文档库 最新最全的文档下载
当前位置:文档库 › 函数的三要素练习题

函数的三要素练习题

函数的三要素练习题
函数的三要素练习题

一、选择题

1.已知函数()()0f x x a x a a =+--≠,()()()

2200x x x h x x x x ?-+>?=?+≤??, 则()(),f x h x 的奇偶性依次为( )

A .偶函数,奇函数

B .奇函数,偶函数

C .偶函数,偶函数

D .奇函数,奇函数

2.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数, 则)2

52()23(2+

+-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2

52(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2

52(2++a a f 3.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( )

A .2a ≤-

B .2a ≥-

C .6-≥a

D .6-≤a

4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,

则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或

C .{}|33x x x <->或

D .{}|3003x x x -<<<<或

5.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( )

A .2-

B .4-

C .6-

D .10-

6.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( )

A .(,())a f a --

B .(,())a f a -

C .(,())a f a -

D .(,())a f a ---

二、填空题

1.设()f x 是R 上的奇函数,且当[)0,x ∈+∞

时,()(1f x x =,

则当(,0)x ∈-∞时()f x =_____________________。

2.若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是 。

3.已知221)(x

x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=_____。 4.若1()2

ax f x x +=+在区间(2,)-+∞上是增函数,则a 的取值范围是 。 5.函数4()([3,6])2

f x x x =∈-的值域为____________。

6.若函数2()1

x a f x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________. 三、解答题

1.已知函数()f x 的定义域是),0(+∞,且满足()()()f xy f x f y =+,1()12

f =,

如果对于0x y <<,都有()()f x f y >,

(1)求(1)f ;

(2)解不等式2)3()(-≥-+-x f x f 。

2.已知函数()y f x =的定义域为R ,且对任意,a b R ∈,都有()()()f a b f a f b +=+,且当0x >时,()0f x <恒成立,证明:(1)函数()y f x =是R 上的减函数;

(2)函数()y f x =是奇函数。

3.设函数()f x 与()g x 的定义域是x R ∈且1x ≠±,()f x 是偶函数, ()g x 是奇函数,且1()()1

f x

g x x +=-,求()f x 和()g x 的解析式.

4、定义在(-1,1)上的奇函数)(x f 是减函数且0)1()1(2<-+-a f a f ,求实数a 的取值围.

参考答案

一、选择题

1. D ()()f x x a x a x a x a f x -=-+---=--+=-,

画出()h x 的图象可观察到它关于原点对称

或当0x >时,0x -<,则22()()();h x x x x x h x -=-=--+=-

当0x ≤时,0x -≥,则22()()();h x x x x x h x -=--=-+=-

()()h x h x ∴-=-

2. C 225332(1)222a a a ++=++≥,2335()()(2)222

f f f a a -=≥++ 3. B 对称轴2,24,2x a a a =--≤≥-

4. D 由()0x f x ?<得0()0x f x ?或0()0x f x >??

而(3)0,(3)0f f -== 即0()(3)x f x f -?或0()(3)

x f x f >??

5. D 令3()()4F x f x ax bx =+=+,则3()F x ax bx =+为奇函数

(2)(2)46,(2)(2)46,(2)10F f F f f -=-+==+=-=-

6. B 3333()1111()f x x x x x f x -=-++--=-++=为偶函数

(,())a f a 一定在图象上,而()()f a f a =-,∴(,())a f a -一定在图象上

二、填空题

1.

