文档库 最新最全的文档下载
当前位置:文档库 › 硕士研究生课程考试试题矩阵论答案

硕士研究生课程考试试题矩阵论答案

硕士研究生课程考试试题矩阵论答案
硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷)

2013~2014学年第一学期

课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页

特别注意:所有答案必须写在答题册上,答在试题纸上一律无效

一、判断题(每小题2分,共10分) 1. 方阵

A 的任意一个特征值的代数重数不大于它的几何重数。

见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n

2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基

3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。

4. n 阶λ-矩阵()A λ是可逆的充分必要条件是

()A λ的秩是n .

见书60页,需要要求矩阵的行列式是一个非零的数

5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根.

二、填空题(每小题3分,共27分)

(6)210021,003A ??

?= ?

???则A e 的Jordan 标准型为223e 1

00e 0

,00

e ?? ?

? ??

?。 首先写出A

e 然后对于若当标准型要求非对角元部分为1.

(7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ??

?- ?

?-+??

见书61-63页,将矩阵做变换即得

(8)设1000.10.30.200.40.5A ?? ?= ? ?-??,则100lim 000000n n A →+∞??

?= ? ???

。 见书109页,可将A 对角化再计算即得。

(9)2345??

?-?? 在基11120000,,,00001321????????

? ? ? ?-????????

下的坐标为(1,1,2,1)T 。 见书12页,自然基下坐标为(2,3,4,-5)T ,再写出过渡矩阵A,坐标即A 的逆乘以自然基

下坐标。对于本题来说。由于第一行实际上只和前两个基有关,第二行只和后两个基有关。因此不用那么麻烦,只需要计算(1,1)x+(1,2)y=(2,3)就可得解为1,1.再解(1,-3)x+(2,1)y=(4,-5)就可以得解为2,1.整理一下即得坐标。

(10)设423243537A -?? ?= ? ?--??

,则A ∞= 15。 见书100页,计算每行的绝对值的和。

(11)20211123x x x

x x e x x →-?? ?+-

? ?+??

sin cos ln()

lim sin =20

03??

???。 对矩阵中的每个元素求极限。

(12)设,,m n p q m q A R B R C R ???∈∈∈是已知矩阵,则矩阵方程AXB C =的极小范数最小二乘解

是+

()T X A B C =?u u r u r

见书113-115页,将矩阵方程拉直,再用广义逆的定义去算。 (13)若n 阶方阵A 满足30A =,则cos A = 2

12

E A - 。 见书121页,30A =,所以后面的项都为零。

(14)方阵A 的特征多项式是33(2)(3)(5)λλλ---,最小多项式是2(2)(3)(5)λλλ---,则A 的Jordan 标准形是3((2,1),(2,2),3,5)diag J J E 。

特征多项式决定了A 的阶数以及各个特征值的重根数,即有3个2,3个3,1个5.最小多项式决定了若当块的大小,如2有1个1阶和1个2阶,3和5都只有1阶的若当块。

三(7分)、设1213200102171,012225018202140A B C -??????

? ? ?=-== ? ? ? ? ? ?-??????

, 证明AX XB C +=有唯一解。

见书114页,本题需要验证A 和-B 没有相同的特征值,具体解法如下。 证明: 33+T A E E B ??非奇异。

显然, B - 的特征值为2,1,2--,下证明:2,1,2--不是A 的特征值:

(1) 方法1:用圆盘定理。A 的三个行圆盘分别是(12,4),(7,2),(8,1)B B B - , 2,1,2--都不在

(12,4)(7,2)(8,1)B B B ??-中,因此A 与B -没有相同的特征值,从而0不是

33+T A E E B ??的特征值,故33+T A E E B ??可逆,从而AX XB C +=有唯一解。

(2) 方法2:求出A 的特征多项式,再证明2,1,2--不是A 的特征值。 方法3:直接写出33+T A E E B ??,再证明它非奇异。

四(8分)、设3维内积空间在基123,,ααα下的矩阵211150103A -??

?= ?

?-??

