文档库 最新最全的文档下载
当前位置:文档库 › 频响分析理论讲解

频响分析理论讲解

模态分析和频率响应分析的目的

有限元分析类型 一、nastran中的分析种类 (1)静力分析 静力分析是工程结构设计人员使用最为频繁的分析手段,主要用来求解结构在与时间无关或时间作用效果可忽略的静力载荷(如集中载荷、分布载荷、温度载荷、强制位移、惯性载荷等)作用下的响应、得出所需的节点位移、节点力、约束反力、单元内力、单元应力、应变能等。该分析同时还提供结构的重量和重心数据。 (2)屈曲分析 屈曲分析主要用于研究结构在特定载荷下的稳定性以及确定结构失稳的临界载荷,NX Nastran中的屈曲分析包括两类:线性屈曲分析和非线性屈曲分析。 (3)动力学分析 NX Nastran在结构动力学分析中有非常多的技术特点,具有其他有限元分析软件所无法比拟的强大分析功能。结构动力分析不同于静力分析,常用来确定时变载荷对整个结构或部件的影响,同时还要考虑阻尼及惯性效应的作用。 NX Nastran的主要动力学分析功能:如特征模态分析、直接复特征值分析、直接瞬态响应分析、模态瞬态响应分析、响应谱分析、模态复特征值分析、直接频率响应分析、模态频率响应分析、非线性瞬态分析、模态综合、动力灵敏度分析等可简述如下: ?正则模态分析 正则模态分析用于求解结构的固有频率和相应的振动模态,计算广义质量,正则化模态节点位移,约束力和正则化的单元力及应力,并可同时考虑刚体模态。 ?复特征值分析 复特征值分析主要用于求解具有阻尼效应的结构特征值和振型,分析过程与实特征值分析类似。此外

Nastran的复特征值计算还可考虑阻尼、质量及刚度矩阵的非对称性。 ?瞬态响应分析(时间-历程分析) 瞬态响应分析在时域内计算结构在随时间变化的载荷作用下的动力响应,分为直接瞬态响应分析和模态瞬态响应分析。两种方法均可考虑刚体位移作用。 直接瞬态响应分析 该分析给出一个结构随时间变化的载荷的响应。结构可以同时具有粘性阻尼和结构阻尼。该分析在节点自由度上直接形成耦合的微分方程并对这些方程进行数值积分,直接瞬态响应分析求出随时间变化的位移、速度、加速度和约束力以及单元应力。 模态瞬态响应分析 在此分析中,直接瞬态响应问题用上面所述的模态分析进行相同的变换,对问题的规模进行压缩,再对压缩了的方程进行数值积分,从而得出与用直接瞬态响应分析类型相同的输出结果。 ?随机振动分析 该分析考虑结构在某种统计规律分布的载荷作用下的随机响应。例如地震波,海洋波,飞机超过建筑物的气压波动,以及火箭和喷气发动机的噪音激励,通常人们只能得到按概率分布的函数,如功率谱密度(PSD)函数,激励的大小在任何时刻都不能明确给出,在这种载荷作用下结构的响应就需要用随机振动分析来计算结构的响应。NX Nastran中的PSD可输入自身或交叉谱密度,分别表示单个或多个时间历程的交叉作用的频谱特性。计算出响应功率谱密度、自相关函数及响应的RMS值等。计算过程中,NX Nastran不仅可以像其他有限元分析那样利用已知谱,而且还可自行生成用户所需的谱。 ?响应谱分析 响应谱分析(有时称为冲击谱分析)提供了一个有别于瞬态响应的分析功能,在分析中结构的激励用各个小的分量来表示,结构对于这些分量的响应则是这个结构每个模态的最大响应的组合。 ?频率响应分析 频率响应分析主要用于计算结构在周期振荡载荷作用下对每一个计算频率的动响应。计算结果分实部和虚部两部分。实部代表响应的幅度,虚部代表响应的相角。 直接频率响应分析 直接频率响应通过求解整个模型的阻尼耦合方程,得出各频率对于外载荷的响应。该类分析在频域中主要求解两类问题。第一类是求结构在一个稳定的周期性正弦外力谱的作用下的响应。结构可以具有粘性阻尼和结构阻尼,分析得到复位移、速度、加速度、约束力、单元力和单元应力。这些量可以进行正则化以获得传递函数。 第二类是求解结构在一个稳态随机载荷作用下的响应。此载荷由它的互功率谱密度定义。而结构载荷由上面所提到的传递函数来表征。分析得出位移、加速度、约束力或单元应力的自相关系数。该分析也对自功率谱进行积分而获得响应的均方根值。 模态频率响应 模态频率响应分析和随机响应分析在频域中解决的两类问题与直接频率响应分析解决相同的问题。

