STM32 系列的产品阵容非常强大,目前拥有超过135 款产品,全系列产品的引脚、软件和外设相互兼容,应用灵活性达到最高水平。作为 STM32 系列的新成员,STM32L 在32MHz 频率下的处理性能达到33DMIPS (最大值),片上闪存密度范围从64KB 到128KB。STM32L 系列样片已经开始交付给主要客户测试。STM32L151 内置64KB 闪存,采用LQFP48 封装;STM32L152 内置128KB 闪存,采用LQFP100 封装。将于2010 年第四季度量

意法半导体发布迄今性能最强的电视系统芯片

意法半导体发布迄今性能最强的电视系统芯片 横跨多重电子应用领域、全球领先的半导体供应商、全球领先的数字 电视及机顶盒芯片提供商意法半导体(STMicroelectronics,简称ST)将在2012 中国国际广播电视信息网络展览会(CCBN)上展出Newman 电视系统芯片(System-on-Chip,SoC)系列的首款产品。新系列产品是意法半导体的业界领先的电视广播互联网服务多功能电视平台的一部分。代号为Newman Ultra 的新产品FLI7680 拥有市场上无与伦比的性能,亦代表了智能电视(Smart TV)系统芯片技术水平的一次巨大飞跃。 随着高价值内容不断演进,除第一代电视广播宽带上网综合服务外,电 视还需要支持全新的增值服务和产业生态系统,例如Google TV。Newman Ultra 系统架构具有市场领先的性能,让电视应用程序具有令人惊喜的反应速度,同时拥有极其出色的视频解码功能,远超市场同类产品。有了这款芯片,消费 者只需通过一台智能电视机即可播放多种视频源,运行大量应用软件。 意法半导体WAVE 产品部总经理Luigi Mantellassi 表示:随着智能电视的概念正在快速演进,对处理性能、功能集成度、设计灵活性和数据安全的要 求不断提高。凭借我们在全球市场的领先地位和机顶盒软件开发能力,Newman Ultra 系统芯片让我们的客户能够扩大品牌价值,研制一个集传统电视广播、视频点播(Video on Demand,VOD)、游戏以及社交网络于一体的终极娱乐平台。 在优化平板电视技术的同时,Newman Ultra 还将继续使用Faroudja 品牌的音视频处理创新技术,为消费者带来无与伦比的视听盛宴。从大屏幕投影影院,到4Kx2K 3D 大屏幕,Faroudja 仍然是市场公认的高品质标杆。

半导体计算题

五、已知室温下硅的本征载流子密度n i=1.5?1010 cm-3,试求掺磷浓度为1.5?1013 cm-3,掺硼浓度为1.0?1013 cm-3的硅样品在室温热平衡状态下的电子密度n 0、空穴密度p 0和费米能级的位置。已知此时硅中杂质原子已全部电离,硅的导带底和价带顶有效态密度分别为 2.8?1019cm-3和1.1?1019cm-3。 解:因为N D=1.5?1013 cm-3,N A=1.0?1013 cm-3,ND>NA 且完全电离,所以n 0 = 有效施主浓度=1.5?1013-1.0?1013 =5?1012(cm-3) 由n 0 p 0=n i2=2.25?1020 cm-6,知 p 0=n i2/n 0=4.5?107(cm-3) 本题属轻掺杂非简并情况,因此由 六、对非简并半导体,从利用等效态密度N C 和N V 求热平衡载流子密度n 0和p 0的公式出发,推出利用本征载流子密度n i 和本征费米能级E i 求n 0和p 0的公式。 解:本征载流子密度即E F=E i 时的热平衡电子密度和空穴密度,于是由 由此两式可将有效态密度N C 和N V 分别用n i 和E i 表示为 九、若硅中施主杂质电离能?E D = 0.04eV ,施主杂质浓度分别为1015 cm-3和1018 cm-3。计算这些杂质①99﹪电离;②90﹪电离;③50﹪电离时的温度。 解:这类题也可利用未电离施主的浓度公式(即电子占据施主能级的几率函数与施主浓度之积) 结果: ND=1015/cm3时,电离度为99﹪、90﹪、50﹪的温度分别为124K 、84K 、59K ND=1018/cm3时,电离度为99﹪、90﹪、50﹪的温度分别为1374K 、427K 、180K 需要注意的是:由参考书中的图3-7可见,当T=1000K 时,硅的本征载流子密度已接近1018cm-3:T=1374K 时,硅的本征载流子密度已将近-3,与解题过程中设定的 n0 = 0.99ND 误差很大,说明这个结果不准确。欲求其准确值,须利用迭代法反复修正,直至求出的温度所对应的 n0与代入式(12-1)中的n0接近相等为止。 其他温度所对应的本征载流子密度都比相应的电离杂质密度低很多数量级,n 0 =(1-D -)ND 的算法是合理的。 11exp()2D D D F N n E E kT =-+0011111exp()1146422exp()2exp()D C F D C C D D n E E E N N N E kT n n T kT ===--?+++?0.04463.54640.026300D E k ?==≈)464exp(2110_T n N D C +=333*21522 32(2)() 5.410n C m k N T T T h π==???? ??--=kT E E N n F C C exp 0)()105 8.2ln(026.0ln 70eV n N kT E E C F C ??==-??? ??--=kT E E N n F C C exp 0??? ??--=kT E E N p V F V exp 0??? ??--=kT E E N n i C C i exp ??? ? ?--=kT E E N n V i V i exp