。求123{++}span ααα 的正交补空间。

见书28页,内积空间在基下的矩阵是指度量矩阵。按照内积定义给出正交补空间中元素应该满足的条件。然后求解。

解:设112233123=++({++})x x x span βαααααα⊥∈,则123(,,)T x x x 满足方程

123(,,)(1,1,1)0T x x x A =

1232+6+2=0x x x

它的基础解系为12=(-3,1,0),=(0,1,3)T T ξξ-,因此

1231223({++})={3+,3}span span ααααααα⊥--

五(10分)、设5阶实对称矩阵A 满足23(3)(5)0A E A E -+=,(3)1rank A E -=,求A 的

谱半径和Frobenius 范数F

A

注意A 满足的方程说明那个式子是零化多项式,并不是最小多项式,也不是特征多项式。只说明A 的特征根为3和-5,再根据后面的条件才知道有4个3和1个-5.然后根据范数定义得到结果。

解:因为实对称矩阵

A 是

5阶矩阵,且满足23(3)(5)0A E A E -+=,(3)1rank A E -=,

因此存在正交矩阵P ,使得

(3,3,3,3,5)T P AP diag =-

由于正交变换不改变矩阵的Frobenius 范数,因此

(3,3,3,3,5)

F

F

A

diag =-==六(10分)、求+

502145513305127?? ?

- ? ?--??

见书184页,首先对矩阵满秩分解,再按广义逆的计算公式计算得到结果。

七(14分)、3()P t 的线性变换

2323012302132031()()()()()T a a t a t a t a a a a t a a t a a t +++=-+-+-+- (1)求()()R T N T ,的基。

(2)求T 的一个三维不变子空间。

见书34-37页,要求相空间及零空间的基即对线性变换在自然基下的矩阵做初等行变换。然后观察可得。 解:(1)求T 在下的矩阵。

解:基2

3

1,,,t t t ,因为

2

3

2

2

3

3

(1)1,(),()1,()1T t T t t t T t t T t t =-=-=-+=-+

所以T 在基231,,,t t t 下的矩阵1010010110100101A -??

?-

?= ?- ?-??

。 1010101001010

101~1010000001010

000A --???? ? ?--

? ?= ? ?

- ? ?

-????

因此231,t t t --是()R T 的基,231+,+t t t 是()N T 的基。

(2)取232{1,1+}U span t t t t =--,

,易见2321,1+t t t t --, 线性无关,因此232{1,1+}U span t t t t =--,是三维的,且()=()T U R T U ? ,因此U 是T 的一个三维不变子空间。

八(14分)、已知321141123A ?? ?= ?

???

, 本题为三阶矩阵,因此首先计算A 的特征多项式,发现特征根为2和6,然后判断最小多项式,

即可得到若当标准型。见书72-75页。求ln A的方法见书127页。或者126页,或者123页。(1)求A的Jordan标准型。

(2)求ln A .

解:

6

2

2

A

J

??

?

= ?

?

??

12

()(6)(2)

f A f A f A

=+

12

11

(2),(6)

44

A A E A A E

=-=--

ln6ln2

ln(2)(6)

44

A A E A E

=---

矩阵论解题步骤-期末考试题

1. 广义逆(必考类型) 假设s x n 矩阵A 的广义逆为G ,且A 可以满秩分解为A = BC ,A 的秩r(A) = r ,则B 为s x r 矩阵,C 为r x n 矩阵。则G 可表示为: H 1 1 C (CC )(B B)B H H H G --= 例题: 步骤:显然,A 要分解为BC ,必须知道A 的秩,故先对A 进行行化简成最简式 ,r(A)=2,故A 满秩分解为A=(3x2) (2x4)=BC.根据A 的最简式来决定B 和C ,B 由A 最简式中只有1的原列组成,C 由A 的最简式的非零首元行组成。 B = , C = ,H 11C (CC )(B B)B H H H A --+=,通过计算即可 得到A 的广义逆。(若B 、C 中有单位矩阵,那么A 的广义逆表达式可去掉矩阵) 性质: 2. 证明r(ABC)r(B)r(AB)+r(BC)+>=

比较重要的性质 (1) ABX=0与BX=0同解 r(AB)=r(B) (2) r(A)=r(H A A ) (3) r(A+B)<=r(A)+r(B) (4) r(AB)<=min[r(A),r(B)] (5) r(AB)>=r(A)+r(B)-n ,其中A=s x n ,B=n x t 步骤: 设r(B)=r ,B 的满秩分解为B=HK ,所以ABC=AHKC , r(ABC)=r(AHKC)>=r(AH)+r(KC)-r (性质(5)) AB=AHK ,故r(AB)<=r(AH),同理得r(BC)<=r(KC),(性质(4)) 从而r(ABC)>=r(AB)+r(BC)-r(B),原式得证 知识点: A . 秩为r 的s x n 矩阵A 必可分解为A=BC ,其中B=s x r ,C=r x n 。该分解称为A 的 满秩分解。 3. nxn 2n n 2V {X |AX ,X C }n X ==∈,证明:12=V n C V ⊕ 证明包含两部分,1)证明12V V ⊕是直和 等价于 证明1 2V {0}V = 2)证明12V n C V ?⊕,12V n C V ?⊕ 步骤:

