文档库 最新最全的文档下载
当前位置:文档库 › 机器人路径规划方法的研究

机器人路径规划方法的研究

机器人路径规划方法的研究
机器人路径规划方法的研究

第5期(总第156期)

2009年10月机械工程与自动化

M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15

O ct 1

文章编号:167226413(2009)0520194203

机器人路径规划方法的研究

李爱萍,李元宗

(太原理工大学机械工程学院,山西 太原 030024)

摘要:路径规划技术是机器人学研究领域中的一个重要部分。目前的研究主要分为全局规划方法和局部规划方法两大类。通过对机器人路径规划方法研究现状的分析,指出了各种方法的优点及不足,并对其发展方向进行了展望。

关键词:机器人;全局规划;局部规划中图分类号:T P 242 文献标识码:A

收稿日期:2009201207;修回日期:2009204218

作者简介:李爱萍(19792),女,山西晋中人,在读硕士研究生。

0 引言

路径规划技术是机器人学研究领域中的一个重要

部分。机器人的最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的最优路径。根据对环境信息的掌握程度不同,路径规划可分为:①全局路径规划:环境信息完全已知,根据环境地图按照一定的算法搜寻一条最优或者近似最优的无碰撞路径,规划路径的精确程度取决于获取环境信息的准确程度;②局部路径规划:环境信息完全未知或部分未知,根据传感器的信息来不断地更新其内部的环境信息,从而确定出机器人在地图中的当前位置及周围局部范围内的障碍物分布情况,并在此基础上,规划出一条从当前点到某一子目标点的最优路径。

1 全局规划方法111 栅格法

栅格法是目前研究最广泛的路径规划方法之一。该方法将机器人的工作空间分解为多个简单的区域(栅格),由这些栅格构成一个显式的连通图,或在搜索过程中形成隐式的连通图,然后在图上搜索一条从起始栅格到目标栅格的路径。一般路径只需用栅格的序号表示。但栅格的划分直接影响其规划结果,如果栅格划分过大,环境信息储藏量小,分辨率下降,规划能力就差;栅格划分过小,规划时间长,而且对信息存储能力的要求会急剧增加。112 可视图法

可视图法中的路径图由捕捉到的存在于机器人一

维网络曲线(称为路径图)自由空间中的节点组成。路径的初始状态和目标状态同路径图中的点相对应,这样路径规划问题就演变为在这些点间搜索路径的问题。要求机器人和障碍物各顶点之间、目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,即直线是“可视的”。然后采用某种方法搜索从起始点到目标点的最优路径,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。该法能够求得最短路径,但需假设忽略机器人的尺寸大小,使得机器人通过障碍物顶点时离障碍物太近甚至接触,并且搜索时间长。113 拓扑法

拓扑法将规划空间分割成具有拓扑特征的子空间,根据彼此的连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,最终由拓扑路径求出几何路径。拓扑法的基本思想是降维法,即将在高维几何空间中求路径的问题转化为低维拓扑空间中判别连通性的问题。其优点在于利用拓扑特征大大缩小了搜索空间,其算法的复杂性仅依赖于障碍物数目,在理论上是完备的;而且拓扑法通常不需要机器人的准确位置,对于位置误差也就有了更好的鲁棒性。缺点是建立拓扑网络的过程相当复杂,特别是在增加障碍物时如何有效地修正已经存在的拓扑网是有待解决的问题。

114 自由空间法

自由空间法采用预先定义的广义锥形或凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构

造方法是:从障碍物的一个顶点开始,依次作其他顶点的连接线,删除不必要的连接线,使得连接线与障碍物边界所围成的每一个自由空间都是面积最大的凸多边形,连接各连接线的中点形成的网络图即为机器人可自由运动的路线。其优点是比较灵活,起始点和目标点的改变不会造成连通图的重构。缺点是复杂程度与障碍物的多少成正比,且有时无法获得最短路径。115 神经网络法