半导体制冷片的利弊(精)

原理: 半导体制冷片的工作运转是用直流电流 , 它既可制冷又可加热, 通过改变直流电流的极性来决定在同一制冷片上实现制冷或加热,这个效果的产生就是通过热电的原理。 优点 半导体制冷片作为特种冷源,在技术应用上具有以下的优点和特点: 1、不需要任何制冷剂 ,可连续工作,没有污染源没有旋转部件,不会产生回转效应,没有滑动部件是一种固体片件,工作时没有震动、噪音、寿命长,安装容易。 2、半导体制冷片具有两种功能,既能制冷,又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。因此使用一个片件就可以代替分立的加热系统和制冷系统。 3、半导体制冷片是电流换能型片件,通过输入电流的控制,可实现高精度的温度控制,再加上温度检测和控制手段,很容易实现遥控、程控、计算机控制,便于组成自动控制系统。 4、半导体制冷片的温差范围,从正温 90℃到负温度 130℃都可以实现。 缺点: 1、半导体制冷片热惯性非常小,制冷制热时间很快,在热端散热良好冷端空载的情况下, 通电不到一分钟,制冷片就能达到最大温差。 2、半导体制冷片的反向使用就是温差发电,半导体制冷片一般适用于中低温区发电。 3、半导体制冷片的单个制冷元件对的功率很小,但组合成电堆,用同类型的电堆串、并联的方法组合成制冷系统的话, 功率就可以做的很大, 因此制冷功率可以做到几毫瓦到上万瓦的范围。

4、半导体制冷的热面温度不应超过 60℃ ,否则就有损坏的可能。若在额定的工作电压(12V 下,一般的散热风扇根本无法为制冷片提供足够的散热能力,容易造成制冷片过热损坏。同时千万不要在无散热器的情况下为致冷器长时间通电, 否则会造成致冷器内部过热而烧毁。半导体制冷片具有两种功能, 既能制冷, 又能加热,制冷效率一般不高,但制热效率很高,永远大于 1。要是这样的话安 全问题有代考虑! 其次散热片由于间距太小, 很容易被灰尘堵住, 而且清洗不了, 这样就很容易因为温度过高而烧毁,从而影响整车的安全。 使用说明: 一、正确的安装、组装方法:1、制冷片一面安装散热片,一面安装导冷系统,安装表面平面度不大于 0.03mm ,要除去毛刺、污物。 2、制冷片与散热片和导冷块接触良好,接触面须涂有一薄层导热硅脂。 3、固定制冷片时既要使制冷片受力均匀,又要注意切勿过度,以防止瓷片压裂。 二、正确的使用条件:1、使用直流电源电压不得超过额定电压 ,电源波纹系数小于 10%。 2、电流不得超过组件的额定电流。 3、制冷片正在工作时不得瞬间通反向电压 (须在 5分钟之后。 4、制冷片内部不得进水。 5、制冷片周围湿度不得超过 80%。