频响频响分析方法总结

频响频响分析方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。

(实验三)连续时间LTI系统的频域分析汇总

实验三 连续时间LTI 系统的频域分析 一、实验目的 1、掌握系统频率响应特性的概念及其物理意义; 2、掌握系统频率响应特性的计算方法和特性曲线的绘制方法,理解具有不同频率响应特性的滤波器对信号的滤波作用; 3、学习和掌握幅度特性、相位特性以及群延时的物理意义; 4、掌握用MA TLAB 语言进行系统频响特性分析的方法。 基本要求:掌握LTI 连续和离散时间系统的频域数学模型和频域数学模型的MATLAB 描述方法,深刻理解LTI 系统的频率响应特性的物理意义,理解滤波和滤波器的概念,掌握利用MATLAB 计算和绘制LTI 系统频率响应特性曲线中的编程。 二、实验原理及方法 1 连续时间LTI 系统的频率响应 所谓频率特性,也称为频率响应特性,简称频率响应(Frequency response ),是指系统在正弦信号激励下的稳态响应随频率变化的情况,包括响应的幅度随频率的变化情况和响应的相位随频率的变化情况两个方面。 上图中x(t)、y(t)分别为系统的时域激励信号和响应信号,h(t)是系统的单位冲激响应,它们三者之间的关系为:)(*)()(t h t x t y =,由傅里叶变换的时域卷积定理可得到: )()()(ωωωj H j X j Y = 3.1 或者: ) () ()(ωωωj X j Y j H = 3.2 )(ωj H 为系统的频域数学模型,它实际上就是系统的单位冲激响应h(t)的傅里叶变换。即 ? ∞ ∞ --= dt e t h j H t j ωω)()( 3.3 由于H(j ω)实际上是系统单位冲激响应h(t)的傅里叶变换,如果h(t)是收敛的,或者说 是绝对可积(Absolutly integrabel )的话,那么H(j ω)一定存在,而且H(j ω)通常是复数,

线性控制系统的频率响应分析

一.实验目的 1.了解和掌握对数幅频曲线和相频曲线(波德图)、幅相曲线(奈奎斯特图)的构造及绘制方法。 2.二阶开环系统中的相位裕度和幅值穿越频率的计算。 二.实验内容及要求 1.一阶惯性环节的频率特性曲线测试。 2.二阶开环系统的频率特性测试,研究表征系统稳定程度的相位裕度和 幅值穿越频率对系统的影响。 三、实验主要仪器设备和材料 1.labACT自控/计控原理实验机一台 2.数字存储示波器一台 四、实验方法、步骤及结果测试 1.一阶惯性环节的频率特性曲线 惯性环节的频率特性测试模拟电路见图4-1。 图4-1 惯性环节的频率特性测试模拟电路 实验步骤:注:‘S ST'不能用“短路套”短接! (1)将数/模转换器(B2)输出OUT2作为被测系统的输入。 (2)按图4-1安置短路套及测孔联线。 (3)运行、观察、记录: ①运行LABACT程序,选择自动控制菜单下的线性控制系统的频率响应分析-实验项目,选择一阶系统,再选择开始实验,点击开始,实验机将自动产生0.5Hz~64Hz多个频率信号,测试被测系统的频率特性,等待将近十分钟,测试结束。 ②测试结束后,可点击界面下方的“频率特性”选择框中的任意一项进行切换,将显示被测系统的对数幅频、相频特性曲线(伯德图)和幅相曲线(奈 奎斯特图),同时在界面上方将显示点取的频率点的L、、Im、Re等相关数

据。如点击停止,将停止示波器运行,不能再测量数据。 ③分别改变惯性环节开环增益与时间常数,观察被测系统的开环对数幅频曲线、相频曲线及幅相曲线,在幅频曲线或相频曲线上点取相同的频率点,测量、记录数据于实验数据表中。 实验数据表1:改变惯性环节开环增益,(T=0.05,C=1u,R2=50K) 实验数据表2: 改变惯性环节时间常数, K=1(R1=50K、R2=50K) 2.二阶开环系统的频率特性曲线 二阶系统模拟电路图的构成如图4-2所示。

