文档库 最新最全的文档下载
当前位置:文档库 › 模板刚度计算

模板刚度计算

模板刚度计算
模板刚度计算

采用10mm厚竹胶板50×100mm木方配制成梁侧和梁底模板,梁底模板底楞下层、上层为50×100mm木方,间距200mm。加固梁侧采用双钢管对拉螺栓(φ14),对拉螺栓设置数量按照以下原则执行:对拉螺栓纵向间距不大于450mm。对拉螺栓采用φ14PVC套管,以便周转。

搭设平台架子,立杆间距不大于900mm,立杆4m,2m对接,梁底加固用3m、2m钢管平台、梁底加固钢管对接处加设保险扣件。立梁用一排对拉螺栓间距600mm,次梁侧面钢管与平台水平管子支撑,板、梁木方子中到中间距200mm。

⑵梁模板设计

本工程转换层梁最大截面1125mm×1400mm,取此梁进行验算,跨度7.20m。梁底模板采用δ=14厚多层板,模板下铺单层木龙骨50×100木方,间距200mm。梁底用钢管做水平管,梁底加固采用钢管、扣件病及保险扣件。梁侧模板为δ=14厚多层板,设立楞为50×100木方,间距200mm,中间加两道φ12对拉螺杆,固定Φ48×3.5双根钢管横向背楞两道,拉杆间距500mm,计算梁底模木方、支撑。

模板支设见前设计图

木方材质为红松,设计强度和弹性模量如下:

fc=10N/mm2;fv=1.4N/mm2;fm=13N/mm2;E=9KN/mm2;

松木的重力密度为:5KN/mm3;

底模木方验算:

荷载组合:

模板体系自重:{(0.015×(1.5+0.5)×0.3+(0.1×0.05×5+0.1×0.1×2)×5)}×1.2=0.486KN/m;

混凝土自重:24×0.9×0.5×1.2=12.96KN/m

钢筋自重: 1.5×0.9×0.5×1.2=0.81KN/m;

混凝土振捣荷载:2.0×0.5×1.4=1.4KN/m;

合计:15.656KN/m

乘以折减系数0.9,q=0.9×14.09=12.68KN/m;

木方支座反力:

R=(4-b/L)qb3/8L3=(4-0.25/0.6)×12.68×0.253/(8×0.63)

= 0.41KN;

跨中最大弯距:

Mmax= KqL2

=0.07×12.68×0.62=0.32KNm;

内力计算:

σ=M/W=0.32×106/(100×1002/6)

=1.92N/mm2<fm =13 N/mm2;

强度满足要求。

挠度计算:

模板体系自重:(0.015×(1.5+0.5)×0.3+(0.1×0.05×5+0.1×0.1×2)×5)=0.405KN/m;

混凝土自重:24×0.9×0.5=10.8KN/m;

钢筋自重: 1.5×0.9×0.5=0.675KN/m;

混凝土振捣荷载:2.0×0.5=1KN/m;

合计:12.88KN/m

乘以折减系数0.9,q=0.9×12.88=11.59KN/m;

f=KfqL4/100EI

=0.0521×11.59×6004/100×9000×(100×1002/6)

=0.522mm<[f]=L/400=600/400=1.5mm

挠度满足要求。

支撑架立杆丧失稳定是支撑架的最危险的破坏状态,而最不利立杆是梁下立杆,主梁下立杆的间距为0.45m,次梁下立杆间距为900mm。

(1) 次梁荷载计算

荷载计算:

①模板自重:0.1×0.1×1.2=0.3KN

②混凝土重力:24×0.5×1.2×1.0=14.4 KN

③钢筋重力:3.5×0.5×1.2×1.0=2.1 KN

④施工人员及设备荷载:2.5×0.5×1.2=1.5 KN

⑤振捣混凝土时产生的荷载:2.0×0.5×1.2=1.2 KN

∴荷载总和:

N0= (0.3+14.4+2.1+1.5+1.2)=19.5KN

所以每根立杆的荷载为19.5KN

由《建筑施工手册》查得,1.2米步距的架立杆的承载力为30KN。

所以满足要求。

(2) 主梁荷载计算:

荷载计算:

①模板自重:0.5×0.9×1.2=0.4275KN

②混凝土重力:24×0.9×0.9×1.0=19.44KN

③钢筋重力:3.5×0.9×0.9×1.0=2.835 KN

④施工人员及设备荷载:2.5×0.9×0.9=2.025 KN

⑤振捣混凝土时产生的荷载:2.0×0.9×0.9=1.62 KN

∴荷载总和:

N0= (0.43+19.44+2.835+2.025+1.62)=26.78KN

所以每根立杆的荷载为13.39KN

3.梁模板安装工艺

a、在钢筋砼柱子或其它便于操作的构件上弹出轴线和水平线。

b、根据模板设计,安装工具或钢支柱或Ф48钢管和水平拉杆及斜支撑,水平拉杆可与柱、墙水平拉杆相连接,柱中间拉杆或下边拉杆要纵横设置,但不能与操作脚手架相连接。

c、按柱标高安装梁底模板,并拉线找直,进行起拱(按规范或设计图要求起拱),一般起拱高度宜为梁跨长度的1/1000~3/1000。

d、绑扎钢筋经检查合格后,清扫垃圾再安装侧模板。

e、用Ф48直径钢管做横楞,用附件固定在侧模板上,用梁托或三角架或Ф48直径竖向钢管固定横楞。横柃和三角架间距由计算确定;模板上口用定型卡子或钢管固定。

一、参数信息:

1.脚手架参数

横向间距或排距(m):1.00;纵距(m):1.00;步距(m):1.50;

立杆上端伸出至模板支撑点长度(m):0.10;脚手架搭设高度(m):5.00;

采用的钢管(mm):Φ48×3.5 ;

扣件连接方式:双扣件,考虑扣件的保养情况,扣件抗滑承载力系数:0.80;

板底支撑连接方式:方木支撑;

2.荷载参数

模板与木板自重(kN/m2):0.350;混凝土与钢筋自重(kN/m3):25.000;

楼板浇筑厚度(m):0.200;

施工均布荷载标准值(kN/m2):1.000;

3.木方参数

木方弹性模量E(N/mm2):9500.000;木方抗弯强度设计值(N/mm2):13.000;

木方抗剪强度设计值(N/mm2):1.400;木方的间隔距离(mm):250.000;

木方的截面宽度(mm):60.00;木方的截面高度(mm):80.00;

图2 楼板支撑架荷载计算单元

二、模板支撑方木的计算:

方木按照简支梁计算,其惯性矩I和截面抵抗矩W分别为:

W=6.000×8.000×8.000/6 = 64.00 cm3;

I=6.000×8.000×8.000×8.000/12 = 256.00 cm4;

方木楞计算简图

1.荷载的计算:

(1)钢筋混凝土板自重(kN/m):

q1= 25.000×0.250×0.200 = 1.250 kN/m;

(2)模板的自重线荷载(kN/m):

q2= 0.350×0.250 = 0.088 kN/m ;

(3)活荷载为施工荷载标准值与振倒混凝土时产生的荷载(kN):

p1 = (1.000+2.000)×1.000×0.250 = 0.750 kN;

2.方木抗弯强度验算:

最大弯矩考虑为静荷载与活荷载的计算值最不利分配的弯矩和,计算公式如下:

均布荷载q = 1.2×(1.250 + 0.088) = 1.605 kN/m;

集中荷载p = 1.4×0.750=1.050 kN;

最大弯距M = Pl/4 + ql2/8 = 1.050×1.000 /4 + 1.605×1.0002/8 = 0.463 kN.m;

最大支座力N = P/2 + ql/2 = 1.050/2 + 1.605×1.000/2 = 1.328 kN ;

方木的最大应力值σ= M / w = 0.463×106/64.000×103 = 7.236 N/mm2;

方木抗弯强度设计值[f]=13.0 N/mm2;

方木的最大应力计算值为7.236 N/mm2 小于方木的抗弯强度设计值13.0 N/mm2,满足要求!