各公司待遇

这里所说的待遇全部为税前,另外,年薪不是简单的*12,因为有年终奖。而互联网公司的待遇package,都是包含了年终奖的。 以下待遇无特别说明,默认都是硕士,本科的话会特别说明,关注软件的多一些,硬件ic 等行业希望大家继续补充。 1 华为 研发、服务、销售多数岗位本科9k~12k, 硕士10~13k 客户经理不分本硕11~14k 法务硕士12~15k 行政本科6k 但是华为三五年后还是很给力的,这也是华为薪资的策略,好处给那些想长远在华为发展的人,只是一开始三年比较难熬,连续三年考评b+以上(a,b+,b,c,d),那就功成名就了,不过一c败三年…… 2 中兴号称硕士7300,其实是5300的基本工资加上1200的浮动绩效工资加上400补助再加上公司帮你交的400的公积金,注意这400公积金的概念!一切缴费基数是5300,换句话说,华为要是和中兴这样计算工资,北京华为的工资比北京中兴高了1000都不止!西安华为也比中兴高六七百,中兴实习期80%。 3 中兴移动中兴子公司固定工资6800,餐补350,通信费200 其他没了,夏季有高温补贴350一个月,深圳和南京 4 阿里巴巴,阿里今年全国只招150个精英,15k*15,秒杀国内各公司,另外有30w 无息借款,一年内买房买车买老婆,阿里帮你实现梦想,唉,只怪自己没学计算机 5 中电28所双211硕士为起点普通211硕士:税前10w到15w 11所牛逼高校(清华北大北航浙大复旦上交南京东南武大华科西交):15w-20w 博士18w起薪牛逼高校:25w-30w 博士一次性住房补贴10w5 航天科工二院总体设计部硕士15w起 6 苏州记忆科技硕士12w 包含了公积金和餐补的有一次性安家费3000 苏州那边全是电子芯片ic企业,感觉苏州在下一盘很大很大的棋,已经下的差不多了,苏州昆山已有号称八百里电子长廊 7 北京704所航天火箭税前8w--10w 无奖金签三年双人间住一年后两年自己找 8 北京17所税前10w起 9 深圳宏电硕士6k,待遇太低 10 威盛北京硕士9k*14 武汉和上海不详 11 宇龙酷派实习:研发北京深圳研究生八千本科4k5 西安研究生6400 本科5800 转正硕士北京深圳9000 西安8000 本科转正不详

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构为特征的固态量子器件和电路的新时代,并极有可能触发新的技术革命。半导体微电子和光电子材料已成为21世纪信息社会的二大支柱高技术产业的基础材料。它的发展对高速计算、大容量信息通信、存储、处理、电子对抗、武器装备的微型化与智能化和国民经济的发展以及国家的安全等都具有非常重要的意义。 一、几种重要的半导体材料的发展现状与趋势 1.硅单晶材料 硅单晶材料是现代半导体器件、集成电路和微电子工业的基础。目前微电子的器件和电路,其中有90%到95%都是用硅材料来制作的。那么随着硅单晶材料的进一步发展,还存在着一些问题亟待解决。硅单晶材料是从石英的坩埚里面拉出来的,它用石墨作为加热器。所以,来自石英里的二氧化硅中氧以及加热器的碳的污染,使硅材料里面包含着大量的过饱和氧和碳杂质。过饱和氧的污染,随着硅单晶直径的增大,长度的加长,它的分布也变得不均匀;这就是说材料的均匀性就会遇到问题。杂质和缺陷分布的不均匀,会使硅材料在进一步提高电路集成度应用的时候遇到困难。特别是过饱和的氧,在器件和电路的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,它有着很好的应用前景。当然还有以硅材料为基础的SOI材料,也就是半导体/氧化物/绝缘体之意,这种材料在空间得到了广泛的应用。总之,从提高集成电路的成品率,降低成本来看的话,增大硅单晶的直径,仍然是一个大趋势;因为,只有材料的直径增大,电路的成本才会下降。我们知道硅技术有个摩尔定律,每隔18个月它的集成度就翻一番,它的价格就掉一半,价格下降是同硅的直径的增大密切相关的。在一个大圆片上跟一个小圆片上,工艺加工条件相同,但出的芯片数量则不同;所以说,增大硅的直径,仍然是硅单晶材料发展的一个大趋势。那我们从提高硅的