频率响应的波特图分析

《模拟集成电路基础》课程研究性学习报告频率响应的波特图分析

目录 一.频率响应的基本概念 (2) 1. 概念 (2) 2. 研究频率响应的意义 (2) 3. 幅频特性和相频特性 (2) 4. 放大器产生截频的主要原因 (3) 二.频率响应的分析方法 (3) 1. 电路的传输函数 (3) 2. 频率响应的波特图绘制 (4) (1)概念 (4) (2)图形特点 (4) (3)四种零、极点情况 (4) (4)具体步骤 (6) (5)举例 (7) 三.单级放大电路频率响应 (7) 1.共射放大电路的频率响应 (7) 2.共基放大电路的频率响应 (9) 四.多级放大电路频响 (10) 1.共射一共基电路的频率响应 (10) (1)低频响应 (11) (2)高频响应 (12) 2.共集一共基电路的频率响应 (13) 3.共射—共集电路级联 (14) 五.结束语 (14)

一.频率响应的基本概念 1.概念 我们在讨论放大电路的增益时,往往只考虑到它的中频特性,却忽略了放大电路中电抗元件的影响,所求指标并没有涉及输入信号的频率。但实际上,放大电路中总是含有电抗元件,因而,它的增益和相移都与频率有关。即它能正常工作的频率范围是有限的,一旦超出这个范围,输出信号将不能按原有增益放大,从而导致失真。我们把增益和相移随频率的变化特性分别称为幅频特性和相频特性,统称为频率响应特性。 2.研究频率响应的意义 通常研究的输入信号是以正弦信号为典型信号分析其放大情况的,实际的输入信号中有高频噪声,或者是一个非正弦周期信号。例如输入信号i u 为方波,s U 为方波的幅度,T 是周期, 0/2ωπ=T ,用傅里叶级数展开,得...)5sin 5 1 3sin 31(sin 22000++++= t t t U U u s s i ωωωπ 各次谐波单独作用时电压增益仍然是由交流通路求得,总的输出信号为各次谐波单独作用时产生的输出值的叠加。但是交流通路和其线性化等效电路对低频、中频、高频是有差别的,这是因为放大电路中耦合电容、旁路电容和三极管结电容对不同频率的信号的复阻抗是不同的。电容C 对K 次谐波的复阻抗是C jK 0/1ω,那么,放大电路对各次谐波的放大倍数相同吗?放大电路总的输出信号能够再现输入信号的变化规律吗?也就是放大电路能够不失真地放大输入信号吗?为此,我们要研究频率响应。 3.幅频特性和相频特性 幅频特性:放大电路的幅值|A|和频率f(或角频率ω)之间的关系曲线,称为幅频特性曲线。由于增益是频率的函数,因此增益用A (jf )或A (ωj )来表示。在中频段增益根本不随频率而变化,我们称中频段的增益为中频增益。在中频增益段的左、右两边,随着频率的减小或增加,增益都要下降,分别称为低频增益段和高频增益段。通常把增益下降到中频增益的0.707倍(即3dB )处所对应的频率称为放大电路的低频截频(也称下限频率)L f 和高频截频(也称上限频率)H f ,把L H f f BW -=称为放大器的带宽。 相频特性:放大电路的相移?和频率f(或角频率ω)之间的关系曲线,称为相频特性曲线。

VIBRO_1_DIRECT_simulations-ACTRAN振动声学直接频响分析理论

Vibro-Acoustic Simulations
ACTRAN Training – VIBRO
Copyright Free Field Technologies

Introduction
Pre-requisites - before going through this presentation, the reader should have read and understood the following presentations:
1_BASICS_General_Program_Organization.pdf; Workshop_BASICS_0_Edit_an_ACTRAN_input_file.pdf.
These slides present the basics materials, components and boundary conditions involved in a structural simulation in physical coordinates.
2
Copyright Free Field Technologies

Content
The structural Materials
The visco-elastic and shell Component
The equivalent beam Component and Material
The discrete Component and Material
The Boundary Conditions
Meshing Criteria
3
Copyright Free Field Technologies