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

矩阵论课程教学大纲

《矩阵论》课程教学大纲 一、课程基本信息 课程编号: xxxxx 课程中文名称:矩阵论 课程英文名称:Matrix Theory 课程性质:学位课 考核方式:考试 开课专业:工科各专业 开课学期:1 总学时:36学时 总学分: 2学分 二、课程目的和任务 矩阵论是线性代数的后继课程。在线性代数的基础上,进一步介绍线性空间与线性变换、欧氏空间与酉空间以及在此空间上的线性变换,深刻地揭示有限维空间上的线性变换的本质与思想。为了拓展高等数学的分析领域,通过引入向量范数和矩阵范数在有限维空间上构建了矩阵分析理论。 从应用的角度,矩阵代数是数值分析的重要基础,矩阵分析是研究线性动力系统的重要工具。为了矩阵理论的实用性,对于矩阵代数与分析的计算问题,利用Matlab计算软件实现快捷的计算分析。 三、教学基本要求(含素质教育与创新能力培养的要求) 通过本课程的学习,使学生在已掌握本科阶段线性代数知识的基础上,进一步深化和提高矩阵理论的相关知识。并着重培养学生将所学的理论知识应用于本专业的实际问题和解决实际问题的能力。 本课程还要求学生从理论上掌握矩阵的相关理论,会证明简单的一些命题和结论,从而培养逻辑思维能力。要求掌握一些有关矩阵计算的方法,如各种标准型、矩阵函数等,为今后在相关专业中实际应用打好基础。 四、教学内容与学时分配 (一) 线性空间与线性变换 8学时 1. 理解线性空间的概念,掌握基变换与坐标变换的公式;

2. 掌握子空间与维数定理,了解线性空间同构的含义; 3. 理解线性变换的概念,掌握线性变换的矩阵表示。 (二) 内积空间 6学时 1. 理解内积空间的概念,掌握正交基及子空间的正交关系; 2. 了解内积空间的同构的含义,掌握判断正交变换的方法; 3. 理解酉空间的概念,会判定一个空间是否为酉空间 4. 掌握酉空间与实内积空间的异同; 5. 掌握正规矩阵的概念及判定定理和性质。 (三) 矩阵的对角化与若当标准形 6学时 1. 掌握矩阵相似对角化的判别方法; 2. 理解埃尔米特二次型的含义; 3. 会求史密斯标准形; 4. 会求若当标准型。 (四) 矩阵分解4学时 1. 会求矩阵的三角分解和UR分解; 2. 会求矩阵的满秩分解和单纯矩阵的谱分解; 3. 了解矩阵的奇异值和极分解。 (五) 向量与矩阵的重要数字特征4学时 1. 理解向量范数、矩阵范数; 2. 有限维线性空间上向量范数的等价性; 3. 向量范数与矩阵范数的相容性。 (六) 矩阵分析 4学时 1. 理解向量和矩阵的极限的概念; 2. 掌握矩阵幂级数收敛的判定方法; 3. 理解矩阵的克罗内克积; 4. 会求矩阵的微分与积分。 (七) 矩阵函数 4学时 1. 理解矩阵多项式的概念; 2. 掌握由解析函数确定的矩阵函数; 3. 掌握矩阵函数的计算方法。 五、教学方法及手段(含现代化教学手段) 本课程的所有授课内容,均使用多媒体教学方式,教案采用PowerPoint编写,教师使

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

矩阵论课程论文

西安理工大学 研究生课程论文报告 课程名称:矩阵论 课程代号: 任课教师: 论文报告题目:矩阵函数在线性定常系统 状态转移矩阵求解中的应用完成日期:2015 年10 月25 日学科:电力电子与电力传动 学号: 姓名: 成绩:

矩阵函数在线性定常系统状态转移矩阵 求解中的应用 摘 要 控制系统的运动是系统性能定量分析的重要内容。“运动”是物理学上的一个概念,它是通过求系统方程的解)(t x 、)(t y 来分析研究的。由于状态方程是矩阵微分(差分)方程,输出方程式为矩阵代数方程,因此求系统方程的解主要是求状态方程的解。而求状态方程的解的关键是求状态转移矩阵。本文主要介绍了矩阵对角化标准型,约当标准型,凯莱-哈密顿定理及矩阵函数知识在线性定常系统的齐次状态方程的状态转移矩阵求解中的应用。 关键词:状态转移矩阵,约当标准型,凯莱-哈密顿定理,矩阵函数. 1.问题提出 线性系统有线性定常系统和线性时变系统,最为基本的是线性定常系统。而线性定常系统根据有无初始输入,分为线性定常齐次方程,和线性定常非齐次方程。本文只给出线性定常系统的齐次状态方程的状态转移矩阵的求解。 线性定常系统齐次方程的解亦即系统的自由解,是指系统输入为零时,由初始状态引起的自由运动。 线性定常系统齐次状态方程为 ()()t Ax t x = ()1-1 其中,x 是n 维状态向量;A 为n n ?系数矩阵。设初始时刻00=t ,系统的初始状态()()00x t x =。仿照标量微分方程求解的方法求方程()1-1的解。 设方程()1-1的解为t 的向量幂级数形式,即 )(t x = ++++++k k t b t b t b t b b 332210 ()2-1 式中,() ,2,1,0=i b i 为n 维向量。 式()2-1代入方程()1-1得 () +++++=+++++-k k k k t b t b t b b b A t kb t b t b b 3322101232132 ()3-1 既然式()2-1是方程()1-1的解,则式()3-1对任意的t 都成立。因此,式()3-1的等式两边t 的同次幂项的系数应相等,有