意法ST系列芯片型号

ST(意法半导体)提供全系列具备各种外设的稳定型8位单片机以及高性能32位ARM芯片。ST系列单片机的8位ST6系列一直以来都是面向简单强劲的成本敏感型应用的安全并受到广泛欢迎的选择,其中包括家庭应用、数字消费类设备和电机控制。ST6器件采用16引脚到28引脚封装,内部集成了1到4KB的OTP(一次性可编程)或ROM存储器。 ST62E系列单片机: ST62E01, ST62E01C, ST62E01CF1, ST62E10, ST62E18, ST62E18C, ST62E18CF1, ST62E20, ST62E20B, ST62E20C, ST62E20CF1, ST62E25, ST62E25C, ST62E25CF1, ST62E28CF1, ST62E28C6, ST62E30B, ST62E30BF1, ST62E32BF1, ST62E40BG1, ST62E42BG1, ST62E46BG1, ST62E60B, ST62E60C, ST62E62CF1, ST62E62B, ST62E62C, ST62E65B, ST62E65C, ST62E65CF1, ST62E80B, ST62E80BG1, ST62E85BG1; ST62T系列单片机: ST62T00, ST62T01, ST62T03, ST62T08, ST62T09, ST62T10, ST62T15, ST62T18, ST62T20, ST62T25, ST62T28, ST62T30, ST62T32, ST62T40, ST62T42, ST62T46, ST62T52, ST62T53, ST62T55, ST62T60, ST62T62, ST62T63, ST62T65, ST62T80, ST62T85; ST62系列单片机:ST6200C, ST6201C, ST6203C, ST6210C, ST6220C, ST6225C, ST6260C, ST6262C, ST6265C; ST63E系列:ST63E73 …… ST7系列单片机解密: ST7FOXF1, ST7FOXK1, ST7FOXK2, ST7FOXA0; ST7LITE0, ST7LITE2, ST7LITE49K2, ST7LITE39F2, ST7LITE30F2, ST7LITE35F2, ST7LITE49M, ST7LITE1xB, ST7LITEU09, ST7LITEU05, ST7LITEUS5, ST7LITEUS2; ST72260G, ST72262G, ST72264G, ST72321, ST7232A, ST72321B, ST72321M, ST72325, ST72323, ST72323L, ST72340, ST72344, ST72345, ST72324B, ST72324BL, ST72361, ST72521B, ST72561, ST7260, ST7263B, ST7265, ST7267R8, ST7267C8, ST72681, ST72682; ST72C216 ST7LCRE4U1, ST7LCRDIE6, ST7SCR1R4, ST7SCR1E4; ST7GEME4, ST7LNB0V2Y0, ST72F521, ST72F324L; ST7LNB1Y0, ST7MC1, ST7MC2, ST7DALIF2, ST7SUPERLITE; ST10系列单片机解密: 新ST10闪存系列:ST10F271Z1, ST10F272Z2, ST10F273Z4, ST10F276Z5; ST10传统闪存系列:ST10F168S, ST10F269, ST10F269Z1, ST10F269Z2; ST10 ROMless 系列:ST10R172L, ST10R272L, ST10R167-Q; STR7系列ARM芯片解密: STR750F:STR755FV2, STR755FV1, STR755FV0, STR755FR2, STR755FR1, STR755FR0, STR752FR2, STR752FR1, STR752FR0, STR751FR2, STR751FR1, STR751FR0, STR750FV2, STR750FV1, STR750FV0; STR71x:STR715FR0, STR712FR2, STR712FR0, STR711FR2, STR712FR1, STR711FR1, STR711FR0, STR710RZ, STR710FZ2, STR710FZ1; STR73xF:STR736FV2, STR736FV1, STR736FV0, STR735FZ2, STR735FZ1, STR731FV2, STR731FV1, STR731FV0, STR730FZ2, STR730FZ1; STR9系列ARM芯片解密: STR91xFA:STR912FAZ44, STR912FAZ42, STR912FA W44, STR912FA W42, STR911FA W44, STR911FA W42, STR911FAM44, STR911FAM42, STR910FAZ32, STR910FA W32, STR910FAM32;