[频响] 频响分析方法总结

频响分析,或者叫稳态动力学分析在abaqus中包括以下三种方法: 直接稳态动力学分析(direct solution steady state dynamic analysis) 模态稳态动力学分析(mode based steady state dynamic analysis) 子空间稳态动力学分析(subspace projection steady state dynamic analysis) 1)直接稳态动力学 优点:在直接稳态动力学分析中,系统的稳态谐波响应是通过对模型的原始方程直接积分计算出来的。如果分析的对象存在非对称刚度、包含模态阻尼以外的其他阻尼或者必须考虑粘弹性材料特性(频变特性),则不能提取特征模态的情况下,可以应用直接法进行稳态响应的计算和分析。 缺点:进行直接稳态动力学分析不需要提取系统的特征模态,而是在每个频率点对整个模型进行复杂的积分运算。因此,对于具有大阻尼和频变特性的模型,应用直接法比模态分析方法精确,但是耗时较多。 2)模态稳态动力学分析 模态稳态动力学分析方法是基于模态叠加法求解系统的稳态响应。因此,在求解稳态响应之前必须先提取无阻尼系统的特征模态,也就是在说必须在step steady state dynamics,modal 前加一步step frequency。另外,必须确定需要保留的特征模态,以确保能够精确描述系统的动力学特性,也就是说如果是进行0-1000hz的分析,step frequency的number of eigenvalues requested选定的阶数的模态频率必须大于1000hz,简单的作法是这里选all……,下面的maximum……填入1000。 模态稳态动力学分析的特点:相较于直接法和子空间法分析速度快,耗时最少,计算精度低于直接法和子空间法,不适合于分析具有大阻尼特性的模型,不适合于分析具有粘弹性材料(频变特性)的模型。 3)子空间稳态动力学分析 子空间稳态动力学分析的基本思想是:首先提取无阻尼、对称系统的特征模态,并选取适当的特征向量组成特征模态子空间,然后将稳态动力学方程组投影到特征模态子空间上,通过直接法求解子空间的稳态动力学方程。 我的感觉是子空间法是直接法和模态法的折中,它的特点是模型可以定义任意形式的阻尼,可以处理具有非对称刚度矩阵的模型,可以处理具有频变特性的模型,计算时间和精度也是在直接法和模态法的中间。 直接法在定义边界条件时通过选项*boundary的amplitude参数来引用频变幅值,但这里默认的好像是位移,如果我有的是加速度或者速度数据,想用直接法进行分析应该如何设定呢,希望知道的大神能相告。 模态法和子空间法不能使用*boundary选项定义边界条件的运动,而只能通过选项*base motion来定义边界条件的运动。

频响分析

radioss频响分析 材料 属性T=*** 1.loadcollector spc DOF 123456 钻柱 井壁 2. A DOF1=2.54mm DAREA DAREA 载荷激励 SPCD 强制位移、速度激励、加速度激励 如果是SPCD,则激励处还需添加相应自由度的SPC约束 3. B card image=TABLED1 x(1)=0,y(1)=1,x(2)=1000,y(2)=1 如果是激励曲线,则从utility——>table creat中导入 4. OMEGA card image=FREQi 勾选FREQ1,F1=20,DF=20,NDF=49 5. RLOAD2card image=RLOAD2 EXCITED——>A TB——>B TP——>φ DELAY——>τ DPHASE——>θ TYPE=LOAD 如果有好几个载荷,则用DLOAD组合 6.loadstep type=freq.resp(direct) SPC——>SPC DLOAD——>RLOAD2 FREQ——>OMEGA 7.定义set type=SET_GRID 6.control cards Displacements format=HG, DISP_FORM=PHASE, DISP_OPT=SID PARAM coupmass:yes G=0.06 OUTPUT keyword=HGFREQ FREQ=ALL 6.loadstep type=freq.resp(direct) 6.loadstep type=freq.resp(direct) 直接频响 模态频响还需设置EIGRL卡片 汽车白车身 输入:白车身与底盘相连的点 输出:方向盘,底板、座椅…

第3章频率响应分析

第 3章 频率响应分析 3.1 动力学分析中的矩阵组集 l 在瞬态响应分析、 频率响应分析、 复模态分析中, MSC Nastran 提供了两种计算方法: 直接法和模态法。 l 根据动力分析类型和计算方法的不同,动力学矩阵组集也不一样。 3.1.1 阻尼矩阵 1.阻尼概述 l 阻尼反映结构内部能量的耗散。 l 阻尼产生的机理。 ? 粘性效应(如粘性阻尼器、振动减振器引起) ? 外摩擦(如结构连接处的相对滑动) ? 内摩擦(取决于不同的材料特性) ? 结构非线性(如塑性效应) l 阻尼的模拟。 ? 粘性阻尼力 v f bu = & ? 结构阻尼力 s f igku = 其中: 1 i =- ;g = 结构阻尼系数。 2.结构阻尼与粘性阻尼 假设结构简谐响应为: e i t u u w = 对粘性阻尼: 2 2 () (e )(e )e () e e e () i t i t i t i t i t i t mu bu ku p t m u b i u ku p t mu ib u ku p t w w w w w w w w w w ++= -++= -++= &&& 对结构阻尼: 2 2 (1)() (e )(1)e () e e e () i t i t i t i t i t mu ig ku p t m u ig ku p t mu igku ku p t w w w w w w w ++= -++= -++= && 可以得到