人工神经网络是由大量神经元相互连接而形成的自适应非线性动态系统。对于大范围的工作环境,在满足精度要求的情况下,用神经网络来表示环境可以取得较好的效果。神经网络在全局路径规划的应用,将障碍约束转化为一个惩罚函数,从而使一个约束优化问题转化为一个无约束最优化问题,然后以神经网络来描述碰撞惩罚函数,进行全局路径规划。虽然神经网络在路径规划中有学习能力强等优点,但整体应用却不是非常成功,主要原因是智能机器人所遇到的环境是千变万化的、随机的,并且很难以数学的公式来描述。

2 局部路径规划

211 人工势场法

人工势场法是由Khatib提出的一种虚拟方法,其基本思想是将机器人在未知环境中的运动视为一种虚拟人工受力场中的运动,目标点对机器人产生引力,障碍物对机器人产生斥力,最后通过求合力来控制机器人的运动。该法结构简单,便于底层的实时控制,在实时避障和平滑的轨迹控制方面,得到了广泛应用;其不足在于存在局部最优解,因而可能使机器人在到达目标点之前就停留在局部最优点。

212 模糊逻辑控制算法

模糊逻辑方法利用反射式机制,将当前环境中的障碍物信息作为模糊推理机的输入,推理机输出机器人期望的转向角和速度等。该方法在环境未知或发生变化的情况下,能够快速而准确地规划机器人的局部路径,对于要求有较少路径规划时间的机器人是一种很好的规划方法。但是,当障碍物数目增加时,该方法的计算量很大,影响规划结果,而且其只利用局部信息做出快速反应,较容易陷入局部最优。

213 遗传算法

遗传算法是一种借鉴生物界自然选择和进化机制发展起来的高度并行、随机、自适应搜索算法。它采用群体搜索技术,通过选择、交叉和变异等一系列遗传操作,使种群得以进化,避免了困难的理论推导,直接获得问题的最优解。其基本思想是:将路径个体表达为路径中一系列中途点,并转换为二进制串,首先初始化路径群体,然后进行遗传操作,如选择、交叉、复制、变异,经过若干代进化以后,停止进化,输出当前最优个体。遗传算法存在运算时间长、路径在线规划困难、进化效果不明显等问题。

214 蚁群优化算法

根据蚁群移动过程中途经各点周围的距离启发式信息概率,产生多条从起点到终点的可行移动路径,每一条路径代表了一只蚂蚁的爬行轨迹。对所产生的每一条可行移动路径,分别计算路径的长度和对应信息素的增量,再采用设计的信息素轨迹更新函数对路径上各点所对应的信息素进行更新,将蚂蚁所走的弯曲路径逐渐拉直为一条由直线段连接的可行路径,并将此可行路径与记录的目前最短路径进行比较。如果路径长度更小,则用该路径替换最短路径,并对路径上的各点信息素采用设计的信息素轨迹更新函数进行更新,综合使用当前点周围的距离启发式信息概率和给予信息素轨迹的转移概率产生下一条由起点到终点的可行路径,往复循环。如果当前时刻已达到预先设定的终止时刻,则将当前路径作为最短路径输出。

215 粒子群算法

粒子群优化算法是一种进化计算技术,由Eberhart博士和Kennedy博士发明,源于对鸟群捕食行为的研究。在粒子群优化算法中,每个优化问题的解都是搜索空间中的一只鸟,我们称之为“粒子”。所有的粒子都有一个由被优化的函数决定的适应值,每个粒子还有一个速度决定它们飞翔的方向和距离,然后粒子们就追随当前的最优粒子在解空间中搜索。粒子群优化算法初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。第一个极值就是粒子本身所找到的最优解,这个解叫做个体极值;另一个极值是整个种群目前找到的最优解,这个极值是全局极值。另外也可以不用整个种群而只是用其中一部分作为粒子的邻居,那么在所有邻居中的极值就是局部极值。在找到这两个最优值后,粒子根据相关公式来更新自己的速度和位置。