矩阵理论2017-2018学年期末考试试题

矩阵理论2017-2018学年期末考试试题 ?、选择题 (每题5分,共25分) 1.下列命题错误的是(A)(B)若,且,则(C)设且,令,则的谱半径为1 (D)设为空间的任意?空间,则2.下列命题错误的是(A)若,则(B)若,则(C)若,则(D)设的奇异值分别为,,如果,则3.下列说法正确的是(A)若,则(B)若为收敛矩阵,则?定可逆 (C)矩阵函数对任何矩阵均有定义,?论A 为实矩阵还是复矩阵 (D)对任意?阵,均有4.下列选项中正确的是(A)且,则为收敛矩阵; (B)为正规矩阵,则(C),则(D)为的所有正奇异值,5.下列结论错误的是(A)若和分别是列满秩和?满秩矩阵,则(B)若矩阵为?满秩矩阵,则是正定矩阵(C)设为严格对?占优矩阵,,则的谱半径(D)任何可相似对?化的矩阵,皆可分解为幂等矩阵的加权和,即?、判断题(15分)(正确的打√,错误的打×) 1.若,且,,则 2.若且,则为到的值域上的正交投影 3.设都是可逆矩阵,且齐次线性?程组有?零解,为算?范数,则 4.,定义,则是上的范数 5.设矩阵的最?秩分解为,则当且仅当 ( ) (A ?B =?)H A H B H A ∈C n ×n =A A 2rank (A )=tr (A )μ∈C n μ=1μH H =E ?2μμH H ,V 1V 2V dim (+)=dim ()+dim () V 1V 2V 1V 2( ) =A ,=A A H A 2=A A +A =A A H A H (=(A m )+A +)m x ∈C n ∥x ≤∥x ≤∥x ∥∞∥2∥1 A , B ∈ C n ×n ≥≥?≥>0σ1σ2σn ≥≥?≥>0σ′1σ′2σ′ n >(i =1,2,?,n )σi σ′i ∥>∥A +∥2B +∥2 ( )A =????π000π001π????sinA =????0000000sin 10?? ??A E ?A e A A A ,B =e A e B e A +B ( )A ∈C n ×n ∥A <1∥m A A ∈C n ×n r (A )=∥A ∥2A ∈(r >0)C m ×n r ∥A =A +∥F r √≥≥?≥σ1σ2σr A ∥=A +∥21σ1 ( ) A B (AB =)+ B +A + A A A H Hermite A =()∈(n >1)a ij C n ×n D =diag (,,?,)a 11a 22a nn E ?A D ?1r (E ?A )≥1 D ?1(i =1,2,?,n )A i A =∑n i =1λi A i A ∈C m ×n A ≠0(A =A A ?)H A ?∥A =n A ?∥2 ( ) A ∈,G ∈C m ×n C n ×m AGA =A y =AGx ,?x ∈C m C m A ( ) A , B ∈ C n ×n (A +B )x =0∥?∥∥A ∥≥1B ?1 ( )?(x ,y )∈R 2f (x ,y )=2+3?4xy x 2y 2 ̄  ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄√f (x ,y )R 2 ( )A A =BD Ax =0Dx =0 ( )

南航矩阵论2013研究生试卷及答案

南京航空航天大学2012级硕士研究生

二、(20分)设三阶矩阵,,. ????? ??--=201034011A ????? ??=300130013B ???? ? ??=3003003a a C (1) 求的行列式因子、不变因子、初等因子及Jordan 标准形; A (2) 利用矩阵的知识,判断矩阵和是否相似,并说明理由. λB C 解答: (1)的行列式因子为;…(3分)A 2121)1)(2()(,1)()(--===λλλλλD D D 不变因子为; …………………(3分)2121)1)(2()(,1)()(--===λλλλλd d d 初等因子为;……………………(2分) 2)1(,2--λλJordan 标准形为. ……………………(2分) 200011001J ?? ?= ? ??? (2) 不相似,理由是2阶行列式因子不同; …………………(5分) 0,a = 相似,理由是各阶行列式因子相同. …………………(5分) 0,a ≠共 6 页 第 4 页

