文档库 最新最全的文档下载
当前位置:文档库 › 变上限积分

变上限积分

变上限积分
变上限积分

变上限积分

形如的积分,叫做变上限积分。

定理1

如果在上连续,则在(a,b)上可积,而可积,则

在上连续。

定理2

如果在上有界,且只有有限个间断点,则在(a,b)上可积。

定理3

如果在上连续,则在上可导,而且有

定理4

设连续,.如果是奇(偶)函数,则是偶(奇)函数;如果是周期为的函数,且,则是相同周期的周期函数. (Ⅰ)从以上定理可看出,对作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数经过求导后,其导函数甚至不一定是连续的。

(Ⅱ)定理(3)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

重要推论及计算公式:

推论1

推论2

推论3

题型中常见积分限函数的变形和复合情况:

(1)比如

在求时,先将右端化为的形式,再对求导。分离后左边的部分要按照(uv)'=u'v + uv'进行求导!

(2)比如

在求时,先对右端的定积分做变量代换(把看作常数),此时,,时,;时,,这样,就化成了以作为积分变量的积分下限函数:

,然后再对求导。

( 3 ) 比如

(这是含参数的定积分, 可通过变量代换将变换到积分限的位置上去)

在求时,先对右端的定积分做变量代换(把看作常数),此时,,时,;时,,于是,就化成了以作为积分变量的积分上限函数:,然后再对求导。

关于积分限函数的奇偶性与周期性

历年真题

1、设函数,则的零点个数为

(2008,数一,4分) 【解析】

由于且,则是唯一的零点,所以答案为1。

2、设是连续函数的一个原函数,表示的充分必要条件是,则必有

(A)是偶函数是奇函数。

(B)是奇函数是偶函数。

(C)是周期函数是周期函数。

(D)是单调函数是单调函数。

(2005,数一,4分) 【解析】

若是偶函数,由导数的基本结论“可导偶函数的导数为奇函数”可得到是奇函数。反之,若是奇函数,则为偶函数,为偶函数。

因此答案为A。

3、设函数连续,(1)利用定义证明可导。(2)当是以2为周期的函数时,证明函数也是以2为周期的函数。

(2008,数一,10分) 【解析】

(1)

(2)对任意

由于是以2为周期的函数,因此,

所以。

故也是以2为周期的函数。

4、设连续,则

(A)(B)(C)(D)

(1998,数一,3分) 【解析】

令,则,

则。

答案为(A)。

5、设函数连续,,且,为常数,求并讨论在处的连续性。

(1997,数一,8分) 【解析】

由于,且函数连续,则必有,所以

当时,令,则,,在处连续。

复变函数与积分变换重点公式归纳

复变函数与积分变换复习提纲 第一章 复变函数 一、复变数和复变函数 ()()()y x iv y x u z f w ,,+== 二、复变函数的极限与连续 极限 A z f z z =→)(lim 0 连续 )()(lim 00 z f z f z z =→ 第二章 解析函数 一、复变函数),(),()(y x iv y x u z f w +==可导与解析的概念。 二、柯西——黎曼方程 掌握利用C-R 方程?????-==x y y x v u v u 判别复变函数的可导性与解析性。 掌握复变函数的导数: y x y x y y x x v iv iu u v iu y f i iv u x f z f +==-=+-=??=+=??= ΛΛ1)(' 三、初等函数 重点掌握初等函数的计算和复数方程的求解。 1、幂函数与根式函数 θθθθθin n n n n n e r n i n r i r z w =+=+==)sin (cos )sin (cos 单值函数 n k z i n n e r z w π2arg 1+== (k =0、1、2、…、n-1) n 多值函数 2、指数函数:)sin (cos y i y e e w x z +== 性质:(1)单值.(2)复平面上处处解析,z z e e =)'((3)以i π2为周期 3、对数函数 ππk i z k z i z Lnz w 2ln )2(arg ln +=++== (k=0、±1、±2……) 性质:(1)多值函数,(2)除原点及负实轴处外解析,(3)在单值解析分枝上:k k z z 1 )'(ln = 。 4、三角函数:2cos iz iz e e z -+= i e e z iz iz 2sin --= 性质:(1)单值 (2)复平面上处处解析 (3)周期性 (4)无界 5、反三角函数(了解) 反正弦函数 )1(1 sin 2z iz Ln i z Arc w -+= =

复变函数积分方法总结

复变函数积分方法总结
[键入文档副标题]
acer [选取日期]