(1x 设0x <,则0x ->

,()(1(1f x x x -=-=-

∵()()f x f x -=-

∴()(1f x x -=-

2. 0a >且0b ≤ 画出图象,考虑开口向上向下和左右平移

3. 72 22

1)(x

x x f +=,2111(),()()11f f x f x x x =+=+ 1111(1),(2)()1,(3)()1,(4)()12234

f f f f f f f =+=+=+= 4. 1

(,)2

+∞ 设122,x x >>-则12()()f x f x >,而12()()f x f x - 121221121212121122()(21)022(2)(2)(2)(2)

ax ax ax x ax x x x a x x x x x x +++----=-==>++++++,则210a ->

5. []1,4 区间[3,6]是函数4()2f x x =

-的递减区间,把3,6分别代入得最大、小值 6. 2()1

x f x x =+ ∵()()f x f x -=-∴(0)(0),(0)0,0,01

a f f f a -=-=== 即211(),(1)(1),,0122x f x f f

b x bx b b

-=-=-=-=++-+

三、解答题

1. 解:(1)令1x y ==,则(1)(1)(1),(1)0f f f f =+=

(2)1

()(3)2()2f x f x f -+-≥-11()()(3)()0(1)22

f x f f x f f -++-+≥= 3()()(1)22x x f f f --+≥,3()(1)22

x x f f --?≥ 则0

230,1023122x x x x x ?->??-?>-≤

。 2.证明:(1)设12x x >,则120x x ->,而()()()f a b f a f b +=+

∴1122122()()()()()f x f x x x f x x f x f x =-+=-+< ∴函数()y f x =是R 上的减函数;

(2)由()()()f a b f a f b +=+得()()()f x x f x f x -=+- 即()()(0)f x f x f +-=,而(0)0f = ∴()()f x f x -=-,即函数()y f x =是奇函数。

3.解:∵()f x 是偶函数, ()g x 是奇函数,∴()()f x f x -=,且()()g x g x -=- 而1()()1f x g x x +=

-,得1()()1

f x

g x x -+-=--, 即11()()11

f x

g x x x -==---+, ∴21()1f x x =-,2()1

x g x x =-。 4. )(x f 在(-1,1)上为奇函数且为减函数, ∴?????->-<-<-<-<-1111111122a a a a ,则a ∈(0,1)

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

数学补习学校函数三要素测试题(赵先举整理)

翔龙教育2012高一测试题 内容:函数三要素 1. 点(x , y )在映射“f ”的作用下的象是点(x +2y , 3x -4y ),则在此映射的作用下的点(5, 6)的原象是( )。 A (5, 6) B (17, -9) C ( 516, 10 9 ) D 其它答案 2. 下列各组函数中表示同一函数的是 (A )x x f =)(与2 )()(x x g = (B )||)(x x x f =与?????-=2 2 )(x x x g )0()0(<>x x (C )||)(x x f =与3 3 )(x x g = (D )1 1 )(2--=x x x f 与)1(1)(≠+=t t x g 3. 设函数???<+≥+-=0 ,60 ,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( ) A ),3()1,3(+∞?- B ),2()1,3(+∞?- C ),3()1,1(+∞?- D )3,1()3,(?--∞ 4. 已知函数???<-≥+=0 , 40, 4)(2 2x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 A (,1)(2,)-∞-?+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-?+∞ 5. 函数)13lg(13)(2++-= x x x x f 的定义域是 A.),3 1(+∞- B. )1,3 1(- C. )31,31(- D. )3 1,(--∞ 6. 设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为 ( ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 -- 7. 已知函数y =f (2x )的定义域是[-1,1],则函数y=f (log 2x ) 的定义域是( ) 8. 函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么 ( ) A .F ∩G=? B .F=G C .F G D .G F 9. 已知函数y =f (2x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是 ( ) A .(0,+∞) B .(0,1) C .[1,2] D .[2,4] 10. 函数=2sin 2x -6sin x +4的值域是( ) (A )[0, 12] (B )[0, 11] (C )[-1, 1] (D )[5, 1] 11. 设x x f -= 11 )(,则)]([x f f 的表达式为 (A )x (B ) 2 )1(1 x - (C )x - (D )x -11

二次函数知识点总结及典型例题和练习(极好)