三、(20分)已知线性方程组不相容. ?? ???=+=+++=++1,12,1434321421x x x x x x x x x (1) 求系数矩阵的满秩分解; A (2) 求广义逆矩阵; +A (3) 求该线性方程组的极小最小二乘解. 解答:(1) 矩阵,的满秩分解为 ???? ? ??=110021111011A A . …………………(5分)10110111001101A ??????=?????????? (2) . ……………………(10分)51-451-41-52715033A +?? ? ?= ? ??? (3) 方程组的极小最小二乘解为. …………(5分)2214156x ?? ? ?= ? ??? 共 6 页 第 5 页

#研究生矩阵论第1讲 线性空间

矩阵论 1、意义 随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容 《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异: 线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容. 矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富. 3、方法 在研究的方法上,矩阵论和线性代数也有很大的不同: 线性代数:引入概念直观,着重计算. 矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将

来正确处理实际问题有很大的作用. 第1讲 线性空间 内容: 1.线性空间的概念; 2.基变换和坐标变换; 3.子空间和维数定理; 4.线性空间的同构 线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象. §1 线性空间的概念 1. 群,环,域 代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数. 代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算. 代数系统:指一个集A 满足某些代数运算的系统. 1.1群 定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群. 1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα; 2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;

南航矩阵论期中考试参考答案.doc

1) 一组基为q = .维数为3. 3) 南京航空航天大学双语矩阵论期中考试参考答案(有些答案可能有问题) Q1 1解矩阵A 的特征多项式为 A-2 3 -4 4I-A| =-4 2+6 -8 =A 2(/l-4) -6 7 A-8 所以矩阵A 的特征值为4 =0(二重)和/^=4. 人?2 3 由于(4-2,3)=1,所以D| (人)二1.又 彳 人+6=“2+4人=?(人) 4-2 3 、=7人+4=代(人)故(们3),代3))=1 ?其余的二阶子式(还有7个)都包含因子4, -6 7 所以 D? 3)=1 .最后 det (A (/L))=42(人.4),所以 D 3(A)=/l 2 (2-4). 因此矩阵A 的不变因子为d, (2) = d 2(2) = l, d 3 (2) = r (2-4). 矩阵A 的初等因子为人2, 2-4. 2解矩阵B 与矩阵C 是相似的.矩阵B 和矩阵C 的行列式因子相同且分别为9 3)=1 , D 2(/i)=A 2-/l-2 .根据定理:两矩阵相似的充分必要条件是他们有相同的行列式因子. 所以矩阵B 与矩阵c 相似. Q2 2)设k 是数域p 中任意数,a, 0, /是v 中任意元素.明显满足下而四项. (") = (",a) ; (a+月,/) = (",/) + (”,刃;(ka,/3) = k(a,/3) ; (a,a)>0, 当且仅当Q = 0时(a,a) = ().所以(。,/?)是线性空间V 上的内积. 利 用Gram-Schmidt 正交化方法,可以依次求出 ,p 2 =%-(%'5)与= 层=%-(%,弟与一(%,弓)役=

南航双语矩阵论 matrix theory第三章部分题解

Solution Key to Some Exercises in Chapter 3 #5. Determine the kernel and range of each of the following linear transformations on 2P (a) (())'()p x xp x σ= (b) (())()'()p x p x p x σ=- (c) (())(0)(1)p x p x p σ=+ Solution (a) Let ()p x ax b =+. (())p x ax σ=. (())0p x σ= if and only if 0ax = if and only if 0a =. Thus, ker(){|}b b R σ=∈ The range of σis 2()P σ={|}ax a R ∈ (b) Let ()p x ax b =+. (())p x ax b a σ=+-. (())0p x σ= if and only if 0ax b a +-= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P ax b a a b R +-∈= (c) Let ()p x ax b =+. (())p x bx a b σ=++. (())0p x σ= if and only if 0bx a b ++= if and only if 0a =and 0b =. Thus, ker(){0}σ= The range of σis 2()P σ=2{|,}P bx a b a b R ++∈= 备注: 映射的核以及映射的像都是集合,应该以集合的记号来表达或者用文字来叙述. #7. Let be the linear mapping that maps 2P into 2R defined by 10()(())(0)p x dx p x p σ?? ?= ??? ? Find a matrix A such that ()x A ασαββ??+= ??? . Solution 1(1)1σ??= ??? 1/2()0x σ?? = ??? 11/211/2()101 0x ασαβαββ????????+=+= ? ? ??????????? Hence, 11/210A ??= ??? #10. Let σ be the transformation on 3P defined by (())'()"()p x xp x p x σ=+ a) Find the matrix A representing σ with respect to 2[1,,]x x b) Find the matrix B representing σ with respect to 2[1,,1]x x + c) Find the matrix S such that 1B S AS -= d) If 2012()(1)p x a a x a x =+++, calculate (())n p x σ. Solution (a) (1)0σ=