3.方木抗剪验算:

最大剪力的计算公式如下:

Q = ql/2 + P/2

截面抗剪强度必须满足:

T = 3Q/2bh < [T]

其中最大剪力: V = 1.000×1.605/2+1.050/2 = 1.328 kN;

方木受剪应力计算值T = 3 ×1327.500/(2 ×60.000 ×80.000) = 0.415 N/mm2;

方木抗剪强度设计值[T] = 1.400 N/mm2;

方木受剪应力计算值为0.415 N/mm2 小于方木的抗剪强度设计值 1.400 N/mm2,满足要求!

4.方木挠度验算:

最大弯矩考虑为静荷载与活荷载的计算值最不利分配的挠度和,计算公式如下:

均布荷载q = q1 + q2 = 1.250+0.088=1.337 kN/m;

集中荷载p = 0.750 kN;

方木最大挠度计算值V= 5×1.337×1000.0004 /(384×9500.000×2560000.00) +750.000×1000.0003 /( 48×9500.000×2560000.00) = 1.359 mm;

方木最大允许挠度值[V]= 1000.000/250=4.000 mm;

方木的最大挠度计算值 1.359 mm 小于方木的最大允许挠度值 4.000 mm,满足要求!

三、木方支撑钢管计算:

支撑钢管按照集中荷载作用下的三跨连续梁计算;

集中荷载P取纵向板底支撑传递力,P = 1.605×1.000 + 1.050 = 2.655 kN;

支撑钢管计算简图

支撑钢管计算弯矩图(kN.m)

支撑钢管计算变形图(kN.m)

支撑钢管计算剪力图(kN)

最大弯矩Mmax = 0.996 kN.m ;

最大变形Vmax = 2.795 mm ;

最大支座力Qmax = 11.616 kN ;

钢管最大应力σ= 0.996×106/5080.000=196.021 N/mm2 ;

钢管抗压强度设计值[f]=205.000 N/mm2 ;

支撑钢管的计算最大应力计算值196.021 N/mm2 小于钢管的抗压强度设计值205.000 N/mm2,满足要求!

支撑钢管的最大挠度小于1000.000/150与10 mm,满足要求!

四、扣件抗滑移的计算:

按照《建筑施工扣件式钢管脚手架安全技术规范培训讲座》刘群主编,P96页,双扣件承载力设计值取16.00kN,按照扣件抗滑承载力系数0.80,该工程实际的旋转双扣件承载力取值为12.80kN 。

纵向或横向水平杆传给立杆的竖向作用力设计值R= 11.616 kN;

R < 12.80 kN,所以双扣件抗滑承载力的设计计算满足要求!

五、模板支架立杆荷载标准值(轴力):

作用于模板支架的荷载包括静荷载、活荷载和风荷载。

1.静荷载标准值包括以下内容:

(1)脚手架的自重(kN):

NG1 = 0.129×5.000 = 0.646 kN;

钢管的自重计算参照《扣件式规范》附录A。

(2)模板的自重(kN):

NG2 = 0.350×1.000×1.000 = 0.350 kN;

(3)钢筋混凝土楼板自重(kN):

NG3 = 25.000×0.200×1.000×1.000 = 5.000 kN;

经计算得到,静荷载标准值NG = NG1+NG2+NG3 = 5.996 kN;

2.活荷载为施工荷载标准值与振倒混凝土时产生的荷载。

经计算得到,活荷载标准值NQ = (1.000+2.000 ) ×1.000×1.000 = 3.000 kN;

3.不考虑风荷载时,立杆的轴向压力设计值计算

N = 1.2NG + 1.4NQ = 11.395 kN;

六、立杆的稳定性计算:

立杆的稳定性计算公式:

其中N ---- 立杆的轴心压力设计值(kN) :N = 11.395 kN;

φ---- 轴心受压立杆的稳定系数,由长细比lo/i 查表得到;

i ---- 计算立杆的截面回转半径(cm) :i = 1.58 cm;

A ---- 立杆净截面面积(cm2):A = 4.89 cm2;

W ---- 立杆净截面模量(抵抗矩)(cm3):W=5.08 cm3;

σ-------- 钢管立杆最大应力计算值(N/mm2);

[f]---- 钢管立杆抗压强度设计值:[f] =205.000 N/mm2;

L0---- 计算长度(m);

如果完全参照《扣件式规范》,按下式计算

l0 = h+2a

k1---- 计算长度附加系数,取值为1.155;

u ---- 计算长度系数,参照《扣件式规范》表5.3.3;u = 1.700;

a ---- 立杆上端伸出顶层横杆中心线至模板支撑点的长度;a = 0.100 m;

上式的计算结果:

立杆计算长度L0 = h+2a = 1.500+0.100×2 = 1.700 m;

L0/i = 1700.000 / 15.800 = 108.000 ;

由长细比Lo/i 的结果查表得到轴心受压立杆的稳定系数φ= 0.530 ;

钢管立杆的最大应力计算值;σ=11394.600/(0.530×489.000)= 43.966 N/mm2;

钢管立杆的最大应力计算值σ= 43.966 N/mm2 小于钢管立杆的抗压强度设计值[f] = 205.000 N/mm2,满足要求!

如果考虑到高支撑架的安全因素,适宜由下式计算

l0 = k1k2(h+2a)

k1 -- 计算长度附加系数按照表1取值1.185;

k2 -- 计算长度附加系数,h+2a = 1.700 按照表2取值1.003 ;

上式的计算结果:

立杆计算长度Lo = k1k2(h+2a) = 1.185×1.003×(1.500+0.100×2) = 2.021 m;

Lo/i = 2020.544 / 15.800 = 128.000 ;

由长细比Lo/i 的结果查表得到轴心受压立杆的稳定系数φ= 0.406 ;

钢管立杆的最大应力计算值;σ=11394.600/(0.406×489.000)= 57.394 N/mm2;

钢管立杆的最大应力计算值σ= 57.394 N/mm2 小于钢管立杆的抗压强度设计值[f] = 205.000 N/mm2,满足要求!

模板承重架应尽量利用剪力墙或柱作为连接连墙件,否则存在安全隐患。

以上表参照杜荣军: 《扣件式钢管模板高支撑架设计和使用安全》。

七、梁和楼板模板高支撑架的构造和施工要求[工程经验]:

除了要遵守《扣件架规范》的相关要求外,还要考虑以下内容

1.模板支架的构造要求:

a.梁板模板高支撑架可以根据设计荷载采用单立杆或双立杆;

b.立杆之间必须按步距满设双向水平杆,确保两方向足够的设计刚度;

c.梁和楼板荷载相差较大时,可以采用不同的立杆间距,但只宜在一个方向变距、而另一个方向不变。

2.立杆步距的设计:

a.当架体构造荷载在立杆不同高度轴力变化不大时,可以采用等步距设置;

b.当中部有加强层或支架很高,轴力沿高度分布变化较大,可采用下小上大的变步距设置,但变化不要过多;

c.高支撑架步距以0.9--1.5m为宜,不宜超过1.5m。

3.整体性构造层的设计:

a.当支撑架高度≥20m或横向高宽比≥6时,需要设置整体性单或双水平加强层;

b.单水平加强层可以每4--6米沿水平结构层设置水平斜杆或剪刀撑,且须与立杆连接,设置斜杆层数要大于水平框格总数的1/3;

c.双水平加强层在支撑架的顶部和中部每隔10--15m设置,四周和中部每10--15m设竖向斜杆,使其具有较大刚度和变形约束的空间结构层;