二次函数知识点总结及典型例题和练习(极好) 知识点一:二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a不为零,那么y叫做x 的二次函数。)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法--------五点作图法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C,再找到点C 的对称点D。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称点A 、B,然后顺次连接五点,画出二次函数的图像。 【例1】 已知函数y=x 2-2x-3, (1)写出函数图象的顶点、图象与坐标轴的交点,以及图象与 y 轴的交点关于图象对称轴的对称点。然后画出函数图象的草图; (2)求图象与坐标轴交点构成的三角形的面积: (3)根据第(1)题的图象草图,说 出 x 取哪些值时,① y=0;② y <0;③ y>0

知识点二:二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2) 交点式:当抛物线c bx ax y ++=2与x 轴有交点时,即对应的一元二次方程 02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果 没有交点,则不能这样表示。 (3)顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 当题目中告诉我们抛物线的顶点时,我们最好设顶点式,这样最简洁。 【例1】 抛物线c bx ax y ++=2与x 轴交于A (1,0),B(3,0)两点,且过(-1,16),求抛物线的解析式。 【例2】 如图,抛物线c bx ax y ++=2与x 轴的一个交点A 在点(-2,0)和(-1,0)之间(包括这两点),顶点C 是矩形DEFG 上(包括边界和内部)的一个动点,则: (1)abc 0 (>或<或=) (2)a 的取值范围是 ? 【例3】 下列二次函数中,图象以直线x = 2为对称轴,且经过点(0,1)的是 ( ) A.y = (x ? 2)2 + 1 B .y = (x + 2)2 + 1 C .y = (x ? 2)2 ? 3 D.y = (x + 2)2 – 3

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

初二函数知识点及经典例题.

第十八章 函数 一次函数 (一)函数 1、变量:在一个变化过程中可以取不同数值的量。 常量:在一个变化过程中只能取同一数值的量。 2、函数:一般的,在一个变化过程中,如果有两个变量x 和y ,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就把x 称为自变量,把y 称为因变量,y 是x 的函数。 *判断Y 是否为X 的函数,只要看X 取值确定的时候,Y 是否有唯一确定的值与之对应 3、定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。 4、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式 6、函数的图像 一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象. 7、描点法画函数图形的一般步骤 第一步:列表(表中给出一些自变量的值及其对应的函数值); 第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。 8、函数的表示方法 列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。 解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。 图象法:形象直观,但只能近似地表达两个变量之间的函数关系。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数.

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

(完整版)高中数学必修4第一章知识点总结及典型例题,推荐文档

高中数学必修四 第一章 知识点归纳 第一:任意角的三角函数 一:角的概念:角的定义,角的三要素,角的分类(正角、负角、零角和象限角),正确理解角,与角终边 相同的角的集合 } {|2,k k z ββπα=+∈ , 弧度制,弧度与角度的换算, 弧长l r α=、扇形面积2112 2 s lr r α==, 二:任意角的三角函数定义:任意角α的终边上任意取一点p 的坐标是(x ,y ),它与原点的距离是22 r x y =+(r>0),那么角α的正弦r y a =sin 、余弦r x a =cos 、正切x y a =tan ,它们都是以角为自变量,以比值为函数值的函数。 三:同角三角函数的关系式与诱导公式: 1.平方关系: 22sin cos 1 αα+= 2. 商数关系: sin tan cos α αα = 3.诱导公式——口诀:奇变偶不变,符号看象限。 正弦 余弦 正切 第二、三角函数图象和性质 基础知识:1、三角函数图像和性质 1-1 y=sinx -3π2 -5π2 -7π2 7π2 5π2 3π2 π2 -π2 -4π-3π -2π4π 3π 2π π -π o y x 1-1y=cosx -3π2 -5π2 -7π 2 7π2 5π2 3π2 π2 -π2 -4π-3π -2π 4π 3π 2π π -π o y x

2、熟练求函数sin()y A x ω?=+的值域,最值,周期,单调区间,对称轴、对称中心等 ,会用五点法作 sin()y A x ω?=+简图:五点分别为: 、 、 、 、 。 3、图象的基本变换:相位变换:sin sin()y x y x ?=?=+