复变函数积分方法总结
数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新
形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,
也就会有相应的积分函数求解方法。就复变函数:
z=x+iy i2=-1 ,x,y 分别称为 z 的实部和虚部,记作
x=Re(z),y=Im(z)。 arg z=θ? θ?称为主值 -π<θ?≤π ,
Arg=argz+2kπ 。利用直角坐标和极坐标的关系式 x=rcosθ ,
y=rsinθ,故 z= rcosθ+i rsinθ;利用欧拉公式 eiθ=cosθ+isinθ。
z=reiθ。
1.定义法求积分:
定义:设函数 w=f(z)定义在区域 D 内,C 为区域 D 内起点为 A 终点
为 B 的一条光滑的有向曲线,把曲线 C 任意分成 n 个弧段,设分点为
A=z0 ,z1,…,zk-1,zk,…,zn=B,在每个弧段 zk-1 zk(k=1,2…n)上任
取一点?k 并作和式 Sn=
(zk-zk-1)=
?zk 记?zk= zk-
zk-1,弧段 zk-1 zk 的长度 =
{?Sk}(k=1,2…,n),当
0 时,
不论对 c 的分发即?k 的取法如何,Sn 有唯一的极限,则称该极限值为
函数 f(z)沿曲线 C 的积分为:
=
?zk
设 C 负方向(即 B 到 A 的积分记作)
.当 C 为闭曲线时,f(z)
的积分记作
(C 圆周正方向为逆时针方向)
例题:计算积分
,其中 C 表示 a 到 b 的任一曲

复变函数积分计算

复变函数积分计算方法总结 1、 一般计算方法:()(,)(,)f z u x y iv x y =+沿有向曲线C 的积分: ()C C C f z dz udx vdy i udy vdx =-++? ?? 若有向光滑曲线C 可以表示为参数方程()()() ()z z t x t iy t t αβ==+≤≤,则: ()[()]()C f z dz f z t z t dt β α '=? ? 2、 柯西积分定理:()f z 在简单闭曲线C 上和内部解析,则: ()0C f z dz =? 由闭路变形原理可得重要积分:10 0, 01 2, 0()n C n dz i n z z π+≠?=? =-?? 可以把各种简单闭路变为圆周进行积分。 3、 柯西积分公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式: 00() 2()f z dz if z z z πΓ=-? 高阶导数公式:设D 为有界多(单)连域,Γ为其正向边界 条件:()f z 在D 内及其边界Γ上解析,0z 为D 内任意一点 公式: () 01 0()2()()! n n f z i dz f z z z n π+Γ=-? 联系:柯西积分公式是高阶导数公式的特殊情况,高阶导数公式是柯西积分公式的推广。 4、 用洛朗级数展开式的-1次项系数计算积分 00101() ()() (r<) 2()n n n n C n f z f z c z z z z R c dz i z z π∞ +=-∞ = --<= -∑?,其中: 其中C 为环域内任意围绕0z 的正向简单闭路。当1n =-时,-1次项的系数为11()2C c f z dz i π-= ? ,因此 1()2C f z dz ic π-=? 5、 用留数计算复积分 函数()f z 在点0z 的留数定义为:01Re [(),]()2C s f z z f z dz i π= ? ,即洛朗级数展开式中-1 次项的系数。 留数定理:函数()f z 在正向简单曲线C 上处处解析,在C 内部除了有限个孤立奇点12, ... n z z z 外解析,则有:

积分上限函数小结

小结 积分上限函数(或变上限定积分)()()x a F x f t dt =?的自变量是上限变量x , 在求导时,是关于x 求导,但在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。 1.关于积分上限函数的理论 定理1 如果)(x f 在],[b a 上可积,则?=x a dt t f x F )()(在],[ b a 上连续. 定理 2 如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[b a 上可导,且 ).(])([)(x f dt t f dx d x F x a == '? 注:(Ⅰ)从以上两个定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数 )(x f '甚至不一定是连续的。 (Ⅱ)定理(2)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。 推论1 )(])([x f dt t f dx d b x -=? 推论2 )()]([])([) (x x f dt t f dx d x c ???'=? 推论3 )()]([)()]([])([) ()(x x f x x f dt t f dx d x x ??ψψψ?'-'=? 2.积分限函数的几种变式 (1) 比如 ?-=x dt t f t x x F 0)()()( (被积函数中含x , 但x 可提到积分号外面来.) 在求)(x F '时,先将右端化为????-=-x x x x dt t tf dt t f x dt t tf dt t xf 0 )()()()(的形 式,再对x 求导。 (2)比如 ?-=x dt x t tf x F 0)()(