半导体中载流子浓度的计算分析

function varargout = one(varargin) % ONE MATLAB code for one.fig % ONE, by itself, creates a new ONE or raises the existing % singleton*. % % H = ONE returns the handle to a new ONE or the handle to % the existing singleton*. % % ONE('CALLBACK',hObject,eventData,handles,...) calls the local % function named CALLBACK in ONE.M with the given input arguments. % % ONE('Property','Value',...) creates a new ONE or raises the % existing singleton*. Starting from the left, property value pairs are % applied to the GUI before one_OpeningFcn gets called. An % unrecognized property name or invalid value makes property application % stop. All inputs are passed to one_OpeningFcn via varargin. % % *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only one % instance to run (singleton)". % % See also: GUIDE, GUIDATA, GUIHANDLES % Edit the above text to modify the response to help one % Last Modified by GUIDE v2.5 21-Nov-2012 04:20:02 % Begin initialization code - DO NOT EDIT gui_Singleton = 1; gui_State = struct('gui_Name', mfilename, ... 'gui_Singleton', gui_Singleton, ... 'gui_OpeningFcn', @one_OpeningFcn, ... 'gui_OutputFcn', @one_OutputFcn, ... 'gui_LayoutFcn', [] , ... 'gui_Callback', []); if nargin && ischar(varargin{1}) gui_State.gui_Callback = str2func(varargin{1}); end if nargout

半导体材料的发展现状与趋势

半导体材料的发展现状与趋势

半导体材料与器件发展趋势总结 材料是人类社会发展的物质基础与先导。每一种重大新材料的发现和应用都把人类支配自然的能力提高到一个全新的高度。材料已成为人类发晨的里程碑。本世纪中期单晶硅材料和半导体晶体管的发明及其硅集成电路的研究成功,导致了电子工业大革命。使微电子技术和计算机技术得到飞速发展。从20世纪70年代的初期,石英光纤材料和光学纤维的研制成功,以及GaAs 等Ⅲ-Ⅴ族化合物的材料的研制成功与半导体激光器的发明,使光纤通信成为可能,目前光纤已四通八达。我们知道,每一束光纤,可以传输成千上万甚至上百万路电话,这与激光器的发明以及石英光纤材料、光纤技术的发展是密不可分的。超晶格概念的提出MBE、MOCVD先进生长技术发展和完善以及超品格量子阱材料包括一维量子线、零维量子点材料的研制成功。彻底改变了光电器件的设计思想。使半导体器件的设计与制造从过去的杂质工程发展到能带工程。出现了以“电学特性和光学特性的剪裁”为特征的新范畴,使人类跨入到以量子效应为基础和低维结构

的制作过程中,它要发生沉淀,沉淀时的体积要增大,会导致缺陷产生,这将直接影响器件和电路的性能。因此,为了克服这个困难,满足超大规模集成电路的集成度的进一步提高,人们不得不采用硅外延片,就是说在硅的衬底上外延生长的硅薄膜。这样,可以有效地避免氧和碳等杂质的污染,同时也会提高材料的纯度以及掺杂的均匀性。利用外延方法,还可以获得界面非常陡、过渡区非常窄的结,这样对功率器件的研制和集成电路集成度进一步提高都是非常有好处的。这种材料现在的研究现状是6英寸的硅外延片已用于工业的生产,8英寸的硅外延片,也正在从实验室走向工业生产;更大直径的外延设备也正在研制过程中。 除此之外,还有一些大功率器件,一些抗辐照的器件和电路等,也需要高纯区熔硅单晶。区熔硅单晶与直拉硅单晶拉制条件是不一样的,它在生长时,不与石英容器接触,材料的纯度可以很高;利用这种材料,采用中子掺杂的办法,制成N或P型材料,用于大功率器件及电路的研制,特别是在空间用的抗辐照器件和电路方面,