函数的概念练习题

函数的概念练习题 一、填空题 1、函数的 、 、 统称函数的三要素 2、下列几组函数相等的是 。 ①11 12+=--=x y x x y 与②1112+?-=-=x x y x y 与 ③x x y x y +?-=-=1112与④x y x y ==与2⑤x y x y ==与2)( 3、若函数,1)(2+-=x x x f 则=)1(f ,=--+)1()1(n f n f 。 4、函数)(x f y =与a x =的交点个数为 。 5、函数2233x x x x y -+-= 的定义域为 ,函数24x y -=的定义域 为 。 6、函数)3,1[,12)(2-∈+-=x x x x f ,则函数=+)2(x f 。 7、函数)(x f 的定义域为)3,2[-,则)()()(x f x f x g -+=的定义域为 。 8、函数1)(22+=x x x f ,则=)2 1()2(f f 。 二、解答题 9、下列对应那些能称为函数?并说明理由。 (1)R x x x ∈→,1,(2),y x →这里R y R x x y ∈∈±=+,, (3),y x →这里R y R x x y ∈∈= +,,(4),.12R x x x ∈+→ 10、求下列函数的定义域 (1)3 21)(-=x x f (2)22)(x x x f -=

(3)2232)(2 ++--=x x x x f 11、求下列函数的值域。 (1)]3,0[,32)(2∈--=x x x x f (2)),0[,113)(+∞∈+-=x x x x f (3)123 2)(22+-+-=x x x x x f ( 4)x x y 21-+= 12、

中考攻略:初中数学函数知识点大全+典型例题

初中数学函数知识点大全+典型例题 知识点一、二次函数的概念和图像 1、二次函数的概念 一般地,如果特)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零 那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2- =对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法 五点法: (1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴 (2)求抛物线c bx ax y ++=2与坐标轴的交点: 当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。 当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。由C 、M 、D 三点可粗略地画出二次函数的草图。如果需要画出比较精确的图像,可再描出一对对称

点A 、B ,然后顺次连接五点,画出二次函数的图像。 知识点二、二次函数的解析式 二次函数的解析式有三种形式:口诀----- 一般 两根 三顶点 (1)一般 一般式:)0,,(2≠++=a c b a c bx ax y 是常数, (2)两根 当抛物线c bx ax y ++=2与x 轴有交点时,即对应二次好方程02=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212x x x x a c bx ax --=++,二次函数c bx ax y ++=2可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这样表示。 a 的绝对值越大,抛物线的开口越小。 (3)三顶点 顶点式:)0,,()(2≠+-=a k h a k h x a y 是常数, 知识点三、二次函数的最值 如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当 a b x 2-=时,a b a c y 442-=最值。 如果自变量的取值范围是21x x x ≤≤,那么,首先要看a b 2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=a b 2-时,a b a c y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时, c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减 小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222 最小。 知识点四、二次函数的性质 1、二次函数的性质

函数概念典型例题

函数概念及其表示---典例分析 例1.下列各组函数中,表示同一函数的是( C ). 选题理由:函数三要素。 A. 1,x y y x == B. 11,y x y = += C. ,y x y == D. 2||,y x y == 点评:有利于理解函数概念,强化函数的三要素。 变式: 1.函数f (x )= 2(1)x x x ??+? ,0,0x x ≥< ,则(2)f -=( ). A. 1 B .2 C. 3 D. 4 例2.集合{}22M x x =-≤≤,{}02N y y =≤≤,给出下列四个图形,其中能表示以M 为定义域,N 为值域的函数关系的是( B ). 选题理由:更好的帮助学生理解函数概念,同时也体现函数的重要表示法图像法,图形法是数形结合思想应用的前提。 变式: 1.下列四个图象中,不是函数图象的是(B ). 2.设集合A ={x |0≤x ≤6},B ={y |0≤y ≤2},从A 到B 的对应法则f 不是映射的是( ). A. f :x →y = 1 2x B. f :x →y = 1 3x C. f :x →y =1 4x D. f :x →y =1 6 x A. B. C. D.