频率响应分析 第 3 章 57 gk gk b b w w =?= 如果 n k m w w == 那么 n n gk b g m w w = = 但因为 2 c n b m w = 得到 2 c b g b z == 其中: z =临界阻尼比率(临界阻尼百分比) ; 1 g Q = =结构阻尼因子;Q =品质因子或放大因子。 结论: l 粘性阻尼与速度成比例。 l 结构阻尼与位移成比例。 l 临界阻尼比 / cr b b z = 。 l 品质因子与能量耗散成反比。 l 在共振点( n w w @ )有如下关系: /2 1/(2) 1/ g Q Q g z z = = = 3.阻尼输入 (1)结构阻尼。 MATi 卡片: 1 2 3 4 5 6 7 8 9 10 MA T1 MID E G NU RHO A TREF GE MA T1 2 30.0E6 0.3 0.10 PARAM,G,factor (Default = 0.0) 用结构阻尼系数乘整个系统刚度矩阵。 PARAM,W3,factor (Default = 0.0) 将结构阻尼转化为等效粘性阻尼。 PARAM,W4,factor (Default = 0.0) 将单元结构阻尼转化为等效粘性阻尼。

离散系统的频率响应分析和零、极点分布

实验2 离散系统的频率响应分析和零、极点分布 一、实验目的 通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。 二、基本原理 离散系统的时域方程为 其变换域分析方法如下: 频域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [ω ω ωj j j m e H e X e Y m n h m x n h n x n y= ? - = * =∑∞ -∞ = 系统的频率响应为 ω ω ω ω ω ω ω jN N j jM M j j j j e d e d d e p e p p e D e p e H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 Z域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [z H z X z Y m n h m x n h n x n y m = ? - = * =∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 1 1 分解因式 ∏- ∏- = ∑ ∑ = = - = - = - = - N i i M i i N i i k M i i k z z K z d z p z H 1 1 1 1 ) 1( ) 1( ) ( λ ξ ,其中i ξ 和i λ 称为零、极点。 在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane (num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。 三、实验内容及要求 一个LTI离散时间系统的输入输出差分方程为 y(n)-1.6y(n-1)+1.28y(n-2) =0.5x(n)+0.1x(n-1) (1)编程求出此系统的单位冲激响应序列,并画出其波形。 (2)若输入序列x(n)=δ(n)+2δ(n-1)+3δ(n-2)+4δ(n-3)+5δ(n-4),编程求此系统输出序列y(n),并画出其波形。 (3)编程得到系统频响的幅度响应和相位响应,并画图。 (4)编程得到系统的零极点分布图,分析系统的因果性和稳定性。 解答:

线性系统的频率响应分析实验

实验三 线性系统的频率响应分析 一、实验目的:掌握实验方法测量系统的波特图和极坐标图。 二、实验设备:PC 机一台,TD-ACC 系列教学实验系统一套。 三.实验对象的结构框图及模拟电路图。 图1 开环传函为: 1()0.1(0.11) G S S S =+ 闭环传函: 221100()0.010.1110100 S S S S S Φ==++++ 得转折频率ω=10(rad/s) 阻尼比ξ=0.5。 四、实验步骤: 此次实验,采用直接测量方法测量对象的闭环波特图及奈奎斯特图。将信号源单元的“ST”插针分别与“S”插针和“+5V”插针断开,运放的锁零控制端“ST”此时接至控制计算机单元的“DOUT0”插针处,锁零端受“DOUT0”来控制。将数模转换单元的“/CS”接至控制计算机的“/IOY1”,数模转换单元的“OUT1”,接至图1中的信号输入端. 1.实验接线:按模拟电路图图1接线,检查无误后方可开启设备电源。 2.直接测量方法 (测对象的闭环波特图) (1)“CH1”路表笔插至图1中的4#运放的输出端。 (2) 打开集成软件中的频率特性测量界面,弹出时域窗口,点击按钮,在弹出的窗口中根据需要设置好几组正弦波信号的角频率和幅值,选择测量方式为“直接”测量,每