216 滚动窗口法

基于滚动窗口的路径规划算法的基本思路是:首先进行场景预测,在滚动的每一步,机器人根据其探测到的局部窗口范围内的环境信息,用启发式方法生成局部子目标,并对动态障碍物的运动进行预测,判断机器人行进是否可能与动态障碍物相碰撞;其次机器人根据窗口内的环境信息及预测结果,选择局部规划算法,确定向子目标行进的局部路径,并依所规划的局部路径行进一步,窗口相应向前滚动;然后在新的滚动窗口产生后,根据传感器所获取的最新信息,对窗口内的环境及障碍物运动状况进行更新。该方法放弃了对全局最优目标的过于理想的要求,利用机器人实时测得的局部环境信息,以滚动方式进行在线规划,具有良好的避碰能力。但存在着规划的路径是否最优的问题,即存在局部极值问题。

?

5

9

1

?

 2009年第5期 李爱萍,等:机器人路径规划方法的研究

3 机器人路径规划的发展趋势311 性能指标上不断提高

许多路径规划方法在完全已知环境中能得到令人满意的结果,但在未知环境特别是存在各种不规则障碍的复杂环境中,由于环境信息的时刻变化,对移动机器人的实时性提出了更高的要求,所以如何快速有效地完成移动机器人在复杂环境中的导航任务仍将是今后研究的主要方向之一。

312 多移动机器人系统的路径规划

随着机器人系统应用的不断扩大,工作环境复杂度和任务的加重,对其要求不再局限于单个机器人,多移动机器人路径规划已成为新的研究热点。在动态环境中单个机器人的路径规划与多机器人的合作需要很好统一。此领域的难点在于多机器人之间的协调和避碰前进,因此,在协调多机器人更好实现实时规划方面,还有很大的研究空间。

313 多传感器信息融合用于路径规划

单传感器难以保证输入信息准确与可靠,多传感器所获得的信息具有冗余性、互补性、实时性和低代价性,且可以快速并行分析现场环境。314 更加智能化的仿生算法

智能仿生算法的应用,赋予了机器人一定的智能,但对于含有动态障碍物的复杂环境仍显得不够,特别是在有效地避免机器人陷入局部最优路径方面。如何使机器人及时地知道自己已经陷入局部最优,甚至提前预知将陷入局部最优而采取措施加以避免,需要赋予机器人更多智能。

参考文献:

[1] 李士勇.蚁群算法及其应用[M ].哈尔滨:哈尔滨工业大

学出版社,2004.

[2] 邢军,王杰.神经网络在移动机器人路径规划中的应用研

究[J ].微计算机信息,2005(22):1102111,153.

[3] 樊晓平,李双艳,陈特放.基于新人工势场函数的机器人

动态避障规划[J ].控制理论与应用,2005,22(5):7032707.

Study on Robot Path Plann i ng M ethod

L I A i -p i ng ,L IY uan -zong

(Co llege of M echanical Engineering,T aiyuan U niversity of T echno logy,T aiyuan 030024,Ch ina )

Abstract :Path p lanning techno logy is one of the mo st i m po rtant research field in robo tics ,w h ich is m ainly divided into tw o parts :O ne is global p lanning app roach ,and the o ther is local p lanning app roach .By analyzing the p resent conditi on of robo t path p lanning ,th is paper persents the advantages and disadvantages of the algo rithm s w h ich are commonly used ,and po ints out the develop ing p ro spect of robo t path p lanning .

Key words :robo t ;global p lanning ;local p lanning

(上接第193页)

(2)对于PDC 使用性能要求较高时,采用真空扩散焊不仅能保持工件的几何尺寸和形状精度,而且可获得强度高、热稳定性好、抗震性好的优良接头。PDC 真空扩散焊多应用于PDC 钻头制造。

(3)高频感应加热速度快,热效率高,易于实现生产自动化,通常应用于PDC 的批量生产中,PDC 高频感应钎焊多应用于PDC 刀具制造。

(4)PDC 激光焊接可获得高强度的接头,多应用

于金刚石圆锯片制造。

参考文献:

[1] M W Cook .W ear 2resisting p roperties and app licati on

examp les of PDC [J ].Industrial D iamond R eview ,1996

(4):1072111.