不定积分(含变上限积分)和微分解题方法

不定积分和微分 一、公式 )()(x f dx x f dx d =? 和??+==c x f dx x f dx d dx x f )()()(/ 的应用 注意:)(x f 的不定积分为?+c x F )()(x F 是)(x f 的原函数?)(x f 是)(x F 的导数,即 ? +=c x F dx x f )()(或)()(/x f x F = 1、已知不定积分的值,求被积函数或被积函数中的一部分,利用两边求导处理 已知 ?+=c x F dx x f )())((?,求)(x f 方法:求导得)())((/ x F x f =?,令t x =)(?,则)(1 t x -=?,即))(()(1/x F x f -=? 例1(1)?+=c x dx x f 2 )(,求?-dx x xf )1(2 解:对 ? +=c x dx x f 2)(求导得x x f 2)(=,2222)1(x x f -=- 则c x x dx x x dx x xf +-=-=-??3 2)22()1(2 2 2 2 (2)?+=c x dx x xf arcsin )(,求 ? ) (x f dx 解:对? +=c x dx x xf arcsin )(两边求导得2 11)(x x xf -= ,即2 11)(x x x f -= c x x d x dx x x x f dx +--=---=-=??? 23 2222)1(3 1 )1(1211)( 2、已知导数值,求原函数,利用两边积分的方法处理 已知)())((/ x f x F =?,求)(x F 方法:令t x =)(?,则)(1 t x -=? ,即))(()(//t f t F ?=,故?=dt t f x F ))(()(/? 例2(1)x x f 22 / tan )(sin =,求)(x f 解:令t x =2 sin ,则t t -=1cos 2 ,t t x x x -==1cos sin tan 222

考研——积分上限的函数(变上限积分、变限积分)知识点全面总结

考研——积分上限的函数(变上限积分)知识点 ()()x a F x f t dt =? 形如上式的积分,叫做变限积分。 注意点: 1、在求导时,是关于x 求导,用课本上的求导公式直接计算。 2、在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。 (即在积分内的x 作为常数,可以提到积分之外。) 关于积分上限函数的理论 定理1如果)(x f 在],[b a 上连续,则)(x f 在(a ,b )上可积,而)(x f 可积,则?=x a dt t f x F )()(在],[b a 上连续。 定理2如果)(x f 在],[b a 上有界,且只有有限个间断点,则)(x f 在(a ,b )上可积。 定理3如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[ b a 上可导,而且有 ).(])([)(x f dt t f dx d x F x a == '? ========================================== 注:(Ⅰ)从以上定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数)(x f '甚至不一定是连续的。 (Ⅱ)定理(3)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(3)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。

复变函数的积分及其计算方法

复变函数的积分及其计算方法 石睿 (北京林业大学工学院自动化10-1班,学号:101044118) 摘要:复变函数的积分是研究解析函数的一个重要工具,解析函数的很多重要性质都是通过复积分证明的。本文主要介绍柯西定理和柯西积分公式。 关键词:柯西定理;柯西积分公式 引言:首先介绍复积分的概念、性质和计算法,然后介绍解析函数积分的柯西积分定理及其推广——复合闭路定理. 在此基础上,建立柯西积分公式,然后利用这一重要公式证明解析函数的导数仍然是解析函数这一重要结论. 复积分的概念: 设C 是平面上一条光滑的简单曲线,其起点为A ,终点为B 。函数f(z)在C 上有定义。把曲线C 任意分成n 个小弧段。设分点为A=z 0,z 1,…,z n-1,z n =B,其中z k =x k +iyl k (k=0,1,2,…,n),在每个弧段 zk-1zk 上任取一点ζ k =ξ k +i η k ,做合式k n k k n k k k k n Δz )f(ζ)z (z )f(ζ S ∑∑==-?=-?= 1 1 1,其中 k k k k k y i x z z z ?+?=-=?-1 。 记 当λ→0时,如果和式的极限存在,且此极限值不依赖与ζk 的选择,也不依赖对 C 的分法,那么就称此极限值为f(z)沿曲线C 自A 到B 的复积分,记作 复积分的计算方法: 复积分可以通过两个二元实变函数的线积分来计算 设 ???==,)(,)(:t y y t x x C .βα≤≤t 则???'+'+'-'=β α β α t t y t y t x u t x t y t x v i t t y t y t x v t x t y t x u z z f C d )}()](),([)()](),([{d )}()](),([)()](),([{d )( ?'+'+= β αt t y i t x t y t x iv t y t x u d )}()()]}{(),([)](),([{ |,|max 1k n k z ?=≤≤λ.)(lim d )(1 0k n k k C z f z z f ??=∑ ? =→ζλ

复变函数积分方法总结

复变函数积分方法总结 经营教育 乐享 [选取日期] 复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π,Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ,y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式 e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B 的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,

z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点?k并作和式S n=?(z k-z k-1)=??z k记?z k= z k- z k-1,弧段z k-1 z k的长度 ={?S k}(k=1,2…,n),当0时,不论对c的分发即?k的取法如何,S n 有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =??z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向) 例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=?(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设?k=z k-1,则 ∑1= ()(z k-z k-1) 有可设?k=z k,则 ∑2= ()(z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得:

变限积分确定的函数的性质及其应用

变限积分确定的函数的性质及应用 摘要 由变限定积分和变限反常积分定义的一类函数,有重要的理论价值和应用价值。本文给出了变限积分的定义及其性质,主要讨论变限积分的求导问题以及奇偶性周期性等方面问题,较系统地讨论了这类函数的性质,得到若干结果,并简要介绍了它们的几点应用。 关键词:变限积分;函数;可积;连续;收敛。

ABSTRACT Limited by the variable and variable limit integral improper integral defined a class of functions, there are important theoretical and practical value. In this paper, changing the definition and nature of limit points, discuss the derivation of integral limits change issues and other aspects of the periodic parity, more systematic discussion of the nature of such functions, by a number of results, and a brief introduction Some of their applications. Key word: variable limit integral, function, integral, continuity, convergence.