研究生矩阵论试题与答案

中国矿业大学 级硕士研究生课程考试试卷 考试科目矩阵论 考试时间年月 研究生姓名 所在院系 学号 任课教师

一(15分)计算 (1) 已知A 可逆,求 10 d At e t ? (用矩阵A 或其逆矩阵表示) ; (2)设1234(,,,)T a a a a =α是给定的常向量,42)(?=ij x X 是矩阵变量,求T d()d X αX ; (3)设3阶方阵A 的特征多项式为2(6)I A λλλ-=-,且A 可对角化,求k k A A ??? ? ??∞→)(lim ρ。

二(15分)设微分方程组 d d (0)x Ax t x x ?=???? ?=?,508316203A ?? ?= ? ?--??,0111x ?? ? = ? ??? (1)求A 的最小多项式)(λA m ; (3)求At e ; (3)求该方程组的解。

三(15分)对下面矛盾方程组b Ax = 312312 111x x x x x x =?? ++=??+=? (1)求A 的满秩分解FG A =; (2)由满秩分解计算+A ; (3)求该方程组的最小2-范数最小二乘解LS x 。

四(10分)设 11 13A ?=?? 求矩阵A 的QR 分解(要求R 的对角元全为正数,方法不限)。 五(10分) 设(0,,2)T n A R n αβαβ=≠∈≥ (1)证明A 的最小多项式是2 ()tr()m A λλλ=-; (2)求A 的Jordan 形(需要讨论)。

六(10分)设m n r A R ?∈, (1)证明rank()n I A A n r + -=-; (2)0Ax =的通解是(),n n x I A A y y R +=-?∈。 七(10分)证明矩阵 21212123 111222222243333 33644421(1)(1)n n n n n n n n n n ---? ? ? ? ? ? ?= ? ? ? ? ? ?+++? ? A (1)能与对角矩阵相似;(2)特征值全为实数。

《矩阵论》教学大纲

《矩阵论》教学大纲 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

《矩阵论》课程教学大纲 一、课程性质与目标 (一)课程性质 《矩阵论》是数学专业的选修课,是学习经典数学的基础,又是一门最具有实用价值的数学理论。它不仅是数学的一个重要的分支,而且业已成为现代各科技领域处理大量有限维空间形式与数量关系的强有力的工具。 (二)课程目标 通过本课程的学习,使学生掌握矩阵论的基本概念,基本理论和基本运算,全面了解若干特殊矩阵的标准形及其基本性质,了解近代矩阵论中十分活跃的若干分支,为今后在应用数学,计算数学专业的进一步学习和研究打下扎实的基础。 二、课程内容与教学 (一)课程内容 1、课程内容选编的基本原则 把握理论、技能相结合的基本原则。 2、课程基本内容 本课程主要介绍了线性空间、线性映射、酉空间、欧氏空间、若当标准型、矩阵的分解、矩阵的分析、矩阵函数和广义逆矩阵等基本内容。 (二)课程教学 通过本课程中基本概念和基本定理的阐述和论证,培养高年级本科生的抽象思维与逻辑推理能力,提高高年级本科生的数学素养。 三、课程实施与评价 (一)学时、学分 本课程总学时为54学时。学生修完本课程全部内容,成绩合格,可获3学分。(二)教学基本条件 1、教师 教师应具有良好的师德和较高的专业素质与教学水平,一般应具备讲师以上职称或本专业硕士以上学位。 2、教学设备 配置与教学内容相关的图书、期刊、音像资料等。 (三)课程评价 1、对学生能力的评价 逻辑推理能力,包括逻辑思维的合理性和严密性。 2、采取教师评价为主的评价方法。 3、课程学习成绩由期末考试成绩(70%)和平时成绩(30%)构成。课程结束时评出成绩,成绩评定可分为优、良、中、及格和不及格五个等级,也可采用百分制。 四、课程基本要求 第一章线性空间和线性变换 基本内容:线性空间线性变换 基本要求: (1)理解线性空间有关内容。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