[2] 邱惠中.聚晶金刚石复合片焊接研究[J ].珠宝科技,2003

(1):13217.

[3] 姜政刚,周建新.金刚石复合片(PDC )的火焰钎焊[J ].焊

接技术,2002(6):57.

[4] 陈建民,杨宝德,吴开源.聚晶金刚石片的真空钎焊[J ].焊

接.1995(9):11213.

[5] 陈石林,彭振斌,陈启武.聚晶金刚石复合体的研究进展

[J ].矿冶工程,2004(2):85289.

[6] 陈宏.PDC 钻头真空扩散焊工艺研究[J ].科技情报开发

与经济,2005,15(16):15216.

[7] 肖冰,武志斌.金刚石与金属基体钎焊机理的研究[J ].航

空精密制造技术,2000(12):36246.

[8] 龙伟民,朱坤.金刚石锯片焊接技术的研究[J ].金刚石与

磨料磨具工程,2002(3):27231.

Study on W eld i ng Techn ique of PDC

YAO X i ao -fe i ,L I U J ie ,GE D ong -sheng

(Schoo l of M aterials Science and Engineering ,T aiyuan U niversity of Science and T echno logy ,T aiyuan 030024,Ch ina )

Abstract :Po lycrystalline D iamond Compacts (PDC )are si m ilar to diamond w ith h igh hardness and h igh w ear 2resistance ,and good

at anti 2i m pact toughness

.PDC has been w idely used in drill bits ,cutting too ls and so on .T he failure temperature of PDC is 700℃,so the temperature of PDC m ust be contro lled under 700℃during the PDC w elding .Enough shear strength betw een PDC and ho rniness alloy after w elding w ill guarantee PDC to obtain better m echanical p roperties in service .Key words :PDC ;w eld ;failure temperature ;strength of w elded j o int ;perfo r m ance

?

691? 机械工程与自动化 2009年第5期 

遗传算法与机器人路径规划

遗传算法与机器人路径规划 摘要:机器人的路径规划是机器人学的一个重要研究领域,是人工智能和机器人学的一个结合点。对于移动机器人而言,在其工作时要求按一定的规则,例如时间最优,在工作空间中寻找到一条最优的路径运动。机器人路径规划可以建模成在一定的约束条件下,机器人在工作过程中能够避开障碍物从初始位置行走到目标位置的路径优化过程。遗传算法是一种应用较多的路径规划方法,利用地图中的信息进行路径规划,实际应用中效率比较高。 关键词:路径规划;移动机器人;避障;遗传算法 Genetic Algorithm and Robot Path Planning Abstract: Robot path planning research is a very important area of robotics, it is also a combine point of artificial intelligence and robotics. For the mobile robot, it need to be worked by certain rulers(e.g time optimal),and find a best movement path in work space. Robot path planning can be modeled that in the course of robots able to avoid the obstacles from the initial position to the target location,and it ruquire to work under ertain constraints. Genetic algorithm used in path planning is very common, when planning the path ,it use the information of map ,and have high eficient in actual. Key words: Path planning,mobile robot, avoid the obstacles, genetic algorithm 1路径规划 1.1机器人路径规划分类 (1)根据机器人对环境信息掌握的程度和障碍物的不同,移动机器人的路径规划基本上可分为以下几类: 1,已知环境下的对静态障碍物的路径规划; 2,未知环境下的对静态障碍物的路径规划; 3,已知环境下对动态障碍物的路径规划; 4,未知环境下的对动态障碍物的路径规划。 (2)也可根据对环境信息掌握的程度不同将移动机器人路径规划分为两种类型: 1,基于环境先验完全信息的全局路径规划; 2,基于传感器信息的局部路径规划。 (第二种中的环境是未知或部分未知的,即障碍物的尺寸、形状和位置等信息必须通过传感器获取。) 1.2路径规划步骤 无论机器人路径规划属于哪种类别,采用何种规划算法,基本上都要遵循以下步骤: 1, 建立环境模型,即将现实世界的问题进行抽象后建立相关的模型; 2, 路径搜索方法,即寻找合乎条件的路径的算法。 1.3路径规划方法