变上限定积分函数及其导数教案

高等数学教案 变上限定积分函数及其导数 教学内容:变上限定积分函数及其导数。 知识目标:使学生掌握变上限定积分函数的定义; 使学生了解原函数存在定理的证明; 使学生会熟练运用原函数存在定理求导数。 情感目标:通过原函数存在定理体会积分和微分之间的联系。 教学重点:通过对变上限定积分的掌握和原函数存在定理的结论会求 变上限定积分函数的导数。 教学难点:原函数存在定理的证明。 教学设计:对高职生来说,原函数存在定理的证明过程是本节课的难点,所以采用提前给出储备知识减弱学生负担,同时又辅以数形结合 来形象展示。对变上限积分函数的导数采用讲练结合来强化重点。 教学方法:讲练结合+任务驱动 教学过程: 一课程导入 在前面我们通过两个实例曲边梯形的面积和变速直线运动的路程引入了定积分的概念。求定积分的过程实际上是求和式的极限一般来说,根据定义求定积分计算是很复杂的,所以,必须寻求一种简单而有效的方法。牛顿-莱布尼兹在创建微积分时,就发现定积分和不定积分有密切的联系。我们第二讲要讲的牛顿-莱布尼兹公式,从而把求定积分的问题转化为求不定积分(既原函数)的问题,为人们计算定积分提供了简便的方法。本节课所要讲的原函数存在定理,在微分

和积分之间建立了关系,牛顿和莱布尼兹利用这种关系用来计算计算定积分,得出了著名的牛顿-莱布尼兹公式。 二 储备知识 引导学生复习下面一些知识点,为后面的知识做准备。 1 原函数:若)()(x f x =Φ',则)(x Φ是)(x f 的一个原函数。 2 可导的概念:若x x f x ??→?)(lim 0存在 ,则)(x f 可导。 3 复合函数求导:)()())(((x u u f x u f dx d '?'= 4 定积分的积分区间可加性:dx x f dx x f dx x f b c b ???+=c a a )()()(。 5 定积分积分中值定理 :)())(()(b a a b f dx x f b a ≤≤-=?ξξ。 三 给出课堂任务目标 给出本节课的任务目标,以便让学生明白本节课的主要任务。 本堂课主要有三个任务目标 :1 掌握变上限积分函数的概念; 2 了解原函数存在定理的证明; 3 会熟练运用原函数存在定理求导数。 四 课程内容 1变上限定积分函数的概念 设)(x f 在],[b a 上连续,],[b a x ∈,则)(x f 在],[x a ,即定积分?x a dx x f )(存在,这样很容易混淆,又定积分的值与积分变量无关,我们把积分变量换成t,即得?x a dt f )t (。若固定积分下限a ,则对任意一个],[ b a x ∈,定积分?x a dt f )t (都有唯一的值与x 对应,所以?x a dt f )t (是上限变量x 的函数,称它为变上限定积分函数, 记作?=Φx a dt f x )t ()(。 从定积分的几何意义来解释变上限积分是x 的函数。

复积分的各种计算方法与应用课件

第1章 引言 曹 1.1研究背景及研究内容 复变函数的积分理论是复变函数理论的重要组成部分,是研究解析函数的重要工具之一.但对于如何计算复变函数积分以及如何处理有关复变函数积分的问题,往往很难迅速找到解决问题的方法.因此,理解复变函数积分,并能够灵活运用复积分计算方法进行复积分计算就显得极其重要.复积分中的Cauchy 积分定理在理论上处于关键地位,由它派生出的Cauchy 积分公式、留数定理、辐角原理等都涉及到积分的计算问题.解析函数在孤立奇点的留数原本是一个积分,而实际计算却需要Laurent 展式.因而把积分与级数结合起来的留数定理使复积分理论甚至是复变函数理论达到高潮,且其用途十分广泛.因此,研究复变函数积分计算的各种方法有着非常重要的意义,本文以所列参考文献[3]中的复积分计算方法为基础,并通过查阅相关资料,借鉴了文献[4]-[7]的结果,总结复积分计算的各种方法,并通过应用[1],[2],[8],[9]中的相关知识和方法,对所列出的每种方法作典型例证和分析. 1.2预备知识 定义1.1[3] 复积分 设有向曲线C :()()βα≤≤=t t z z ,,以()αz a =为起点, ()βz b =为终点,()z f 沿C 有定义.顺着C 从a 到b 的方向在C 上依次取分点: 011,, ,,n n a z z z z b -==.把曲线C 分成若干个弧段.在从1-k z 到k z ()n k ,..,2,1=的每 一弧段上任取一点k ζ.作成和数()1 n n k k k S f z ζ==?∑,其中1k k k z z z -?=-.当分点无限 增多,而这些弧段长度的最大值趋于零时,如果和数n S 的极限存在且等于J ,则称()z f 沿C (从a 到b )可积,而称J 为()z f 沿C (从a 到b )的积分,并记以 ()c f z dz ?.C 称为积分路径. ()c f z dz ?表示沿C 的正方向的积分,()c f z dz - ? 表 示沿C 的负方向的积分. 定义1.2[3] 解析函数 如果函数()z f 在0z 点及()z f 的某个邻域内处处可导,那么称 ()z f 在0z 点解析,如果()z f 在区域D 内解析就称()z f 是D 内的一个解析