函数的表达式及定义域—典例分析 【例1】 求下列函数的定义域: (1)1 21 y x = +-;(2 )y = . 选题理由:考查函数三要素,定义域是函数的灵魂。 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2 )由30 20 x -≥??≠,解得3x ≥且9x ≠, 所以原函数定义域为[3,9)(9,)+∞. 选题理由:函数的重要表示法,解析式法。 变式: 1 .函数y =的定义域为( ). A. (,1]-∞ B. (,2]-∞ C. 11(,)(,1]22-∞-- D. 1 1(,) (,1]2 2 -∞-- 2.已知函数()f x 的定义域为[1,2)-,则(1)f x -的定义域为( ). A .[1,2)- B .[0,2)- C .[0,3)- D .[2,1)- 【例2】已知函数1( )1x f x x -=+. 求: (1)(2)f 的值; (2)()f x 的表达式 解:(1)由121x x -=+,解得13x =-,所以1 (2)3f =-. (2)设11x t x -=+,解得11t x t -= +,所以1()1t f t t -=+,即1()1x f x x -=+. 点评:此题解法中突出了换元法的思想. 这类问题的函数式没有直接给出,称为抽象函数的研究,常常需要结合换元法、特值代入、方程思想等. 变式: 1.已知()f x =2x +x +1,则f =______;f [(2)f ]=______. 2.已知2(21)2f x x x +=-,则(3)f = . 【例 2】 已知f (x )=33x x -+?? (,1) (1,)x x ∈-∞∈+∞,求f [f (0)]的值. 选题理由:分段函数生活重要函数,是考察重点。 解:∵ 0(,1)∈-∞ , ∴ f 又 ∵ >1, ∴ f )3)-3=2+ 12=52,即f [f (0)]=5 2 . 点评:体现了分类讨论思想。 2.某同学从家里到学校,为了不迟到,先跑,跑累了再走余下的路,设在途中花的时间为 t ,离开家里的路程为d ,下面图形中,能反映该同学的行程的是( ).

函数的定义及三要素

函数的定义及三要素 考点一、函数概念的理解 [例1] 下列对应是否为A 到B 的函数: (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ; (4)A =[-1,1],B ={0},f :x →y =0. [例2】下列各图中,可表示函数)(x f y 的图象的只可能是( ) 变式1:在下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是( ①A ={x |x ∈Z },B ={y |y ∈Z },对应法则f :x →y =x 3; ②A ={x |x >0,x ∈R },B ={y |y ∈R },对应法则f :x →y 2=3x ; ③A ={x |x ∈R },B ={y |y ∈R },对应法则f :x →y :x 2+y 2=25; ④A =R ,B =R ,对应法则f :x →y =x 2; ⑤A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应法则f :(x ,y )→S =x +y ; ⑥A ={x |-1≤x ≤1,x ∈R },B ={0},对应法则f :x →y =0. A .①⑤⑥ B .②④⑤⑥ C .②③④ D .①②③⑤ 变式2、如图中,哪些是以x 为自变量的函数的图象,为什么?

考点二、相等函数的判断 [例2] 下列各对函数中,是相等函数的序号是________. ①f(x)=x+1与g(x)=x+x0 ②f(x)=x+2与g(x)=|2x+1| ③f(n)=2n+1(n∈Z)与g(n)=2n-1(n∈Z) ④f(x)=3x+2与g(t)=3t +2 变式:下列各组式子是否表示相等函数?为什么? (1)f(x)=|x|,φ(t)=t2; (2)y=x2,y=(x)2; (3)y=x+1·x-1,y=x2-1; (4)y=1+x·1-x,y=1-x2. 考点三、求函数的定义域 [例3] 求下列函数的定义域: (1)y=2x+3; (2)f(x)= 1 x+1; (3) y=x-1+1-x; (4)y= x+1 x2-1.