学习矩阵论心得

学习矩阵心得 矩阵,Matrix。在数学上,矩阵是指纵横排列的二维数据表格,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。 矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。 从小学开始就一直喜欢数学方面的东西,喜欢数字,喜欢计算,喜欢思考,,喜欢数学中的那种严密的逻辑性。当然数学也一直是相对之下比较强的科目,高中的时候比较偏科,语文和英语都不怎么好,每次考试就靠数学来把总分给拉上来。本来上大学的时候想选应用数学这个专业的,但是各种机缘巧合使得我跨入了机械领域,成为了一名真正的工科男。 工科当然也离不开数学,许多地方都需要数学计算,大一的时候就开始上高数和线性代数,感觉刚开始的时候都不怎么难懂,越往后学就越觉得吃力,不过只要花时间还是可以学的好,毕竟在工科领域中,始终离不开数学运算,甩不掉数据分析,因此学习数学也是必不可少的过程。 因为是保送的研究生,所以在复习数学方面也就不如考进来的同学,毕竟从大一到现在很久没认真复习过相关的知识,在听赵老师讲课的时候就明显感觉吃力了,好多知识都忘了。不过为了把这门课学好,基本都会在课前预习一下相关的知识,认真把课后的作业都做完,这不仅是对自己负责,也是对以后科研工作储备相应的技能知识。上课的时候好多知识还是能听懂,但是具体到做题上,就有些不会做了,所以说学习数学必须要练习做题,人们常说:“光说不练假把式。”这用到学习数学上面也完全符合,就算你把所有的理论知识都学会了,但是不能运用又有什么用呢?所以赵老师让我们把课后所有的题都做一遍还是非常好的,这样不仅巩固了知识,也让同学们好好复习了一下,更为之后的期末考试减轻了

研究生矩阵论课后习题答案(全)习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

2016北京邮电大学《矩阵分析与应用》期末试题

北京邮电大学 《矩阵分析与应用》期末考试试题(A 卷) 2015/2016学年第一学期(2016年1月17日) 注意:每题十分,按中间过程给分,只有最终结果无过程的不给分。 一、 已知22 R ?的两组基: 111000E ??=? ??? ,120100E ??=????,210010E ??=????,220001E ??=????; 11100 0F ??=? ???,121100F ??=????,211110F ??=????,221111F ??=????。 求由基1112212,,,E E E E 到11122122,,,F F F F 的过渡矩阵,并求矩阵 3542A -?? =?? ?? 在基11122122,,,F F F F 下的坐标。 二、 假定123x x x ,,是3 R 的一组基,试求由112323y x x x =-+, 2123232y x x x =++,312413y x x =+;生成的子空间()123,,L y y y 的基。 三、 求下列矩阵的Jordan 标准型 (1)1 0002 10013202 31 1A ???? ? ?=??????(2)310 0-4-1007121-7-6-10B ?? ????=?????? 四、 设()()123123,,,,,x y ξξξηηη==是3 R 的任意两个向量, 矩阵 210=120001A ?? ???????? ,定义(),T x y xAy = (1) 证明在该定义下n R 构成欧氏空间; (2) 求3 R 中由基向量()()()1231,0,0,1,1,0,1,1,1x x x ===的度量矩阵; 五、 设y 是欧氏空间V 中的单位向量,x V ∈,定义变换 2(,)Tx x y x y =- 证明:T 是正交变换。