移动机器人完全遍历路径规划算法研究

东南大学 硕士学位论文 移动机器人完全遍历路径规划算法研究 姓名:胡正聪 申请学位级别:硕士 专业:机械电子工程 指导教师:张赤斌 20080403

第一章绪论 第一章绪论 1.1移动机器人的发展史 社会的主体是人类,历史的推动者是人类,伟大的人类运用自己的智慧不断创造伟大的发明,不断推动社会的发展。邓小平同志说过:“科技是第一生产力。”生产力是社会发展的动力,所以人类推动社会发展就是要致力于发展生产力,致力于发展科技。人类不断发展生产力来提高自身认识自然、改造自然、得到自己所需物质的能力,这种能力的进化由最初的运用双手、简单工具、发展到运用畜力、发展到运用简单机器、发展到运用自动化设备、还会发展到我们无法想象的未来。 机器人就是生产力发展的产物。机器人的概念最早是在1920年的科幻小说中提出的,而早期的机器人如1939年美国纽约世界博览会上展出的西屋电气公司制造的家用机器人Elektro和1956年美国人乔治?德沃尔制造出的世界上第一台可编程的机器人都是一些实用价值不高的机器人,它们是现代机器人的雏形。上世纪60年代,由于传感器和计算机技术的发展及应用,兴起了全世界第二代机器人的研究热潮,并向人工智能进发。1968年,美国斯坦福研究所公布了他们研发成功的机器人Shakey。它带有视觉传感器,能根据人的指令发现并抓取积木。Shakey可以算是世界第一台智能机器人,它拉开了第三代机器人研发的序幕。到了上世纪80年代,发达国家都组建各种机器人研究机构,尤其是以美国为代表的国家将机器人的研究列入了军事发展计划,带动各国把机器人的研究推上了高潮,日本和欧洲各国都成立了各自的机器人研究中心和规划了自己的研究计划。进入90年代后,机器人的应用领域除了工业和军事外,还涉及到了服务和娱乐领域,以日本本田公司的ASIMO人型机器人和索尼公司的AIBO娱乐机器人为代表的机器人展示了机器人领域各方面的先进研究成果。在欧洲,2002年丹麦iRobot公司推出了吸尘器机器人Roomba,它能避开障碍,自动设计行进路线,还能在电量不足时,自动驶向充电座。Roomba是目前世界上销量最大、最商业化的家用机器人。2006年6月,微软公司推出MicrosoRRoboticsStudio,机器人模块化、平台统一化的趋势越来截明显,比尔?盖茨预言:“家用机器人很快将席卷伞球。” 图1.1丹麦iRobot公司推出的吸尘机器人Roomba[

机器人路径规划

1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 机器人(robot)一词来源下1920年捷克作家卡雷尔. 查培克(Kapel Capek)所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1.代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2.有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应 地进行工作。一般的玩具机器人不能说有通用性。 3.直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。

1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象)视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为的机器人。也包括建筑、农业机器人等。 娱乐机器人:有弹奏乐器的机器人、舞蹈机器人、宠物机器人等,具有某种程度的通用性。也有适应环境面改变行动的宠物机器人。 最后则是按照基于什么样的信息进行动作来分类: 表1基于动作信息的机器人分类