d.在任何情况下,高支撑架的顶部和底部(扫地杆的设置层)必须设水平加强层。

4.剪刀撑的设计:

a.沿支架四周外立面应满足立面满设剪刀撑;

b.中部可根据需要并依构架框格的大小,每隔10--15m设置。

5.顶部支撑点的设计:

a.最好在立杆顶部设置支托板,其距离支架顶层横杆的高度不宜大于400mm;

b.顶部支撑点位于顶层横杆时,应靠近立杆,且不宜大于200mm;

c.支撑横杆与立杆的连接扣件应进行抗滑验算,当设计荷载N≤12kN时,可用双扣件;大于12kN时应用顶托方式。

6.支撑架搭设的要求:

a.严格按照设计尺寸搭设,立杆和水平杆的接头均应错开在不同的框格层中设置;

b.确保立杆的垂直偏差和横杆的水平偏差小于《扣件架规范》的要求;

c.确保每个扣件和钢管的质量是满足要求的,每个扣件的拧紧力矩都要控制在45-60N.m,钢管不能选用已经长期使用发生变形的;

d.地基支座的设计要满足承载力的要求。

7.施工使用的要求:

a.精心设计混凝土浇筑方案,确保模板支架施工过程中均衡受载,最好采用由中部向两边扩展的浇筑方式;

b.严格控制实际施工荷载不超过设计荷载,对出现的超过最大荷载要有相应的控制措施,钢筋等材料不能在支架上方堆放;

c.浇筑过程中,派人检查支架和支承情况,发现下沉、松动和变形情况及时解决。

结构的刚度计算

建筑力学行动导向教学案例教案提纲

模块六:静定结构的位移计算及刚度校核 6.1.1 杆系结构的位移 杆系结构在荷载或其它因素作用下,会发生变形。由于变形,结构上各点的位置将会移动,杆件的横载面会转动,这些移动和转动称为结构的位移。 图6-1 刚架的绝对位移图6-2刚架的相对位移 我们将以上线位移、角位移及相对位移统称为广义位移。 除荷载外,温度改变、支座移动、材料收缩、制造误差等因素,也将会引起位移,如图11.3(a) 和图11.3(b)所示。 图6-3其他因素引起的位移 6.1.2 计算位移的目的 在工程设计和施工过程中,结构的位移计算是很重要的,概括地说,计算位移的目的有以下三个方面: 1、验算结构刚度。即验算结构的位移是否超过允许的位移限制值。 2、为超静定结构的计算打基础。在计算超静定结构内力时,除利用静力平衡条件外,还 需要考虑变形协调条件,因此需计算结构的位移。 3、在结构的制作、架设、养护过程中,有时需要预先知道结构的变形情况,以便采取一 定的施工措施,因而也需要进行位移计算。 建筑力学中计算位移的一般方法是以虚功原理为基础的。本章先介绍虚功原理,然后讨论在荷载等外界因素的影响下静定结构的位移计算方法。 6.2.构件的变形与刚度校核 6.2.1轴心拉压变形 一、纵向变形 1、拉压杆的位移:等直杆在轴向外力作用下,发生变形,会引起杆上某点处在空间位 置的改变,即产生了位移△l。 2、计算公式

N N F F l l dx dx dx E EA EA σ ε?====??? 图6-4轴心受拉变形 EA l F l N =?—— EA 称为杆的拉压刚度 (4-2) 上式只适用于在杆长为l 长度N 、E 、A 均为常值的情况下, 即在杆为l 长度内变形是均匀的情况 [例6.2-1]某变截面方形柱受荷情况如图6-5所示,F=40KN 上柱高3m 边长为240mm,下柱高4m 边长为370mm ,E=0.03×105 Mpa 。试求:该柱顶面A 的位移。 解:1.绘内力图 图6-5 二、横向变形 1、横向变形 (公式6-1) 2.横向变形因数或泊松比 (公式6-2) 【例6.2-2】 一矩形截面钢杆,其截面尺寸b ×h =3mm ×80mm ,材料的E =200GPa 。经拉伸试验测得:在纵向100mm 的长度内,杆伸长了0.05mm ,在横向60mm 的高度内杆的尺寸缩小了0.0093mm ,试求:⑴ 该钢材的泊松比;⑵ 杆件所受的轴向拉力F P 。 解:(1)求泊松比。 求杆的纵向线应比ε 求杆的横向线应变ε′ 求泊松比μ (2)计算杆受到的轴向拉力 由虎克定律σ=ε·E 计算图示杆件在F P 作用下任一横截面上的正应力 σ=ε·E =5×10-4×200×103=100MPa 333 3 52522.4010310120104100.03102400.03103701.86BC BC AB AB AB BC AB BC N l N l l l l EA EA ?=?+?=+-???-???=+ ????=-求变形: a a d -1=?a a ?-= 'εε εν' =νεε-='4105100 05 .0-?==?= l l ε4 '1055.160 0093.0-?-=-=?=a a ε31.010 51055.14 4 '=??-==--εεμA F N = σ

关于结构侧向刚度的计算

关于结构侧向刚度的计算 1. 关于侧向刚度 《高层建筑混凝土结构技术规程》JGJ3-2010(以下简称“《高规》”)有若干处出现了关于楼层侧向刚度的规定,其相应计算方法和适用范围不尽相同。 1.1 判别结构竖向布置规则性(《高规》3.5.2) 对于以剪切变形为主的框架结构(即结构中不含有剪力墙)的楼层侧向刚度比1γ的计算方法做出了规定,即: 111i i i i V V γ++?=? (《高规》3.5.2-1) 式中,1γ为楼层侧向刚度比,i+1i V V 、分别为第i 层和第i+1层的地震剪力标准值(注意,对于不同的地震作用计算方法,如分别采用底部剪力法和阵型分解反应谱法,该值的具体数值可能不同,但不影响楼层侧向刚度比1γ的计算),i+1i ??、分别为第i 层和第i+1层在地震作用标准值作用下的层间位移。 该公式的物理意义清晰明了,代表第i 层侧向刚度与第i+1层侧向刚度的比值,即: 111i i i i V V γ++= ?? 《高规》规定10.7γ≥,10.8γ'≥,1γ'的定义如下,即第i 层的侧向刚度与相 邻上部三层的侧向刚度的比值: 112312313i i i i i i i i V V V V γ++++++?'=??++ ?????? 对于其他结构形式,如框架-剪力墙结构、板柱-剪力墙结构、剪力墙结构、框架-核心筒结构、筒中筒结构,侧向刚度比2γ的计算公式有所不同,要考虑层高修正(原因是这类结构其楼面体系对结构侧向刚度贡献较小,当层高变化时刚度变化不明显),即: 1211i i i i i i V h V h γ+++?=? (《高规》3.5.2-1) 《高规》要求,当11.5i i h h +≤时,20.9γ≥;当11.5i i h h +>,2 1.1γ≥。