变上限积分求导

变上限定积分求导法则: 例如:原函数存在定理:()( )()0x f t dt f x ' =? 如果该函数()f t 再添一个变量x ,那么公式就变为 ()() ()()0 x x xf t dt f t dt xf x '=+? ? 相当于:x 是一个常数,提取在变上限定积分()0x f t dt ?的前面。 举例:(2008年高职升本试卷) 若()f x 在(),-∞+∞内连续,()()()02x F x x t f t dt =-? 证明:(1)若()f x 为奇函数,则()F x 为奇函数。 (2)若()f x 非增,则()F x 非减。 证明:(1)若()f x 为奇函数,则证明()()F x F x -+=0即可。 ()()()()002x x F x x t f t dt xf t dt ''????'=-=-??????????()02x tf t dt '?????? ? =()()()()()002x x f t dt xf x xf x f t dt xf x +-=-?? ()()()()00 2()x x F x x t f t dt x f t dt --''????'-=--=--????? ?????()02x tf t dt -'??????? =()()()()()0 ()(1)2()(1)x x f t dt x f x x f x f t dt xf x ---+-------=---?? 故:()()()()()()00 x x F x F x f t dt xf x f t dt xf x -''+-=----?? ()()()0 0 0x x x x f t dt f t dt f t dt --=+==??? 由拉格朗日定理,可知:()() F x F x C ''+-≡(C 为常数) 当0x =时代入,可得:()()F x F x -+=0。 (2)若()f x 非增,则证明()0F x '>。 由()F x '= ()()0 x f t dt xf x -?

复变函数积分方法

论求解复变函数积分的方法 摘要: 复变函数中,很多时候都需要我们求解函数的积分。事实上,整本书的知识虽然是涉及到各个方面的,但是,这些方面的学习到最后也是为我们求复变函数的积分做准备的。在整本书的不同章节,我们都有学到求积分的方法,可见,求复变函数的积分的方法是多种的。在这里,我对复变函数的积分计算方法进行了探讨,结合我们课本上介绍的,和我自己在网上看到的一些知识,介绍我们比较常用的几种方法。 关键词:复变函数复积分计算方法积分定理柯西公式 正文: 我们学习复变函数这本书,首先,我们要了解什么是复变函数,复变函数是以复数作为自变量的函数就叫做复变函数,而与之相关的理论就是复变函数论。解析函数是复变函数中一类具有解析性质的函数,复变函数论主要就研究复数域上的解析函数,因此通常也称复变函数论为解析函数论。复变函数是复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=?(z)。这个记号表示,?(z)是z通过规则?而确定的复数。如果记z=x+i y,w=u+i v,那么复变函数w=?(z)可分解为w=u(x,y)+i v(x,y);所以一个复变函数w=?(z)就对应着一对两个实变数的实值函数。除非有特殊的说明,函数一般指单值函数,即对A中的每一z,有且仅有一个w与之对应。 在复变函数的学习中,求解积分是不可避免的一部分。在复变函数中学习积分的时候,我第一反应就是:在高等数学中,我们也有学习过积分方面的相关知识。 在高等数学中,我们有学过求解不定积分与定积分,而学习求解不定积分与定积分又关系到微分和求导,导数的学习与积分的学习密切相关。在高等数学中我们学习了一般的积分、二重积分、三重积分,由此引申出来的曲线积分、曲面积分等各方面的知识。在学习复变函数的时候,我发现有很多知识都与高等数学中积分的知识是相关连的,所以,关于求解复变函数积分的方法中,有部分的知识是有用到高等数学的知识点的。这是我对复变函数积分求解的一点点体会。下面,我就复变函数的两类曲线积分求解的几种方法进行讨论。 第一种,把复变函数积分化为实变量的实函数曲线积分,复变函数中有虚实两部分,把复变函数化成实变量的实函数曲线积分,就可以转化为高等数学的题目,就可以运用高等数学的知识解答。对于求解曲线积分,我们总结起来可以概括出一句话,就是两个方法加一个