函数的单调性知识点汇总及典型例题(高一必备)

第二讲:函数的单调性 一、定义: 1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0) ()(0)]()()[(2 1212121>--?>--x x x f x f x f x f x x ; 难点突破:(1)所有函数都具有单调性吗? (2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个? 2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间. 注意:(1)减函数的等价式子:0) ()(0)]()()[(21212121<--? <--x x x f x f x f x f x x ; (2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明 例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有 .0) ()(2 121>--x x x f x f 则( ) A.)(x f 在这个区间上为增函数 B.)(x f 在这个区间上为减函数 C.)(x f 在这个区间上的增减性不变 D.)(x f 在这个区间上为常函数

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

函数的三要素

第一章函数 第一讲函数的概念 【知识归纳】 (1) 映射 映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中 的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B 中的元素b叫做a的象,a叫做b的原象. 一对一,多对一是映射但一对多显然不是映射 辨析: ①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等; ②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射; ③存在性:映射中集合A的每一个元素在集合B中都有它的象; ④唯一性:映射中集合A的任一元素在集合B中的象是唯一的; ⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都 有原象,即A中元素的象集是B的子集. 映射三要素:集合A、B以及对应法则f,缺一不可; (2) 映射观点下的函数概念 如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x). (3)函数概念: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集. (4)函数的表示方法 1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系. 3.图象法:用图象表示两个变量之间的对应关系.

二次函数知识点总结及典型例题

二次函数知识点总结及典型例题 一、二次函数的概念和图像 1、二次函数的概念 一般地,如果)0,,(2 ≠++=a c b a c bx ax y 是常数,,那么y 叫做x 的二次函数。 )0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。 2、二次函数的图像 二次函数的图像是一条关于a b x 2-=对称的曲线,这条曲线叫抛物线。 抛物线的主要特征: ①有开口方向;②有对称轴;③有顶点。 3、二次函数图像的画法---五点法: 二、二次函数的解析式 二次函数的解析式有三种形式: (1)一般式:)0,,(2 ≠++=a c b a c bx ax y 是常数, (2)顶点式:)0,,()(2 ≠+-=a k h a k h x a y 是常数, (3)当抛物线c bx ax y ++=2 与x 轴有交点时,即对应二次好方程0 2=++c bx ax 有实根1x 和2x 存在时,根据二次三项式的分解因式))((212 x x x x a c bx ax --=++,二次函数c bx ax y ++=2 可转化为两根式))((21x x x x a y --=。如果没有交点,则不能这 样表示。 三、抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线 a b x 2- =,故:①0=b 时,对称轴为y 轴所在直线;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0

1.2函数及其表示知识点及练习题

函数及其表示 (一)知识梳理 1.映射的概念 设B A 、是两个非空集合,如果按照某种对应法则f ,对A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,则称f 是集合A 到集合B 的映射,记作f(x). 2.函数的概念 (1)函数的定义: 设B A 、是两个非空的数集,如果按照某种对应法则f ,对A 中的 任意数 x ,在集合B 中都有 唯一确定 的数y 和它对应,则这样的对应关系叫做从A 到B 的一个函数,通常记为___y=f(x),x ∈A (2)函数的定义域、值域 在函数A x x f y ∈=),(中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值, 对于的函数值的集合所有的集合构成 值域。 (3)函数的三要素: 定义域 、 值域 和 对应法则 3.函数的三种表示法:图象法、列表法、解析法 (1).图象法:就是用函数图象表示两个变量之间的关系; (2).列表法:就是列出表格来表示两个变量的函数关系; (3).解析法:就是把两个变量的函数关系,用等式来表示。 4.分段函数 在自变量的不同变化范围中,对应法则用不同式子来表示的函数称为分段函数。 (二)考点分析 考点1:判断两函数是否为同一个函数 如果两个函数的定义域相同,并且对应关系完全一致,称这两个函数相等。 考点2:求函数解析式 方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法; (2)若已知复合函数)]([x g f 的解析式,则可用换元法或配凑法; (3)若已知抽象函数的表达式,则常用解方程组消参的方法求出)(x f