结构设计之刚度比详解

第三章 刚度比 2014.7.16 一、定义: 刚度比是指结构竖向不同楼层的侧向刚度比值。 二、计算公式: ⑴规范要求: ①、②《抗震规范》第3.4.2和3.4.3条及《高规》第3.5.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ③《高规》第E.0.2条规定当转换层设置在第2层以上时,按本规程式(3.5.2-1)计算的转换层与其相邻上层的侧向刚度比不应小于0.6。 ④《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 框架:i 1i 1i i △△++=V V γ ;其他(框剪、剪…):1 i i i 1i 1i i h h +++?=△△V V γ 详见《高规》P15 ⑶应用范围: ①《抗震规范》第3.4.2和3.4.3条用来判断竖向不规则 ②《高规》第3.5.2条规定的工程刚度比计算。用来避免竖向不规则 ③《高规》第E.0.2条用来计算转换层在二层以上时的侧向刚度比 ④《抗震规范》第6.1.14条规定的工程的刚度比的计算方法1。用于判断地下室顶板能否作为上部结构的嵌固端。 注:SATWE 软件在进行“地震剪力与地震层间位移比”的计算时“地下室信息”中的“回填土对地下室约束相对刚度比”里的值填“0”; 2、按剪切刚度计算 ⑴规范要求: ①《高规》第E.0.1条规定:当转换层设置在1、2层时,可近似采用转换层与其相邻上层结构的等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应小于0.4,抗震设计时γ不应小于0.5。 ②《抗震规范》第6.1.14-2条规定:结构地上一层的侧向刚度,不宜大于相关范围地下一层侧向刚度的0.5倍;地下室周边宜有与其顶板相连的抗震墙。 ⑵计算公式: 1 22211h h ?=A G A G γ 详见《高规》P177 ⑶应用范围: ①《高规》第E.0.1条用来计算转换层在一二层时的侧向刚度比 ②《抗震规范》第6.1.14条规定的工程的刚度比的计算方法2。用于判断地下室顶板能否作为上部结构的嵌固端。 3、按剪弯刚度计算 ⑴规范要求: ①《高规》第E.0.3条规定:当转换层设置在第二层以上时,尚宜采用图E 所示的计算模型按公式(E.0.3)计算转换层下部结构与上部结构的等效侧向刚度比γe 2。γe 2宜接近1,非抗震设计时γe 不应小于0.5,抗震设计时γe 不应小于0.8。 ⑵计算公式: 2 112H H △△=γ 详见《高规》P178

动刚度与静刚度

动刚度与静刚度 静载荷下抵抗变形的能力称为静刚度,动载荷下抵抗变形的能力称为动刚度,即引起单位振幅所需要的动态力。 静刚度一般用结构的在静载荷作用下的变形多少来衡量,动刚度则是用结构振动的频率来衡量; 如果动作用力变化很慢,即动作用力的频率远小于结构的固有频率时,可以认为动刚度和静刚度基本相同。否则,动作用力的频率远大于结构的固有频率时,结构变形比较小,动刚度则比较大。 但动作用力的频率与结构的固有频率相近时,有可能出现共振现象,此时动刚度最小,变形最大。金属件的动刚度与静刚度基本一样,而橡胶件则基本上是不一样的,橡胶件的静刚度一般来说是非线性的,也就是在不同载荷下的静刚度值是不一样的;而金属件是线性的,也就是说基本上是各个载荷下静刚度值都是一样的; 橡胶件的动刚度是随频率变化的,基本上是频率越高动刚度越大,在低频时变化较大,到高频是曲线趋于平坦,另外动刚度与振动的幅值也有关系,同一频率下,振动幅值越大,动刚度越小 刚度 刚度 受外力作用的材料、构件或结构抵抗变形的能力。材料的刚度由使其产生单位变形所需的外力值来量度。各向同性材料的刚度取决于它的弹性模量E和剪切模量G(见胡克定律)。结构的刚度除取决于组成材料的弹性模量外,还同其几何形状、边界条件

等因素以及外力的作用形式有关。分析材料和结构的刚度是工程设计中的一项重要工作。对于一些须严格限制变形的结构(如机翼、高精度的装配件等),须通过刚度分析来控制变形。许多结构(如建筑物、机械等)也要通过控制刚度以防止发生振动、颤振或失稳。另外,如弹簧秤、环式测力计等,须通过控制其刚度为某一合理值以确保其特定功能。在结构力学的位移法分析中,为确定结构的变形和应力,通常也要分析其各部分的刚度。 刚度是指零件在载荷作用下抵抗弹性变形的能力。零件的刚度(或称刚性)常用单位变形所需的力或力矩来表示,刚度的大小取决于零件的几何形状和材料种类(即材料的弹性模量)。刚度要求对于某些弹性变形量超过一定数值后,会影响机器工作质量的零件尤为重要,如机床的主轴、导轨、丝杠等。 工艺系统的刚度 1 .基本概念 刚度的一般概念是指物体或系统抵抗变形的能力。用加到物体的作用力与沿此作用力方向上产生的变形量的比值表示,即(10-5 ) 式中——静刚度( N) ; ——作用力(N/mm ); ——沿作用力方向的变形量(mm )。 越大,物体或系统抵抗变形能力越强,加工精度就越高。

乘用车副车架静刚度分析规范

精选文档 Q/JLY J711 -2009 乘用车副车架静刚度CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司 二〇〇九年三月

精选文档 前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本规范。 本规范是对Q/JLY J711160-2008《乘用车副车架刚度CAE分析规范》的修订。与Q/JLY J711160-2008相比,主要差异如下: ——对原有章节进行重新编排; ——对分析模型的处理进行重新定义; ——对数据处理进行详细表述; ——对评价标准进行补充; ——对分析报告内容进行修改。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司工程分析部负责起草。 本规范主要起草人:李慧梅。 本规范于2009年4月15日发布并实施。标准号为Q/JLY J711160-2008的规范于2008年7月28日第一次发布,本次修订为第一次。

1 范围 本规范规定了乘用车副车架静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车副车架静刚度CAE分析。 2 软硬件设施 a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 乘用车副车架静刚度分析的输入条件主要指副车架有限元模型,一个完整的副车架有限元模型含内容如下: a)副车架各个零件的网格数据; b)副车架焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车副车架静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型副车架静刚度分析报告》(“车型”代表车型代号,如:车型为GC-1,则分析报告命名为《GC-1副车架静刚度分析报告》)。 5 分析方法 5.1 分析模型 分析模型包括副车架的有限元模型,钣金件均采用壳单元模拟,点焊采用CWELD模拟,线焊采用RBE2或壳单元模拟。 5.2 分析模型的建立 建立有限元模型,应符合下列要求: a)副车架各个零件的网格质量应符合求解器的要求; b)副车架各个零件的材料,须与明细表规定的材料相对应; c)副车架各个零件的厚度,须与明细表规定的厚度相对应;

第四章扭转的强度与刚度计算.

41 一、 传动轴如图19-5(a )所示。主动轮A 输入功率kW N A 75.36=,从动轮D C B 、、输出功率分别为kW N kW N N D C B 7.14,11===,轴的转速为n =300r/min 。试画出轴的扭矩图。 解 (1)计算外力偶矩:由于给出功率以kW 为单位,根据(19-1)式: 1170300 75 .3695509550=?==n N M A A (N ·m ) 351300 11 95509550=?===n N M M B C B (N ·m ) 468300 7 .1495509550=?==n N M D D (N ·m ) (2)计算扭矩:由图知,外力偶矩的作用位置将轴分为三段:AD CA BC 、、。现分别在各段中任取一横截面,也就是用截面法,根据平衡条件计算其扭矩。 BC 段:以1n M 表示截面Ⅰ-Ⅰ上的扭矩,并任意地把1n M 的方向假设为图19-5(b )所示。根据平衡条件0=∑x m 得: 01=+B n M M 3511-=-=B n M M (N ·m ) 结果的负号说明实际扭矩的方向与所设的相反,应为负扭矩。BC 段内各截面上的扭矩不变,均为351N ·m 。所以这一段内扭矩图为一水平线。同理,在CA 段内: M n Ⅱ+0=+B C M M Ⅱn M = -B C M M -= -702(N ·m ) AD 段:0=D n M M -Ⅲ 468==D n M M Ⅲ(N ·m ) 根据所得数据,即可画出扭矩图[图19-5(e )]。由扭矩图可知,最大扭矩发生在CA 段内,且702max =n M N ·m 二、 如图19-15所示汽车传动轴AB ,由45号钢无缝钢管制成,该轴的外径 (a ) (c ) C B m (d ) (e ) 图19-5 (b )