组参数应选择合适的波形比例系数,具体如下图所示 (3) 确认设置的各项参数后,点击按钮,发送一组参数,待测试完毕,显示时域波形,此时需要自行移动游标,将两路游标同时放置在两路信号的相邻的波峰(波谷)处,或零点处,来确定两路信号的相位移。两路信号的幅值系统将自动读出。重复操作(3),直到所有参数测量完毕。 (4) 待所有参数测量完毕后,点击按钮,弹出波特图窗口,观察所测得的波特图,该图由若干点构成,幅频和相频上同一角频率下两个点对应一组参数下的测量结果。将波特图绘制或保存下来。 点击极坐标图按钮,可以得到对象的闭环极坐标。将极坐标图绘制或保存下来。 (5) 根据所测图形可适当修改正弦波信号的角频率和幅值重新测量,达到满意的效果。 五、注意: (1) 测量过程中要去除运放本身的反相的作用,即保持两路测量点的相位关系与运放无关,所以在测量过程中可能要适当加入反相器,滤除由运放所导致的相位问题。 (2) 测量过程中,可能会由于所测信号幅值衰减太大,信号很难读出,须放大,若放大的比例系数不合适,会导致测量误差较大。所以要适当地调整误差或反馈比例系数。

nastran频率响应分析详细步骤

nastran 频率响应分析(模态法) 1.边界条件 1.1约束 1.2载荷 1.2.1静载荷 力forces 强迫位移darea 压强pload 力矩moment 1.2.2频率—载荷函数 ▲TABLED1 TABLED1:通过坐标点创建频率—载荷函数 TABLED1_mum=坐标点数量 x(i):频率坐标数值 y(i):载荷倍数坐标值 ▲TABLED2 TABLED2通过坐标点创建频率—载荷函数 TABLED2mum=坐标点数量 X1:x坐标延迟量 x(i):频率坐标数值 y(i):载荷倍数坐标值 y=yt(x-X1) ▲TABLED3 TABLED3通过坐标点创建频率—载荷函数 TABLED3mum=坐标点数量 X1:x坐标延迟量 X2:x坐标缩减倍数 x(i):频率坐标数值 y(i):载荷倍数坐标值 y=yt((x-X1)/X2) ▲TABLED4 1.2.3动力载荷 RLOAD2: EXCITEID:选择已建好的静载荷 TB:选择已建好的频率—载荷函数 TYPE:载荷类型

1.2.4动载频率选择—FREQi ▲FREQ—频率列表 选择离散的频率值 NUMBER_OF_FREQ:频率数量 F(i):频率数值 ▲FREQ1—频率加法增量 通过开始频率、频率增量、增量数量来对频率进行抽样。 F1:开始频率 DF:频率增量 NDF:增量数量 NUMBER_OF_FREQ1=抽样组数量 ▲FREQ2—频率乘法增量 在抽样区间内抽取一组相邻比例相等的频率 F1:抽样区间下限频率(必须大于0) F2:抽样区间上限频率 NF:把抽样区间分为NF+1个点取样;每个点的关系为F(n):F(n-1)=F(n-1):F(n-2); n表示第n个抽样频率。 NUMBER_OF_FREQ2:抽样组数量 ▲FREQ3—固有频率区间抽样 在模态固有频率点之间平均/对数抽样 只适用于模态法频率响应分析。 F1:起始频率 F2:结束频率 NEF:相邻模态固有频率区间的抽样数量 NUMBER_OF_FREQ3:抽样组数量 ▲FREQ4—固有频率扩展 在抽样区间中的每个模态固有频率点进行一定宽度及密度的扩展抽样 只适用于模态频率响应分析 F1:抽样区间下限频率 F2:抽样区间上限频率 FSPD:抽样频率点扩展宽度系数。扩展范围=(1-FSPD)*固频~(1+FSPD)*固频 NFM:在每个扩展范围内的平均抽样数量,为奇数。 NUMBER_OF_FREQ4:抽样组数量