变限积分函数的性质及其应用

404 §3 变限积分函数的性质及其应用 由于定积分概念是利用极限工具给出的,所以利用定积分的定义计算定积分是十分困难的,有时甚至是不可能的。为了让定积分概念能得到实际应用,必须寻找简便有效的计算定积分的方法,那么我们必须探求定积分更加深刻的性质。本节将介绍两个重要的定理,通过沟通定积分与不定积分的关系,给出了一个解决定积分计算问题的有效途径。 3.1 变限积分 定积分有一个十分特殊而重要的性质,它对进一步考察微分和积分的关系起十分关键的作用。但需要先介绍一个概念: 注 由于 ?? -=x b b x dt t f dt t f )()(,因此,只要讨论变上限函数即可。 证 利用连续函数的定义及定积分的性质即可证得。 对[a ,b ]上的任一点x ,只要[],x x a b +?∈,按照Φ的定义有 ()()x x x a a x x x fdt f dt +??Φ=Φ+?-Φ=- ? ? 。 又函数 )(x f 在[a , b ]上可积,则)(x f 在[a , b ]上有界,即存在正数M ,对 一切[],x a b ∈有()f x M ≤。又当0x ?≥时有 x x x x x x x x x f d t f d t M d t M x +?+?+??Φ=≤≤=?? ? ? 。

405 又不难验证,当0x ?<时,上述不等式M x ?Φ≤?仍然成立。从而有 lim 0x ?→?Φ=。这就证得Φ 在[],a b 上的连续性。 3.2 微积分学基本定理 1 变限积分的可微性 ——微积分学基本定理 当函数得可积性问题获得解决后,接着是要找到一种计算定积分得有效方法。下面将通过揭示定积分与不定积分之间的内在联系来完成这一任务。下面的两个定理,由于所起的重要作用而被称为微积分学基本原理。 证 ],[b a x ∈?,任取0≠?x ,且],[b a x x ∈?+,则 ? ? - = Φ-?+Φ=?Φ?+x a x x a t d t f t d t f x x x )()()()( ? ? ? ? ?+?+= - + = x x x x a x x x x a t d t f t d t f t d t f t d t f )()()()(, 由积分中值定理知,存在ξ 介于x 与x +?x 之间,使得 x f ?=?Φ)(ξ, 由于x x →?→ ?ξ0,再由导数定义及)(x f 的连续性知 )()(lim )(lim lim )(00x f f f x x x x x ===??Φ =Φ'→→?→?ξξξ。 注 (1) 当],[b a C f ∈时, ? = Φx a dt t f x )()(可导且在点∈x ] , [b a 的导数 恰为被积函数在上限的值。 亦即 )(x Φ是)(x f 的一个原函数。即连续函数必有原函数,因此定理1又称原函数存在定理。 (2) 变上限函数与分段函数有点类似,是一个难点,从而也是一个考试的热点,它常与极限、求导、最值等知识结合出现形成综合性的题目,应与重视。我们将这里拓宽一下。 若)(x ?可导,则)(x ?与变上限函数)(x Φ构成了复合函数?) ()(x a t d t f ?,由复 合函数求导法则知

复变函数积分的计算方法

复变函数积分的计算方法 摘要:在复变函数的分析理论中,复积分是研究解析函数的重要工具,解析函数的许多重要性质都要利用复积分来表述和证明的(因此,掌握复积分的计算方法对于学好复变函数至关重要(本文从不同角度讨论了复变函数的积分,对计算复积分的几种方法进行了整理、归类,并以典型的例题加以说明(其中包括利用定义、牛顿-莱布尼茨公式、柯西积分定理及公式、高阶导数公式、留数定理等计算复积分的方法(还重点介绍了运用级数法、拉普拉斯变换法计算复积分和利用对数留数与辐角原理计算复积分的方法( 关键词:柯西积分定理;柯西积分公式;留数定理;拉普拉斯变换 引言 复变函数论是数学中一个基本的分支学科,它的研究对象是复变数的函数(复变函数论历史悠久,内容丰富,理论十分完美(它在数学许多分支、力学以及工程技术科学中有着广泛的应用(复数起源于求代数方程的根(复变函数论产生于十八世纪(1774年,欧拉在他的一篇论文中考虑了由复变函数的积分导出的两个方程(而比他更早时,法国数学家达朗贝尔在他的关于流体力学的论文中,就已经得到了它们(因此,后来人们提到这两个方程,把它们叫做“达朗贝尔-欧拉方程”(到了十九世纪,上述两个方程在柯西和黎曼研究流体力学时,作了更详细的研究,所以这两个方程也被叫做“柯西-黎曼条件”(复变函数论的全面发展是在十九世纪,就像微积分的直接扩展统治了十八世纪的数学那样,复变函数这个新的分支统治了十九世纪的数学(当时的数学家公认复变函数论是最丰饶的数学分支,并且称为这个世纪的数学享受,也有人称赞它是抽象科学中最和谐的理论之一(为复变函数论的创建做了最早期工作的是欧拉、达朗贝尔,法国的拉普拉斯也随后研究过复变函数的积分,他们都是创建这门学科的先驱(后来为这门学科的发展作了大量奠基工作的