正确计算转换结构的上下层刚度比

审 图 专 家 解 疑 第一作者简介:姜学诗,男,1939年12月出生,研究生学历,教授级高级工程师。 9 应正确计算转换层上部与下部结构的侧向刚度比 姜学诗 (中国建筑设计研究院审图所 北京 100044) 在高层建筑结构的底部,当上部楼层的部分竖向构件(剪力墙、框架柱)不能直接落地时,应设置结构转换层,并在结构转换层布置结构构件。转换层的转换结构构件可采用梁、桁架、箱形结构等,但最常采用的梁即是“转换梁”。结构整体计算时,带转换层的高层建筑结构应定义为“复杂高层结构”,并在《特殊构件定义》中将托墙梁或托柱梁定义为“转换梁”,与转换梁相连的柱则定义为“框支柱”。在“转换层所在层号”项内填入转换层所在的结构自然层号,若有地下室则包括地下室层号在内。 底部带转换层的高层建筑结构,由于部分竖向抗侧力构件不连续,转换层上部与下部结构的侧向刚度会发生突变,为了防止落地剪力墙过早开裂和破坏,必须对这种刚度突变加以限制。这就是《高层建筑混凝土结构技术规程》(JGJ3-2002)要求对底部带转换层的高层建筑结构,其转换层上部与下部结构的侧向刚度比及其限值应正确计算并应符合该规程附录E 的规定的原因。 对于底部带转换层的高层建筑结构,楼层侧向刚度比不能采用“层剪力与层间位移之比”的方法来计算。采用“层剪力与层间位移之比”的方法来计算转换层上部与下部结构的侧向刚度比,其结果明显偏小,偏于不安全。正确计算转换层上部与下部结构的侧向刚度比的方法是: (1)当转换层位于层1时,采用“等效剪切刚度法”来计算转换层上部与下部结构的侧向刚度比γ。γ宜接近1,非抗震设计时不应大于3,抗震设计时不应大于2。γ可按下式计算: γ=(G 2A 2/G 1A 1)×(h 1/h 2) 式中各符号的意义见《高规》附录E。 (2)当转换层位置大于层1时,采用“等效侧向刚度法”来计算转换层上部与下部结构的侧向刚度比γe 。γe 宜接近1,非抗震设计时不应大于2,抗震设计时不应大于1.3。γe 可按下式计算: γe =Δ1H 2/Δ2H 1 式中各符号的意义见《高规》附录E。 要注意的是,H 1和H 2不能取错。H 1为转换层及其下部结构(计算模型1)的高度,如图1(a)所示;当上部结构嵌固于地下室顶板时,取地下室顶板至转换层结构顶面的高度;H 2为转换层上部若干层结构(计算模型2)的高度,如图1(b)所示,其值应等于或接近计算模型1的高度H 1,且不大于H 1。 当转换层设置在层3及层3以上时,除了采用“等效侧向刚度法”来计算转换层上部与下部结构的侧向刚度比外,还应按照“层剪力与层间位移之比”的方法再算一次,并使转换层本层的侧向刚度不应小于转换层相邻上一层侧向刚度的60%。 也就 是说转换层设置在层 3及层 3以上时,结构要计算两次,才能正确控制转换层上部与下层结构侧向刚度的突变。 图1 带转换层的高层建筑结构计算模型 此外,结构工程师还应特别注意,转换层是楼层竖向抗侧力构件不连续的薄弱层,不管程序判断转换层是否满足上述刚度比要求,都应将转换层设置为薄弱层进行计算。

乘用车悬架安装点静刚度分析规范

Q/JLY J711 -2008 乘用车悬架安装点静刚度CAE分析规范 编制: 校对: 审核: 审定: 标准化: 批准: 浙江吉利汽车研究院有限公司

二〇〇八年九月

前言 为了给新车型开发提供设计依据,指导新车设计,评估新车结构性能,结合本企业实际情况,制定本标准。 本规范由浙江吉利汽车研究院有限公司提出。 本规范由浙江吉利汽车研究院有限公司综合技术部负责起草。 本规范主要起草人:汤志鸿。 本规范于2008年9月15日发布并实施。

1 范围 本标准规定了乘用车悬架安装点静刚度CAE分析的软硬件设施、输入条件、输出物、分析方法、分析数据处理及分析报告。 本标准适用于乘用车悬架安装点静刚度CAE分析。 2 软硬件设施 乘用车悬架安装点静刚度CAE分析,主要包括以下设施: a)软件设施:主要用于求解的软件,采用MSC/NASTRAN; b)硬件设施:高性能计算机。 3 输入条件 3.1 白车身3D几何模型 乘用车悬架安装点静刚度CAE分析的白车身3D几何模型,数据要求如下: a)白车身各个零件的厚度或厚度线; b)白车身几何焊点数据; c)3D CAD数据中无明显的穿透或干涉; d)白车身各个零件的明细表。 3.2 白车身有限元模型 乘用车悬架安装点静刚度分析的输入条件主要指白车身的有限元模型,一个完整的白车身有限元模型中含内容如下: a)白车身各个零件的网格数据; b)白车身焊点数据; c)各个零件的材料数据; d)各个零件的厚度数据。 4 输出物 乘用车悬架安装点静刚度分析的输出物为PDF文档格式的分析报告,针对不同的车型统一命名为《车型悬架安装点静刚度分析报告》(“车型”用具体车型代号替代如:车型为GC-1,则分析报告命名为《GC-1悬架安装点静刚度分析报告》),报告内容的按7规定的内容编制。

ABAQUS+计算+动刚度+详细说明

F(ω)=F0×sin(ωt) 输入激励力 当使用abaqus-steady-state daynmics modal, 其中20-1000即为激励力的最低频率和最高频率。

开始模态和结束模态要覆盖上图所示的激励力的最低频率和最高频率,选择直接阻尼,即每阶模态的临界阻尼比3%,(典型的取值范围在1%-10%)

Ma+cv+kx= F0×sin(ωt) 其中F0是固定的数值(简谐力的幅值),且频率由20Hz 变化到1000Hz 。f ??=πω2 位移阻抗(动刚度):()()() ωωωx F K = ()()t F F ωωsin 0?= 为输入激励力,是一个谐波输入。 ()() θωω+?=t x x sin 0 为输出稳态位移响应,根据振动理论,稳态位 移响应的频率与输入激励力的频率相同,振幅 0x 和相位角θ均取决与系统本身的物理性质(质量,弹簧刚度,阻尼)和激振力的性质(频率与振幅),而与初始条件无关,初始条件仅影响系统的瞬态响应的振幅和初始相位角。 ()ωK ,表示,在某频率下,产生单位位移振幅所需要的激振力幅 值。实际情况下,频率不同,刚度也不同。 假设()ωK =10N/m ,及动刚度在任意频率都是固定的,不随频率的变化而变化(理想情况),即在任意频率激振下,产生1m 单位位移振幅所需要的激振力幅值为10N 。 假设()ωF 的幅值为1 ,()ωK =10N/m ()ωx 的幅值x =()()ωωK F =101 特点:位移响应的幅值与频率没有关系,且是固定值。 由于在abaqus 中可方便的输出某个点的位移,速度,加速度。所以通常以某个点的位移,速度,加速度来表征动刚度的大小。