半导体制冷片选择

致冷片的性能 在应用致冷片前,要进一步的了解它的性能,实际上致冷片的冷端从周围吸收的热Qπ外,还有两个,一个是焦耳热QJ;另一个是传导热QK。电流从元件内部通过就产生焦耳热,焦耳热的一半传到冷端,另一半传到热端,传导热从 热端传到冷端。 产冷量QC=Qπ-QJ-QK=(2P-2n).Tc.I-1/2j2R-K(Th-Tc) 式中,R表示一对电偶的总电阻,K是总热导。 热端散掉的热Qh=Qπ+Qj-Qk=(2p-2n).Th.I+1/2I2R-K(Th-Tc) 从上面两公式中可以看出,输入的电功率恰好就是热端散掉的热与冷端吸收的热之差,这就是“热泵”的一种: Qh-Qc=I2R=P 由上式得出一个电偶在热端放出的热量Qh等于输入电功率与冷端产冷量之和,相反得出冷端产冷量Qc等于热 端放出的热量与输入电功率之差。 Qh=P+Qc Qc=Qh-P 致冷片的选择过程 半导体致冷应用产品的心脏部分是半导体致冷片,根据半导体温差电堆的特点,弱点及应用范围,选用电堆时首 先应确定以下几个问题: 1、确定电堆的工作状态。根据工作电流的方向和大小,就可以决定电堆的致冷,加热和恒温性能,尽管最常用 的是致冷方式,但也不应忽视它的致热和恒温性能。 2、确定致冷时热端实际温度。因为电堆是温差片件,要达到最佳的致冷效果,电堆必须安装在一个良好的散热片上,根据散热条件的好坏,决定致冷时电堆热端的实际温度,要注意,由于温度梯度的影响,电堆热端实际温度总是要比散热片表面温度高,通常少则零点几度,多则高几度、十几度。同样,除了热端存在散热梯度以外,被冷却的 空间与电堆冷端之间也存在温度梯度。 3、确定电堆的工作环境和气氛。这包括是工作在真空状况还是在普通大气,干燥氮气,静止或流动空气及周围 的环境温度,由此来考虑保温(绝热)措施,并决定漏热的影响。 4、确定电堆工作对象及热负载的大小。除了受热端温度影响以外,电堆所能达到的最低温度或最大温差是在空 载和绝热两个条件下确定的,实际上工作的,电堆既不可能真正绝热,也必须有热负载,否则无意义。 5、确定致冷片的级数。电堆级数的选定必须满足实际温差的要求,即电堆标称的温差必须高于实际要求的温差, 否则达不到要求,但是级数也不能太多,因为电堆的价格随着级数的增加而大大提高。 6、电堆的规格。选定电堆的级数以后,就可以选定电堆的规格,特别是电堆的工作电流。因为同时能满足温差及产冷的电堆有好几种,但是由于工作条件不同,通常选用工作电流最小的电堆,因为这时配套电源费用较小,然而电堆的总功率是决定因素,同样的输入电功率减少工作电流就得增加电压(每对元件0.1v),因而元件对数就得增加。 7、确定电堆的数量。这是根据能满足温差要求的电堆产冷总功率来决定的,它必须保证在工作温度时电堆产冷量的总和大于工作对象热负载的总功率,否则无法达到要求。电堆的热惯性非常小,空载下不大于一分钟,但是由于负载的惯性(主要是由于负载的热容量造成的),因此实际要达到设定温度时的工作速度要远远大于一分钟,多时达几小时。如工作速度要求愈大,电堆的数量也就愈多,热负载的总功率是由总热容量加上漏热量(温度愈低、漏热量 愈大)。 上述七个方面是选用电堆时考虑的一般原则,根据上述原用户首先应根据需要提出要求来选择致冷片件。一般的 要求:

ST意法半导体代理

意法半导体-万联芯城全国供应,电子元器件采购网,就找万联芯城,万联芯城专售原装进口现货电子元器件,与国内外原厂达成深度合作,坐拥三千平方米现代化仓库,解决终端生产研发物料问题,专为客户节省采购成本。 点击进入万联芯城 意法半导体代理_ST代理是一家法国 - 意大利跨国电子和半导体制 造商,总部位于瑞士日内瓦。它通常被称为意法半导体代理_ST代

理,它是欧洲大的基于收入的半导体芯片制造商。虽然意法半导体代理_ST代理公司总部和EMEA地区总部设在日内瓦,但控股公司意法半导体代理_ST代理 N.V.在荷兰阿姆斯特丹注册。 意法半导体代理_ST代理的美国总部位于德克萨斯州的Coppell。亚太地区总部位于新加坡,日本和韩国业务总部位于东京。大中华区的公司总部位于上海。 意法半导体代理_ST代理成立于1987年,由意大利的半导体公司SGS Microelettronica(SocietàGeneraleSemiconduttori)和法国Thomson的半导体部门Thomson Semiconducteurs合并而成。在合并时,意法半导体代理_ST代理被称为SGS-THOMSON,但在Thomson SA 作为所有者撤回后于1998年5月取得现在的名称-意法半导体代理 _ST代理。 SGS Microelettronica和Thomson Semiconducteurs都是历史悠久的半导体公司。 SGS Microelettronica始于1972年,此前两家公司合并: ATES(Aquila Tubi e Semiconduttori),一家真空管和半导体制造商,总部位于阿布鲁兹市的拉奎拉市,于1961年更名为Azienda