1.2函数及其表示练习题(2) 一、选择题 1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+= x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ; ⑶x x f =)(,2)(x x g = ; ⑷()f x = ()F x = ⑸21)52()(-=x x f ,52)(2-=x x f . A. ⑴、⑵ B. ⑵、⑶ C. ⑷ D. ⑶、⑸ 2. 函数()y f x =的图象与直线1x =的公共点数目是( ) A. 1 B. 0 C. 0或1 D. 1或2 3. 已知集合{}{} 421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A. 2,3 B. 3,4 C. 3,5 D. 2,5 4. 已知22(1)()(12)2(2)x x f x x x x x +≤-??=-<

函数的三要素典型例题

函数定义域的求法及常见题型 一、函数定义域求法 (一)常规函数 函数解析式确定且已知,求函数定义域。其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。 例1.求函数y = 的定义域。 (二)抽象函数 1.有关概念 定义域:函数y=f(x)的自变量x 的取值范围,可以理解为函数y=f(x)图象向x 轴投影的区间;凡是函数的定义域,永远是指自变量x 的取值范围; 2.四种类型 题型一:已知抽象函数y=f(x)的定义域为[m,n],如何求复合抽象函数y=f(g(x))的定义域? 例题2.已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域 强化训练: 1.已知函数y=f(x)的定义域[-1,5],求函数y=f(3x-5)的定义域; 2.已知函数y=f(x)的定义域[1/2,2],求函数y=f(log 2x)的定义域; 3.已知(x)f 的定义域为[-2,2],求2(x 1)f -的定义域。 题型二:已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 例题4.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 强化训练: 1.已知函数y=f(x 2-2x+2)的定义域[0,3],求函数y=f(x)的定义域. 2.已知函数y=f[lg(x+1)]的定义域[0,9],求函数y=f(x)的定义域.

题型三:已知复合抽象函数y=f(g(x))定义域[m,n],如何求复合抽象函数y=f(h(x))定义域的定义域? 例题5.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(3+x)的定义域. 强化训练: 1.已知函数y=f(x+1)的定义域[-2,3],求函数y=f(2x-1)的定义域. 2.已知函数y=f(2x)的定义域[-1,1],求函数y=f(log 2x)的定义域. 3. 已知f(x+1)的定义域为[-1/2,2],求f(x 2)定义域。 题型四:已知f(x)的定义域,求与f(x)相关四则运算型函数的定义域。 例6.已知f(x)的定义域为[-3,5],求φ(x )=f(-x)+f(2x+5)定义域。 强化训练: 1.已知f(x)的定义域为(0,5],求g(x)=f(x+a)f(x-a)定义域,其中-1﹤a ≦0。 二、与函数定义域相关的变形题型 (一)逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例7.已知函数的定义域为R ,求实数m 的取值范围。 例8.已知函数27 (x)43 kx f kx kx += ++的定义域是R ,求实数k 的取值范围。 (二)参数型 对于含参数的函数,求定义域时,必须对分母分类讨论。 例9.已知(x)f 的定义域为[0,1],求函数(x)(x )(x a)F f a f =++-的定义域。

高中数学 函数知识点总结与经典例题与解析

函数知识点总结 知识点一、平面直角坐标系 1、平面直角坐标系 在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。 其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。 为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。 注意:x 轴和y 轴上的点,不属于任何象限。 2、点的坐标的概念 点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。 知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征 点P(x,y)在第一象限0,0>>?y x 点P(x,y)在第二象限0,0>?y x 2、坐标轴上的点的特征 点P(x,y)在x 轴上0=?y ,x 为任意实数 点P(x,y)在y 轴上0=?x ,y 为任意实数 点P(x,y)既在x 轴上,又在y 轴上?x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征 点P(x,y)在第一、三象限夹角平分线上?x 与y 相等 点P(x,y)在第二、四象限夹角平分线上?x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征 位于平行于x 轴的直线上的各点的纵坐标相同。 位于平行于y 轴的直线上的各点的横坐标相同。5、关于x 轴、y 轴或远点对称的点的坐标的特征 点P 与点p ’关于x 轴对称?横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称?纵坐标相等,横坐标互为相反数

相关文档
相关文档 最新文档