模板强度刚度计算书

行下道工序。 九、脚手架计算 一.梁模板计算书 浇注750×1300屋面梁混凝土,模板采用18厚木质多层板,次龙骨40×90木方,间距300,主龙骨Ф48×3.5钢管,间距500,支撑系统采用Ф48×3.5钢管脚手架。立杆间距900,横杆间距1.50米。验算模板及支撑的强度与刚度。 1. 荷载: (1)模板结构的自重标准值(G 1K ) 模板及小楞的自重标准值:04KN/m 2 (2)新浇注混凝土自重标准值(G 2K ) 大梁新浇混凝土自重标准值:24×0.75×1.33=23.94 KN/m 2 (3)钢筋自重标准值(G 3K ) 1.5×1.33×0.75=1.5 KN/m 2 (4)施工人员及施工设备荷载标准值(Q 1K ) 计算模板及直接支撑模板的小楞时,均布活荷载取2.5 KN/m 2 再以集中荷载2.5KN 进行验算,比较两者所得的弯矩值,取其 最大者采用: 荷载组合 施工荷载为均布荷载 F'=Υ0(ΥG S GK +ΥQK S QK ) =0.9×[1.2×(0.4+23.94+1.5)+1.4×2.5] =31.06 KN/m 2 F'=Υ0[ΥG S GK +∑=n i 1 ΥQi φCi S Qik ] =0.9[1.35×(0.4+23.94+1.5)+1.4×0.7×2.5]

=33.60 KN/m2 两者取较大值,应取33.60 KN/m2作为计算依据,以1m长为算单元,化为均布线荷载。 q1=33.60×1=33.60 KN/m 施工荷载为集中荷载时 q2=[0.9×1.2(0.4+1.5+23.94)]×1=27.91 KN/m P=0.9×1.4×2.5=3.15 KN/m 2.模板面板验算 (1)强度验算 施工荷载为均布荷载时,按四跨连续梁计算。 计算简图 M1=0.077×q1l2=0.077×33.60×0.32=0.233 KN/m 施工荷载为集中荷载时 计算简图

高层设计 层刚度比的理解与计算方法

(一)地震力与地震层间位移比的理解与应用 ⑴规范要求:《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条均规定:其楼层侧向刚度不宜小于上部相邻楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。 ⑵计算公式:Ki=Vi/Δui ⑶应用范围: ①可用于执行《抗震规范》第3.4.2和3.4.3条及《高规》第4.4.2条规定的工程刚度比计算。 ②可用于判断地下室顶板能否作为上部结构的嵌固端。 (二)剪切刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.1条规定:底部大空间为一层时,可近似采用转换层上、下层结构等效剪切刚度比γ表示转换层上、下层结构刚度的变化,γ宜接近1,非抗震设计时γ不应大于3,抗震设计时γ不应大于2.计算公式见《高规》151页。 ②《抗震规范》第6.1.14条规定:当地下室顶板作为上部结构的嵌固部位时,地下室结构的侧向刚度与上部结构的侧向刚度之比不宜小于2.其侧向刚度的计算方法按照条文说明可以采用剪切刚度。计算公式见《抗震规范》253页。 ⑵SATWE软件所提供的计算方法为《抗震规范》提供的方法。 ⑶应用范围:可用于执行《高规》第E.0.1条和《抗震规范》第6.1.14条规定的工程的刚度比的计算。 (三)剪弯刚度的理解与应用 ⑴规范要求: ①《高规》第E.0.2条规定:底部大空间大于一层时,其转换层上部与下部结构等效侧向刚度比γe可采用图E所示的计算模型按公式(E.0.2)计算。γe宜接近1,非抗震设计时γe 不应大于2,抗震设计时γe不应大于1.3.计算公式见《高规》151页。 ②《高规》第E.0.2条还规定:当转换层设置在3层及3层以上时,其楼层侧向刚度比不应小于相邻上部楼层的60%。

模板刚度计算

采用10mm厚竹胶板50×100mm木方配制成梁侧和梁底模板,梁底模板底楞下层、上层为50×100mm木方,间距200mm。加固梁侧采用双钢管对拉螺栓(φ14),对拉螺栓设置数量按照以下原则执行:对拉螺栓纵向间距不大于450mm。对拉螺栓采用φ14PVC套管,以便周转。 搭设平台架子,立杆间距不大于900mm,立杆4m,2m对接,梁底加固用3m、2m钢管平台、梁底加固钢管对接处加设保险扣件。立梁用一排对拉螺栓间距600mm,次梁侧面钢管与平台水平管子支撑,板、梁木方子中到中间距200mm。 ⑵梁模板设计 本工程转换层梁最大截面1125mm×1400mm,取此梁进行验算,跨度7.20m。梁底模板采用δ=14厚多层板,模板下铺单层木龙骨50×100木方,间距200mm。梁底用钢管做水平管,梁底加固采用钢管、扣件病及保险扣件。梁侧模板为δ=14厚多层板,设立楞为50×100木方,间距200mm,中间加两道φ12对拉螺杆,固定Φ48×3.5双根钢管横向背楞两道,拉杆间距500mm,计算梁底模木方、支撑。 模板支设见前设计图 木方材质为红松,设计强度和弹性模量如下: fc=10N/mm2;fv=1.4N/mm2;fm=13N/mm2;E=9KN/mm2; 松木的重力密度为:5KN/mm3; 底模木方验算: 荷载组合: 模板体系自重:{(0.015×(1.5+0.5)×0.3+(0.1×0.05×5+0.1×0.1×2)×5)}×1.2=0.486KN/m; 混凝土自重:24×0.9×0.5×1.2=12.96KN/m 钢筋自重: 1.5×0.9×0.5×1.2=0.81KN/m; 混凝土振捣荷载:2.0×0.5×1.4=1.4KN/m; 合计:15.656KN/m 乘以折减系数0.9,q=0.9×14.09=12.68KN/m; 木方支座反力: R=(4-b/L)qb3/8L3=(4-0.25/0.6)×12.68×0.253/(8×0.63) = 0.41KN; 跨中最大弯距: Mmax= KqL2 =0.07×12.68×0.62=0.32KNm; 内力计算: σ=M/W=0.32×106/(100×1002/6) =1.92N/mm2<fm =13 N/mm2; 强度满足要求。 挠度计算: 模板体系自重:(0.015×(1.5+0.5)×0.3+(0.1×0.05×5+0.1×0.1×2)×5)=0.405KN/m; 混凝土自重:24×0.9×0.5=10.8KN/m; 钢筋自重: 1.5×0.9×0.5=0.675KN/m; 混凝土振捣荷载:2.0×0.5=1KN/m; 合计:12.88KN/m 乘以折减系数0.9,q=0.9×12.88=11.59KN/m; f=KfqL4/100EI =0.0521×11.59×6004/100×9000×(100×1002/6) =0.522mm<[f]=L/400=600/400=1.5mm 挠度满足要求。

机床静刚度测定实验指导书

机床静刚度实验 一、实验目的: 通过实验,使学生进一步了解由机床(包括夹具)一工件一刀具所组成的工艺系统是一弹性系统,在此系统中因切削力、零件自重及惯性力等的作用,工艺系统各组成环节会产生弹性变形及系统中各元件之间若有接触间隙,在外力的作用下会产生位移,并且熟悉机床静刚度的测量方法和计算方法,从而更深的理解机械制造工艺中的工艺设备及其对零件加工质量的影响,提高学生分析和处理问题的能力。 二、实验装置 机床一台 静刚度测定装置一套 图1 机床静刚度测定装置图 三、实验方法与步骤 1、如上图所示,在机床的两顶尖间装夹一根刚度很大的光轴1 (光轴受力后变形可忽略 不计)。 2、将加力器5固定在刀架上,在加力器与光轴间装一测力环4。 3、在测力环内孔中固定安装一个千分表,当对如图1所示安装的测力环施加外力时, 其中的千分表指针就会变动,其变动量与外载荷之间对应关系可在材料试验机上预先测出,千分表2、3、6的指针也会因与之接触部位的位移而变动。 4、实验时用扳手扭转带有方头的螺杆7,以施加外载荷(Fy)。然后读出靠近在车头, 尾座和刀架安放的千分表(2)、(3)、(6)的读数,并记录下来填入表1中。