关于积分上限函数的小结

关于积分上限函数 积分上限函数(或变上限定积分)()()x a F x f t dt =?的自变量是上限变量x , 在求导时,是关于x 求导,但在求积分时,则把x 看作常数,积分变量t 在积分区间],[x a 上变动。弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。 1. 关于积分上限函数的理论 定理1 如果)(x f 在],[b a 上可积,则?=x a dt t f x F )()(在],[ b a 上连续. 定理2 如果)(x f 在],[b a 上连续,则?=x a dt t f x F )()(在],[b a 上可导,且 ).(])([)(x f dt t f dx d x F x a == '? 注:(Ⅰ)从以上两个定理可看出,对)(x f 作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数)(x f 经过求导后,其导函数 )(x f '甚至不一定是连续的。 (Ⅱ)定理(2)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。 推论1 )(])([x f dt t f dx d b x -=? 推论2 )()]([])([) (x x f dt t f dx d x c ???'=?

推论3 )()]([)()]([])([) ()(x x f x x f dt t f dx d x x ??ψψψ?'-'=? 2. 积分限函数的几种变式 (1) 比如 ?-=x dt t f t x x F 0)()()( (被积函数中含x , 但x 可提到积分号外面来.) 在求)(x F '时,先将右端化为????-=-x x x x dt t tf dt t f x dt t tf dt t xf 0 )()()()(的形 式,再对x 求导。 (2)比如 ?-=x dt x t tf x F 0)()( ( f 的自变量中含x , 可通过变量代换将x 置换到f 的外面来) 在求)(x F '时,先对右端的定积分做变量代换x t u -=(把x 看作常数),此时, du dt =,0=t 时,x u -=;x t =时,0=u ,这样,)(x F 就化成了以u 作为 积分变量的积分下限函数: ???---+=+=0 00)()()()()(x x x du u uf du u f x du u f u x x F ,然后再对x 求导。 ( 3 ) 比如 ?=1 )()(dt xt f x F (这是含参数x 的定积分, 可通过变量代换将x 变换到积分限的位置上去) 在求)(x F '时,先对右端的定积分做变量代换xt u =(把x 看作常数),此时, x du dt = ,0=t 时,0=u ;1=t 时,x u =,于是,)(x F 就化成了以u 作为积分变量的积分上限函数:?=x du u f x x F 0)(1)(,然后再对x 求导。 3. 有积分限函数参与的题型举例 (1) 极限问题: 例1 ?? -→x x x dt t t t tdt 2 3 )sin (sin lim 2 (答:12)

复变函数积分计算方法

()()()0 1 1. lim n k k T k C f z dz f z λ?→==?∑? (定义法) 2. ()d d d d d C C C f z z u x v y v x u y =-++? ??

1.计算函数()Re f z z =沿下列曲线的积分. (2)2C 为从点0z =到点11z =再到点 21z i =+的折线. 解:从点0z =到点11z =的直线段参数方程为z x =(01)x ≤≤,在它上有 ()1,Re z x z x '==,则 1 1 210,10 1 Re 1 22x I z dz x dx ==?= = ??, 从点11z =再到点21z i =+的直线段参数方程为1(01),z yi y =+≤≤在它上有 (),z y i '=Re 1z =,则 1 1 201,10 Re 1 i I z dz i dy iy i +==?==? ?,

于是由复积分对积分路径的可加性可得 2121 Re .2C z dz I I i =+=+? 4.计算()||f z z =沿下列曲线的积分. (1)1C 为从11z =-到21z =的直线段; (2)2C 为从11z =-到21z =的上半圆周; (3)3C 为从11z =-到21z =的下半圆周. 解:(1)直线段1C 的参数方程为 (11),z x x =-≤≤在它上有()1,z x '=||||z x =,则 1101 110 11 || || 1;22C z dz x dx x dx x dx --==-+=+=????(2)上半圆周2C 的参数方程为