矩阵论课程结业论文

浅谈矩阵论的发展 在《九章算术》中用矩阵形式解方程组已相当成熟,但那时仅用它作为线性方程组系数的排列形式解决实际问题,并没有建立起独立的矩阵理论。直到18 世纪末至19 世纪中叶,这种排列形式在线性方程组和行列式计算中应用日益广泛,行列式的发展提供了矩阵发展的条件。矩阵的早期发展,除了矩阵理论在内容上的发展,即从不同领域的研究中发展出来的有关矩阵的概念,以及随之引起的相似、对角化和标准型的矩阵分类以外,还有矩阵发展中更深刻的一面,即西尔维斯特、凯莱等人在行列式和矩阵理论上的发展及思想,这为代数不变量理论的创立奠定了理论基础。 一、矩阵早期发展的社会与文化背景 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个述语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。在逻辑上,矩阵的概念应先于行列式的概念,然而在历史上次序正好相反。 英国数学家凯莱(A.Cayley,1821-1895) 一般被公认为是矩阵论的创立者,因为他首先把矩阵作为一个独立的数学概念提出来,并首先发表了关于这个题目的一系列文章。凯莱同研究线性变换下的不变量相结合,首先引进矩阵以简化记号。1858 年,他发表了关于这一课题的第一篇论文《矩阵论的研究报告》,系统地阐述了关于矩阵的理论。文中他定义了矩阵的相等、矩阵的运算法则、矩阵的转置以及矩阵的逆等一系列基本概念,指出了矩阵加法的可交换性与可结合性。另外,凯莱还给出了方阵的特征方程和特征根(特征值)以及有关矩阵的一些基本结果。凯莱出生于一个古老而有才能的英国家庭,剑桥大学三一学院大学毕业后留校讲授数学,三年后他转从律师职业,工作卓有成效,并利用业余时间研究数学,发表了大量的数学论文。 1855 年,埃米特(C.Hermite,1822-1901) 证明了别的数学家发现的一些矩阵类的特征根的特殊性质,如现在称为埃米特矩阵的特征根性质等。后来,克莱伯施(A.Clebsch,1831-1872) 、布克海姆(A.Buchheim) 等证明了对称矩阵的特征根性质。泰伯(H.Taber) 引入矩阵的迹的概念并给出了一些有关的结论。 在矩阵论的发展史上,弗罗伯纽斯(G.Frobenius,1849-1917) 的贡献是不可磨灭的。他讨论了最小多项式问题,引进了矩阵的秩、不变因子和初等因子、正交矩阵、矩阵的相似变换、合同矩阵等概念,以合乎逻辑的形式整理了不变因子和初等因子的理论,并讨论了正交矩阵与合同矩阵的一些重要性质。1854 年,约当研究了矩阵化为标准型的问题。1892 年,梅茨勒(H.Metzler) 引进了矩阵的超越函数概念并将其写成矩阵的幂级数的形式。傅立叶、西尔和庞加莱的著作中还讨论了无限阶矩阵问题,这主要是适用方程发展的需要而开始的。 矩阵本身所具有的性质依赖于元素的性质,矩阵由最初作为一种工具经过两个多世纪的发展,现在已成为独立的一门数学分支——矩阵论。而矩阵论又可分为矩阵方程论、矩阵分解论和广义逆矩阵论等矩阵的现代理论。矩阵及其理论现已广泛地应用于现代科技的各个领域。 二18世纪末19世纪初高斯和艾森斯坦等人的矩阵思想 2.1 二次理论研究中孕育的矩阵思想 从18 世纪末到19 世纪初,数学家们对矩阵的阵列形式是用二次型的形式来表示的,对矩阵理论的发展及思想的形成是渗透在二次型理论中的。1773 年[1]64,拉格朗日将齐次多项式

南京航空航天大学研究生课程《矩阵论》内容总结与习题选讲

《矩阵论》复习提纲与习题选讲 Chapter1 线性空间和内积空间 内容总结: z 线性空间的定义、基和维数; z 一个向量在一组基下的坐标; z 线性子空间的定义与判断; z 子空间的交 z 内积的定义; z 内积空间的定义; z 向量的长度、距离和正交的概念; z Gram-Schmidt 标准正交化过程; z 标准正交基。 习题选讲: 1、设表示实数域3]x [R R 上次数小于3的多项式再添上零多项式构成 的线性空间(按通常多项式的加法和数与多项式的乘法)。 (1) 求的维数;并写出的一组基;求在所取基下 的坐标; 3]x [R 3]x [R 221x x ++ (2) 在中定义 3]x [R , ∫?=1 1)()(),(dx x g x f g f n x R x g x f ][)(),(∈ 证明:上述代数运算是内积;求出的一组标准正交基; 3][x R (3)求与之间的距离; 221x x ++2x 2x 1+?(4)证明:是的子空间; 2][x R 3]x [R (5)写出2[][]3R x R x ∩的维数和一组基;

二、 设22R ×是实数域R 上全体22×实矩阵构成的线性空间(按通常矩阵的加 法和数与矩阵的乘法)。 (1) 求22R ×的维数,并写出其一组基; (2) 在(1)所取基下的坐标; ?? ??????3111(3) 设W 是实数域R 上全体22×实对称矩阵构成的线性空间(按通常矩阵 的加法和数与矩阵的乘法)。 证明:W 是22R ×的子空间;并写出W 的维数和一组基; (4) 在W 中定义内积 , )A B (tr )B ,A (T =W B ,A ∈ 求出W 的一组标准正交基; (5)求与之间的距离; ??????0331?? ?????1221 (6)设V 是实数域R 上全体22×实上三角矩阵构成的线性空间(按通常矩 阵的加法和数与矩阵的乘法)。 证明:V 也是22R ×的子空间;并写出V 的维数和一组基; (7)写出子空间的一组基和维数。 V W ∩

相关文档
相关文档 最新文档