2 根据以上数据,计算出床头、刀架和尾座的受力F 头、F 刀和F 尾。 为了说明尾座套筒伸出长度对刚度的影响,实验时可将套筒分别伸出5mm 和105mm 。并分别测出千分表读数和计算出刚度的数值,填入表2中。 表2 机床静刚度计算 四、静刚度的计算 为了计算方便,实验时可将测力环抵在刚性轴的中点处。故机床、床头、刀架它们之间的刚度关系可以用下式表示: )j 1 j 1(41j 11尾头刀机++=j 式中:头 头头Y F j =;刀刀刀Y F j =;尾尾尾Y F j =

刚度校核

刚度校核 l.轴的弯曲刚度校核计算 2.轴的扭转刚度校校计算 l.轴的弯曲刚度校核计算 常见的轴大多可视为简文梁。若是光轴,可直接用材料力学中的公式计算其挠度或偏转角;若是阶梯轴,如果对计算精容要求不高,则可用当量直径法作近似计算。把阶梯轴看成是当量直径为dv的光轴,然后再按材料力学中的公式计算。当量直径为 式中:l i——阶梯轴第i段的长度,mm; d i——阶梯轴第i段的直径,mm; L——阶梯轴的计算长度;m。; Z——阶梯轴计算长度内的轴段数。 当载荷作用干两支承之间时,L=l(l为支承跨距);当载荷作用于悬臂端时,L=l+K(K为轴的悬臂长度)。 轴的弯曲刚度条件为: 挠度 偏转角 式中:[y]——轴的允许挠度,mm,见表15-5; [θ]——轴的允许偏转角,rad,见表15-5。

表15-5 轴的允许挠度及允许偏转角 2.轴的扭转刚度校校计算 轴的扭转变形用每米长的扭转角p来表示。圆轴扭转角P的计算公式为: 光轴 阶梯轴 式中:T——轴所受的扭矩,N·mm; G——轴的材料的剪切弹性模量,MPa,对于钢材,G=8.1*104MPa; I p——轴截面的极惯性矩,mm4,对于圆轴,I p= d4/32 L——阶梯轴受扭矩作用的长度,mm; T i、l i、I pi——分别代表阶梯轴第i段上所受的扭矩、长度和极惯性矩,单位同前; z——阶梯轴受扭矩作用的轴段数。 轴的扭转刚度条件为

?≤[?] ( °)/m 式中[?] 为轴每米长的允许扭转角,与轴的使用场合有关。对于一般传动轴,可取[?]=0.5-1( °)/m;对于精密传动轴,可取[?]=0.25-0.5( °)/m;对于精度要求不高的轴,[?]可大于1( °)/m。 表15-4 抗弯,抗扭截面系数计算公式 注:近似计算时,单,双键槽一般可忽略,花键轴截面可视为直径等于平均直径的圆截面。

实验一车床三向力静刚度测定

实验一车床三向力静刚度测定 一、实验目的与要求: 1.熟悉车床静刚度的测定方法。 2.比较车床各部件刚度的大小,分析影响车床刚度的各种因素。 3.巩固和验证《机械制造工艺及夹具设计》中有关系统刚度和误差复映规律的概念。 二、实验设备和仪器: 1.CA6140车床。 2.三向力静刚度测定仪。 3.千分表。 三、实验方法: 1. 图 1 将紧锁套9(见图1)装在车床尾座套筒上。由于在该套上有两个相互垂直的平面,所以可将磁性表座安放在小拖板上,用百分表在套9的水平面上拉表,或将角尺放在床身上,依套9的垂直平面找正,当找正后,即将两个夹紧螺钉12固定,这时,套9上的刻线即位于车床前后顶尖轴线所处的水平平面内,随后将弓形体1装在车床两顶尖之间,摇动尾座手把将顶尖压在弓形体1右顶尖孔中,再将销8插入套9的孔中,将手把2扭入弓形体所选定的螺纹孔中(如图1所示为30o). 2.模拟车刀的安装: 第一种情况: α=0o,β由0o转到90o时(见图3),可将模拟车刀刀杆装在车床刀架左边的压刀槽内,这时,先将找正顶尖6装入弓形体孔内,将刀杆13安装在与车床两顶尖中心连线相垂直,并在刀杆底部垫适当厚度的垫铁,使顶尖6的尖端与模拟刀头14的中心孔均匀接触,这时模拟车刀上的刚球中心便与车床中心等高。若弓形体转动不同的?角,可将模拟车刀刀头转适应的角度,转角大小以刀头与测力圈不相撞为准。 第二种情况: α=30o,β由0o转到90o时。仍将模拟车刀刀杆装在车床刀架左边的压力槽内(见图2a),车刀高度方向(即Z方向)位置的确定仍与第一种情况相同,但由于α≠0o,所以模拟车刀必须在X-Y平面内转相应的角度,转角大小的确定,是以模拟车刀受力后使刀架所产生得力距,与一般车削时受力架产生的力矩尽量相接近,由于刀架的转动,刀头上的刚球中

动静刚度计算方法

2.2空气弹簧的支撑、弹性作用取决于空气弹簧内的压缩气体。容积比、气体压缩系数基本上决定了理想空气弹簧的性能。理想气体状态方程为 绝对压力(Pa) 除以气体密度(kg/m3)等于气体常数(N?m/(kg?K) 乘以绝对温度(K) 或者绝对压力(Pa) 乘以体积 = 气体质量 x 气体常数(N?m/(kg?K)) x绝对温度(K) 不同的气体R值不同,空气的R=287N?m/(kg?K) 当气体质量m为常数时: 绝对压力(Pa)x体积的n次方=const(const为常数) 式中,n----多变常数;当变速过程缓慢时,可将其视为等温过程,则n=1;当变速过程较快时,可视为绝热过程,不同的气体n值不同,空气n=1.4。 理想气体的微分方程为: 绝热过程:体积的n次方x 绝对压力的导数 + n x 绝对压力 x 体积的(n-1)次方的导数=0 等温过程难n=1时: 体积x绝对压力的导数+绝对压力x体积的导数=0 即绝对压力的导数除以绝对压力 = ―体积的导数除以体积 空气弹簧的承载能力: F=变化压力x承载面积变化压力=绝对压力-原来的压力 空气弹簧的理论刚度:空气弹簧的刚度是F对空气弹簧变形量(行程)

s的导数,即 k=承载能力对行程求导=初始压力x承载面积对s的导数+初始承载面积Ae0 x 压力对行程的导数 由以上可知,空气弹簧刚度取决于两部分:式中右边第一项为弹簧的几何变化(有效承载面积的变化);第二项为空气弹簧内部压力的变化,而且刚度随弹簧的变形速度而变化。 注意到 Ae=体积对行程的导数 当振动频率f﹥0.2 Hz时,可取n=K,此时其刚度可认为是动刚度,即 Kd=初始压力x 有效面积对行程的导数+绝对温度x(初始压力+承载压力)x(有效承载面积的平方 除以 体积) 当振动频率f﹤0.2 Hz时,可取n=1,此时的其刚度可认为是静刚度,即 Kd=初始压力x 有效面积对行程的导数+(初始压力+承载压力)x(有效承载面积的平方 除以 体积) 通过对空气弹簧力学公式的分析可知指数n的选取对空气弹簧刚度有重要影响。n值与空气弹簧的变形速度或振动频率有关。振动频率越高,n值越大。对于等温过程,取n=1;对于绝热过程,取n=1.4。对于汽车常遇到的振动频率范围,空气弹簧的气体变化过程介于等温过程与绝热过程之间。准确的n值通过试验确定。若空气弹簧底座有节流孔与气囊相通。

结构的位移计算和刚度校核

第6章 结构位移计算和刚度校核 到上节课为止,我们把五种静定杆件结构的计算问题全讨论过了。我们知道内力计算问题属强度问题→是结力讨论的首要任务。 讲第一章时,结力的第二大任务:刚度问题,而要解决…,首先应该… 杆件结构位移计算 (结构变形+刚度位移) → { 刚度校核 截面设计 确定P max 又是超静定结构计算的基础(双重作用)。另外本章主要讨论各种杆件结构的位移 计算问题。 结构位移计算的依据是虚功原理,所以本章先讨论刚体、变形体的虚功原理,然后推导出杆件结构位移计算的一般公式,再讨论各种具体结构的位移计算。 §6-1概述 一、 结构的位移 画图:梁、刚架、桁架 (内力N 、Q 、M ——拉伸、剪切、弯曲) 截面C 线位移:C ? 角位移:C ? 结点的线位移: 两点(截面)相对线位移: 杆件的角位移: AB ? 两截面相对角位移: 两杆件相对角位移: 1、位移定义:由于结构变形或其它原因使结构各点的位置产生(相对)移动(线位移),使杆件横截面产生(相对)转动(角位移)。 截面C 线位移:C ?。一般 分解 成水平、垂直两方向: CH ?、CV ? 角位移:C ?