自动控制原理 第五章频率响应分析法习题及答案

第五章习题与解答5-1试求题5-1图(a)、(b)网络的频率特性。 u r R1 u c R2 C R2 R1 u r u c (a) (b) 题5-1图 R-C网络 解(a)依图: ? ? ? ? ?? ? ? ? + = = + = + + = + + = 2 1 2 1 1 1 1 2 1 2 1 1 1 1 1 1 2 2 1 )1 ( 1 1 ) ( ) ( R R C R R T C R R R R K s T s K sC R sC R R R s U s U r cτ τ ω ω τ ω ω ω ω ω 1 1 1 2 1 2 1 2 1 2 1 ) 1( ) ( ) ( ) ( jT j K C R R j R R C R R j R j U j U j G r c a+ + = + + + = = (b)依图: ? ? ? + = = + + = + + + = C R R T C R s T s sC R R sC R s U s U r c ) ( 1 1 1 1 ) ( ) ( 2 1 2 2 2 2 2 2 1 2τ τ ω ω τ ω ω ω ω ω 2 2 2 1 2 1 1 ) ( 1 1 ) ( ) ( ) ( jT j C R R j C R j j U j U j G r c b+ + = + + + = = 5-2某系统结构图如题5-2图所示,试根据频率特性的物理意义,求下列输入信号作用时,系统的稳态输出) (t c s 和稳态误差) (t e s (1)t t r2 sin ) (= (2)) 45 2 cos( 2 ) 30 sin( ) (? - - ? + =t t t r 题5-2图反馈控制系统结构图

频率响应及信号的频谱

第十二章 频率响应及信号的频谱 ◆ 重点: 1. 串联谐振及并联谐振的特点及分析 2. 正弦交流电路的幅频特性与相频特性 3. 非正弦周期电路的分析——平均值、有效值及平均功率 ◆ 难点: 1. 频率特性的分析 2. 非正弦周期函数的分解 3. 信号频谱的理解 12.1 谐振 有关“谐振”的物理性质可以用运动学中的“共振”来对应理解。 谐振的定义:如果在某一特定频率下工作的含有动态元件的无源单口网络的阻抗角为零,认为该单口网络在此频率情况下发生谐振。 谐振电路是一种具有频率选择性的电路,它可以根据频率去选择某些需要的信号,而排除其他频率的干扰信号。 12.1.1串联谐振 1.串联谐振的条件 我们来看下面这个RLC 串联的电路: 前面我们分析过RLC 串联电路的复阻抗情况,?∠=||Z Z ,其中 2 222)1()(||C L R X X R Z C L ω- ω+=-+=,R C L arctg R X X arctg C L ω- ω=-=?1 按照谐振的定义:当C j L j ω= ω1 ,即:LC 1=ω时,01 =ω- ω=-=?R C L arctg R X X arctg C L 。 此时R X X R Z C L =-+=2 2)(||。这里,我们称LC 1 0=ω(或LC f π=21 0)为谐振频率。 谐振时的电压相量图为12-2。 2.串联谐振发生时的电路特性 1)电路阻抗最小——U 不变时,I 最大 j ωL

0图12-3(a ) 0图12-3(b ) 2)电路呈阻性——电源供给电路的能量全部消耗在电阻R 上,而动态元件的储能与放能过程完全在电容与电感之间完成;即储能元件并不与电源之间交换能量。 3)串联谐振为电压谐振—— U R X IX U C C C ?= =, U R X IX U L L L ?== 当R X >>时,U U X >>。 电力系统中,常常尽量避免谐振,以免击穿电路设备(L 、C 等);而电子线路中,常用此方法获得高压。 4)选频特性与品质因数Q 电容或电感上的电压有效值与电源电压有效值之间的倍数。Q 越大,网络选频的选择性越强。 C L R R C R L U U U U Q L C 11 00= ω=ω=== 12.1.2并联谐振 情况1 L 图12-4 RLC 并联谐振电路一 该RLC 并联电路的复阻抗Y Z 1||= ?∠=Z ,而C j L j R ω+ω+ =11Y , 当R 1 =Y 时,电路发生谐振。此时电路呈现阻性,阻抗为R == Y Z 1 。 可见发生并联谐振的条件仍然为:电源频率等于谐振频率LC 10= ω(或LC f π= 210)。 谐振时的电流相量图为12-5: 2.并联谐振发生时的电路特性 1)电路阻抗最大——I 不变时,U 最大见图12-6 2)电路呈阻性——电源供给电路的能量全部消耗在电阻R 上,而动态元件 f f 图12-6

频率响应分析详细步骤详解

nastran频率响应分析详细步骤(模态法)1.边界条件 1.1约束 1.2载荷 1.2.1静载荷 力forces 强迫位移darea压强pload力矩moment 1.2.2频率—载荷函数 ▲TABLED1 TABLED1:通过坐标点创建频率—载荷函数 TABLED1_mum=坐标点数量 x(i):频率坐标数值 y(i):载荷倍数坐标值 ▲TABLED2 TABLED2通过坐标点创建频率—载荷函数 TABLED2mum=坐标点数量 X1:x坐标延迟量 x(i):频率坐标数值 y(i):载荷倍数坐标值 y=yt(x-X1) ▲TABLED3 TABLED3通过坐标点创建频率—载荷函数 TABLED3mum=坐标点数量 X1:x坐标延迟量 X2:x坐标缩减倍数 x(i):频率坐标数值 y(i):载荷倍数坐标值 y=yt((x-X1)/X2) ▲TABLED4 1.2.3动力载荷 RLOAD2: EXCITEID:选择已建好的静载荷 TB:选择已建好的频率—载荷函数 TYPE:载荷类型 1.2.4动载频率选择—FREQi