半导体加热制冷片

半导体加热制冷片 peltier制冷片安装方法2010-3-13 星期六(Saturday) 晴 致冷器的安装方法一般有三种:焊接、粘合、螺栓压缩固定。在生产上具体用哪一种方法安装,要根据产品的要求来定,总的来说对于这三种的安装时,首先都要用无水酒精棉将致冷器件的两端面擦洗干净,储冷板和散热板的安装表面应加工,表面平面度不大于0.03mm,并清洗干净,以下就是三种安装的操作过程。 1、焊接。 焊接的安装方法要求致冷器件外表面必须是金属化,储冷板和散热板也必须能够上焊料(如:铜材的储冷板或散热板)安装时先将储冷板、散热板、致冷器进行加温,(温度和焊料的熔点差不多)在各安装表面都熔上约70℃——110℃之间的低温焊料0.1mm。然后将致冷器件的热面和散热板的安装面,致冷器件的冷面和储冷板的安装面平行接触并且旋转挤压,确保工作面的接触良好后冷却。该安装方法较复杂,不易维修,一般应用在较特殊的场合。 2、粘合。 粘合的安装方法是用一种具有导热性能较好的粘合剂,均匀的涂在致冷器件、储冷板、散热板的安装面上。粘合剂的厚度在0.03mm,将致冷器的冷热面和储冷板、散热板的安装面平行的挤压,并且轻轻的来...... peltier制冷片TE电源2010-3-13 星期六(Saturday) 晴 半导体致冷器是输入直流电源工作的,必须配备专用电源。 1、直流电源。直流电源的优点是可以直接使用,不需要转换,缺点是电压电流必须适用于半导体致冷器,有些可以通过半导体致冷器的串、并联的方式解决。 2、交流电流。这是一个最普通的电源,使用时必须整流为直流才能供致冷器使用。由于致冷器件是低电压大电流器件,应用时先降压、整流、滤波,有些为了方便使用还要加上温度测量,温度控制,电流控制等。 3、由于半导体致冷器是直流电源供应,电源的波纹系数必须小于10%,否则对致冷效果有较大的影响。 4、半导体致冷器的工作电压及电流必须符合所工作器件的需要,例如:型号为TEC112706的器件,则127为致冷器件,PN的电偶对数,致冷器的工作极限电压V=电偶对数×0.11,06为允许通过最大的电流值。 5、致冷器冷热交换时的通电必须待两端面恢复到室温时(一般需要5分钟以上方可进行),否则易造成致冷器的线路损坏和陶瓷片的破裂。...... peltier制冷片散热方式2010-3-13 星期六(Saturday) 晴 半导体致冷器件的散热是一门专业技术,也是半导体致冷器件能否长期运行的基础。良好的散热才能获得最低冷端温度的先决条件。以下就是半导体致冷器的几种散热方式:

toshiba东芝半导体代理商优选稿

t o s h i b a东芝半导体代 理商 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

东芝的闪存制造车间分为上下两层结构,生产线融汇人工智能等技术,实现了高度自动化。闪存的生产在无尘环境当中进行,位于屋顶的自动化传送装置负责将闪存送往不同工序进行加工。 在国内的知名,本着“全力服务客户,为客户创造终生价值”原则。努力创造“资源平台的共享、成就客户、成就公司”的美好前景东芝在日本东京都的总部大楼东芝(TOSHIBA),东芝(TOSHIBA)是日本最大的半导体制造商,亦是第二大综合电机制造商,隶属于三井集团旗下。东芝原名东京芝浦电气株式会社,1939年由株式会社芝浦制作所和东京电气株式会社合并而成;从1875年开创至今,已经走过了133年的漫长历程。2000年,的销售额继INTEL之后,位居世界第二位。笔记本电脑的市场占有率连续7年保持世界第一。至2000年底,IT 产值在东芝总产值中所占的比例已经达到了74%。是世界上芯片制造商中的重要成员。 经营产品种类包括东芝全线产品,经营模式涉及研发、采购、生产、物流、销售、服务、环保等诸多业务。对东芝来说,2003年的海外市场份额中美国最多,排在第二位的是中国,约占20%。预计,到2008年东芝在事业规模甚至超出。已经毋庸置疑地成为东芝全球事业的重要支柱。 深圳市金泰格电子有限公司以“信誉为本、质量第一”为经营理念,这么多年来,秉承创造“一流的信誉.一流的质量.一流的服务“,竭诚为电子厂家、商家提供系列贴片元件的配套服务。以最实惠的价格,优良的品质,以诚待人,在同行业中树立了良好的口碑。使企业

相关文档