2、位移的分类:6种 绝对位移:点(截面)线位移——分解成水平、垂直两方向 截面角位移: 杆件角位移: 相对位移:两点(截面)相对线位移——沿连线方向 两截面相对角位移: 两杆件相对角位移: 统称为: 广义位移:角、线位移;相对、绝对位移 Δki:k:产生位移的方向;i:引起位移原因。如ΔA P、Δat、ΔA C 广义力:集中力、力偶、分布荷载,也可以是上述各种力的综合 二、引起位移的原因 1、荷载作用:(荷载→内力→变形→位移) 2、温度改变:静定结构,温度改变,→0应力非0应变→结构变形 (材料胀缩引起的位移性质同) 3、支座移动;(无应力,无应变,但几何位置发生变化) {刚体位移(制造误差同) 变形位移 三、计算位移的目的 1)刚度验算:最大挠度的限制 (框架结构弹性层间位移限值1/450) 2)为超静定结构的弹性分析打下基础 3)预先知道变形后的位置,以便作出一定的施工措施: (起重机吊梁、板)(屋架安装)(建筑起拱)(屋窗、门、过梁)(结构要求高,精密)四、计算位移的有关假定(简化计算) 1)弹性假设 2)小变形假设 建立平衡、应变与位移、位移与荷载成线性关系 3)理想约束(联结,不考虑阻力摩擦) 变形体系{ 线性变形体系(线弹性体系) 荷载和位移呈线性关系,且荷载全撤除后位移将全部消 失,无残余变形,(可用位移叠加原理) 非线形变形体系 (分段线形叠加) 4)位移叠加原理(类似内力、反力叠加)

盈建科YJK计算参数详解—结构总体信息

结构总体信息 加强层所在层号:如果设置了加强层,软件将按规范要求进行设计,该参数除了在设计参数中设置外,还可在楼层属性中手工指定。 底框层数:只有在底框结构(底层框架结构)下,该参数才可以设置。 施工模拟加载步长:即指按照施工模拟3或者施工模拟1计算时,每次加载的楼层数量,软件隐含的加载步长是1,即每次加载1个自然层。对于层数较多的高层建筑,为了提高计算效率也可以将加载步长改为大于1的数;软件对于转换层、梁托柱层等一些特殊的楼层,会自动合并其相邻的几个楼层作为一个施工加载次序,不受本参数的约束。 恒活荷载计算信息:竖向荷载加载顺序,施工模拟三比其他几种更符合实际情况。梁托柱楼层、悬挑梁托柱楼层会造成内力异常,检查方法为恒载的计算模型与活载差异大,并且恒载变形异常、与活载变形明显不同。故此建议一般对多、高层建筑首选模拟施工3。对钢结构或大型体育馆 仅供个人学习参考

类(指没有严格的标准层概念)结构应选一次加载。对于长悬臂结构或有吊柱结构,由于一般是采用悬挑脚手架的施工工艺,故对悬臂部分应采用一次加载进行。设计。当有吊车荷载时,不应选用模拟施工3。 风荷载计算信息:一般计算方式(假定迎风面和背风面的受风面积是相同的,在自动计算风 荷载时,只考虑顺风向,不考虑横向风的影响。一般方法不能计算屋顶的风吸力和风压力。);精细计算方式(横向风和风吸力影响较大的结构) 地震作用计算信息:按照规范规定,依据当地抗震等级及工程实际情况进行选择。8度9度时的大跨度和长悬臂结构及9度时的高层建筑,应计算竖向地震作用。 计算吊车荷载:如果设计人员在建模中输入了吊车荷载,则软件会自动勾选该项。如果工程 中输入了吊车荷载而又不想在结构计算中考虑时,可取消该选项。吊车荷载是在建模中布置和自动生成的,自动生成的吊车荷载沿着吊车布置的跨度成对布置在各个柱顶节点,可以根据边跨、抽柱、 楼板、因 0.3。 行折减,同时在计算前处理的特殊墙下增加了“徐变折减”菜单,可以对各层不需要考虑折减的剪力墙修改折减系数为1。 墙刚度折减系数:配合“竖向…系数”使用。 仅供个人学习参考

空气弹簧刚度计算公式

空气弹簧刚度计算公式 1. 载荷与气压关系式: )A p (p P a -= ----(1) 式中: P 载荷 p 气囊内绝对气压 A 气囊有效承压面积 a p 标准大气压,其值与运算单位有关: 采用N 、mm 时,a p =0.0981≈0.1N/mm 2 采用kgf 、cm 时,a p =1 kgf/cm 2 采用1b 、in 时,a p =14.223 lb/in 2(psi) 2. 气压与容积变化关系式―――气体状态方程式 m )V V (p p 00= 式中: p 任一位置气囊内气体的绝对气压 V 任一位置气囊内气体容积 0p 静平衡位置气囊内气体的绝对气压 0V 静平衡位置气囊内气体容积 m 多变指数,静态即等温过程 m =1; 动态即绝热过程 m =1.4; 一般状态,可取 m =1.33。 3. 刚度:弹性特性为弱非线性,取其导数,即 dx dP K = 式中: K 任一位置的刚度 P 载荷 x 气囊变形量即行程 即: dx )A]p d[(p K a -= dx )A]p V V d[(p a m m 00-= dx dV V V Amp dx dA )p V V (p 1m m 00a m m 00?--=+ ----(2)

当气囊处在平衡位置时, V =0V , p =0p , dx dV =-A , 即: 020a 00V A mp dx dA )p (p K +-= ----(3) 在平衡位置时之偏频: 0a 000)V p (p mgA p dx dA A g 2π1n -+?= (Hz) ----(4) 式中: dx dA 称为有效面积变化率; g 重力加速度。 可见,降低dx dA 、增大0V ,可降低0n ,提高平顺性。 P.S.有时采用相对气压p 1来运算更为方便: p 1 =p -a p ----(5) 代入式(1)即P = p 1 A 或:0p = a 10p p + 代入式(3) 即:02a 10100V A )p m(p dx dA p K ++= ----(6) 0 10a 100V mgA p p p dx dA A g 2π1n ?++?= (Hz) ----(7) 又∵2 D 4πA = D 为有效直径, ∴dx dD 2πD dx dA ?= 代入式(6) 0 2 a 10100V A )p m(p dx dD 2πDp K ++?= ----(8) 式中: dx dD 称为有效直径变化率。 dx dD 或dx dA 由空气弹簧制造商提供数据或曲线, 对囊式空气弹簧,一般dx dD =0.2--0.3, 对膜式空气弹簧,一般dx dD =0--0.2, 甚至有dx dD =-0.1,取决于活塞形状。

相关文档
相关文档 最新文档