关于积分上限函数的小结.doc

关于积分上限函数 积分上限函数(或变上限定积分)F(x)= 的自变量是上限变量兀, Ja 在求导时,是关于兀求导,但在求积分时,则把兀看作常数,积分变量r在积分区间上变动。弄清上限变量和积分变量的区别是对积分限函数进行正确运算的前提。 1.关于积分上限函数的理论 定理1如果/(X)在[。,饲上可积,则F(X)= ( 在[a,h]上连续. 定理2如果/⑴在[a.b]±连续,则F(x)=[f(t)dt在⑷切上可导,且r(x) = £[f/(r)t/z]= /(%). 注:(I)从以上两个定理可看出,对门力作变上限积分后得到的函数,性质比原来的函数改进了一步:可积改进为连续;连续改进为可导。这是积分上限函数的良好性质。而我们知道,可导函数/(兀)经过求导后,其导函数广(兀)甚至不一定是连续的。 (n)定理(2)也称为原函数存在定理。它说明:连续函数必存在原函数,并通过定积分的形式给出了它的一个原函数。我们知道,求原函数是求导运算的逆运算,本质上是微分学的问题;而求定积分是求一个特定和式的极限,是积分学的问题。定理(2)把两者联系了起来,从而使微分学和积分学统一成为一个整体,有重要意义。 推论1 = -/(%) 推论2 f I=川0⑴]0(0 dx 4 推论3 ⑴如=⑴]0⑴一/"⑴]0(兀)

2.积分限函数的几种变式 (1)比如F(x) = ^(x-t)f(t)dt (被积函数中含X,但X可提到积分号外面来.) 在求”(兀)时,先将右端化为f xf^dt -[=⑴刃的形式,再对尢求导。 (2)比如F(x)= ^tf(t-x)dt (f的自变量中含X,可通过变量代换将X置换到f的外面来) 在求F(力时,先对右端的定积分做变量代换u=t-x(把兀看作常数),此时, dt = du , / = 0时,w = -x ; t = x时,w = 0 ,这样,FO)就化成了以”作为积分变量的积分下限函数:F(x) = f (x + u)f(u)du = x f(u)du + uf(u)du ,然后再对x求导。 J-x J-x 丄JV (3)比如F(x) = ^f(xt)dt (这是含参数x的定积分,可通过变量代换将x变换到积分限的位置上去) 在求F(力时,先对右端的定积分做变量代换u = xt(把兀看作常数),此时, dt = —y t = 0时,w = 0 ; t = 1时,u = x ,于是,F(x)就化成了以“作为积 x 分变量的积分上限函数:F(兀) = £(/(u)du ,然后再对x求导。 3.有积分限函数参与的题型举例 (1)极限问题: .2 3 f sin 2 tdt 例1 lini ------------------ (答:12) ' >0 £ t(t - sin t)dt

复变函数积分方法总结

复变函数积分方法总结 [键入文档副标题] acer [选取日期]

复变函数积分方法总结 数学本就灵活多变,各类函数的排列组合会衍生多式多样的函数新形势,同时也具有本来原函数的性质,也会有多类型的可积函数类型,也就会有相应的积分函数求解方法。就复变函数: z=x+iy i2=-1 ,x,y分别称为z的实部和虚部,记作 x=Re(z),y=Im(z)。arg z=θ? θ?称为主值-π<θ?≤π, Arg=argz+2kπ。利用直角坐标和极坐标的关系式x=rcosθ, y=rsinθ,故z= rcosθ+i rsinθ;利用欧拉公式e iθ=cosθ+isinθ。z=re iθ。 1.定义法求积分: 定义:设函数w=f(z)定义在区域D内,C为区域D内起点为A终点为B的一条光滑的有向曲线,把曲线C任意分成n个弧段,设分点为A=z0,z1,…,z k-1,z k,…,z n=B,在每个弧段z k-1 z k(k=1,2…n)上任取一点ξk并作和式S n=(z k-z k-1)=?z k记 ?z k= z k- z k-1,弧段z k-1 z k的长度={?S k}(k=1,2…,n),当0时,不论对c的分发即ξk的取法如何,S n有唯一的极限,则称该极限值为函数f(z)沿曲线C的积分为: =?z k 设C负方向(即B到A的积分记作).当C为闭曲线时,f(z)的积分记作(C圆周正方向为逆时针方向)

例题:计算积分,其中C表示a到b的任一曲线。(1)解:当C为闭合曲线时,=0. ∵f(z)=1 S n=(z k-z k-1)=b-a ∴=b-a,即=b-a. (2)当C为闭曲线时,=0. f(z)=2z;沿C连续,则积分存在,设ξk=z k-1,则 ∑1= (z k-z k-1) 有可设ξk=z k,则 ∑2= (z k-z k-1) 因为S n的极限存在,且应与∑1及∑2极限相等。所以 S n= (∑1+∑2)==b2-a2 ∴=b2-a2 1.2 定义衍生1:参数法: f(z)=u(x,y)+iv(x,y), z=x+iy带入得: = - vdy + i+ udy 再设z(t)=x(t)+iy(t) (≤t≤)

相关文档
相关文档 最新文档