▲FREQ—频率列表 选择离散的频率值 NUMBER_OF_FREQ:频率数量 F(i):频率数值 ▲FREQ1—频率加法增量 通过开始频率、频率增量、增量数量来对频率进行抽样。 F1:开始频率 DF:频率增量 NDF:增量数量 NUMBER_OF_FREQ1=抽样组数量 ▲FREQ2—频率乘法增量 在抽样区间内抽取一组相邻比例相等的频率 F1:抽样区间下限频率(必须大于0) F2:抽样区间上限频率 NF:把抽样区间分为NF+1个点取样;每个点的关系为F(n):F(n-1)=F(n-1):F(n-2); n表示第n个抽样频率。NUMBER_OF_FREQ2:抽样组数量 ▲FREQ3—固有频率区间抽样 在模态固有频率点之间平均/对数抽样 只适用于模态法频率响应分析。 F1:起始频率 F2:结束频率 NEF:相邻模态固有频率区间的抽样数量 NUMBER_OF_FREQ3:抽样组数量 ▲FREQ4—固有频率扩展 在抽样区间中的每个模态固有频率点进行一定宽度及密度的扩展抽样 只适用于模态频率响应分析 F1:抽样区间下限频率 F2:抽样区间上限频率 FSPD:抽样频率点扩展宽度系数。扩展范围=(1-FSPD)*固频~(1+FSPD)*固频 NFM:在每个扩展范围内的平均抽样数量,为奇数。 NUMBER_OF_FREQ4:抽样组数量

基于Cadence的电路频响分析及仿真

实验二基于Cadence的电路频响分析及仿真 实验目的: 进一步熟悉Cadence Virtuoso软件的基本操作步骤,掌握频率响应的基本计算和仿真分析方法,理解系统设计中零极点与频响特性关系。 实验内容: 1.基本RC电路频响分析和仿真 2.两级RC频响特性仿真 3.单级运放频响计算和分析 实验环境: PC、Vmware虚拟机7.1.1、Cadence虚拟机版免安装程序、纸和笔 预备知识: 1. Cadence Virtuoso基本操作步骤 2. 系统传递函数、零极点概念 3. 单位增益带宽、相位裕度 实验步骤: 1. 基本RC电路频响分析和仿真 1)。单极点传输函数——RC 低通电路 如图1所示为单极点系统——RC 低通电路,其中阻值为1k,电容为1p,传输函数为:计算极点p0=1/(2πRC)= ______Hz,通过仿真获得频响结果并记录: (1) -3db 带宽点,即截止频率点的相位为__-44.6605__ (2) 频率趋向无限大时的相位为_____ (3) 在-20db、-40db、-60db、-80db时的频率值分别为多少 1.5890G 16.001G 160.686G 图1 RC低通电路仿真图例 2)。单极点单零点系统——CR 高通电路 如图2所示为单零点系统——CR 高通电路,其中阻值为1k,电容为1p,传输函数为:H(s)=RCs/(1+RCs),计算单极点p0=1/(2πRC)= ______Hz,单零点为Z0=______通过仿

真获得频响结果并记录: (1) -3db 带宽点,即截止频率点的相位为_____ (2) 频率从0趋向无限大时,相位变化为_____ (3) 在-20db、-40db、-60db、-80db时的频率值分别为多少 图2 CR高通电路仿真图例 3)。两阶RC 系统 如图3所示为两阶RC系统,相当于一个两级放大器的电容电阻负载图,通过AC仿真获得该电路的频响曲线并记录。 图3 两阶RC系统仿真图例 2.单级运放零极点分析 如图4,所示,电路参数为 VDD=5V(vdc) Vin:dc=1.5V,ac magnitude=1V(vsin) M0: w/l=20u/1u(nmos4) Rd=10K(res) Rs=100K(res) Cc=1pF(cap) CL=2pF(cap) 其中,mos管选用CSMC05MS库的nmos4,其他器件都在analogLib中。

相关文档
相关文档 最新文档