机器人路径规划方法的研究

第5期(总第156期) 2009年10月机械工程与自动化 M ECHAN I CAL EN G I N EER I N G & AU TOM A T I ON N o 15 O ct 1 文章编号:167226413(2009)0520194203 机器人路径规划方法的研究 李爱萍,李元宗 (太原理工大学机械工程学院,山西 太原 030024) 摘要:路径规划技术是机器人学研究领域中的一个重要部分。目前的研究主要分为全局规划方法和局部规划方法两大类。通过对机器人路径规划方法研究现状的分析,指出了各种方法的优点及不足,并对其发展方向进行了展望。 关键词:机器人;全局规划;局部规划中图分类号:T P 242 文献标识码:A 收稿日期:2009201207;修回日期:2009204218 作者简介:李爱萍(19792),女,山西晋中人,在读硕士研究生。 0 引言 路径规划技术是机器人学研究领域中的一个重要 部分。机器人的最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在其工作空间中找到一条从起始状态到目标状态的最优路径。根据对环境信息的掌握程度不同,路径规划可分为:①全局路径规划:环境信息完全已知,根据环境地图按照一定的算法搜寻一条最优或者近似最优的无碰撞路径,规划路径的精确程度取决于获取环境信息的准确程度;②局部路径规划:环境信息完全未知或部分未知,根据传感器的信息来不断地更新其内部的环境信息,从而确定出机器人在地图中的当前位置及周围局部范围内的障碍物分布情况,并在此基础上,规划出一条从当前点到某一子目标点的最优路径。 1 全局规划方法111 栅格法 栅格法是目前研究最广泛的路径规划方法之一。该方法将机器人的工作空间分解为多个简单的区域(栅格),由这些栅格构成一个显式的连通图,或在搜索过程中形成隐式的连通图,然后在图上搜索一条从起始栅格到目标栅格的路径。一般路径只需用栅格的序号表示。但栅格的划分直接影响其规划结果,如果栅格划分过大,环境信息储藏量小,分辨率下降,规划能力就差;栅格划分过小,规划时间长,而且对信息存储能力的要求会急剧增加。112 可视图法 可视图法中的路径图由捕捉到的存在于机器人一 维网络曲线(称为路径图)自由空间中的节点组成。路径的初始状态和目标状态同路径图中的点相对应,这样路径规划问题就演变为在这些点间搜索路径的问题。要求机器人和障碍物各顶点之间、目标点和障碍物各顶点之间以及各障碍物顶点与顶点之间的连线均不能穿越障碍物,即直线是“可视的”。然后采用某种方法搜索从起始点到目标点的最优路径,搜索最优路径的问题就转化为从起始点到目标点经过这些可视直线的最短距离问题。该法能够求得最短路径,但需假设忽略机器人的尺寸大小,使得机器人通过障碍物顶点时离障碍物太近甚至接触,并且搜索时间长。113 拓扑法 拓扑法将规划空间分割成具有拓扑特征的子空间,根据彼此的连通性建立拓扑网络,在网络上寻找起始点到目标点的拓扑路径,最终由拓扑路径求出几何路径。拓扑法的基本思想是降维法,即将在高维几何空间中求路径的问题转化为低维拓扑空间中判别连通性的问题。其优点在于利用拓扑特征大大缩小了搜索空间,其算法的复杂性仅依赖于障碍物数目,在理论上是完备的;而且拓扑法通常不需要机器人的准确位置,对于位置误差也就有了更好的鲁棒性。缺点是建立拓扑网络的过程相当复杂,特别是在增加障碍物时如何有效地修正已经存在的拓扑网是有待解决的问题。 114 自由空间法 自由空间法采用预先定义的广义锥形或凸多边形等基本形状构造自由空间,并将自由空间表示为连通图,通过搜索连通图来进行路径规划。自由空间的构

一种移动机器人的路径规划算法

一种移动机器人的路径规划算法 作者:霍迎辉,张连明 (广东工业大学自动化研究所广州510090 文章来源:自动化技术与应用点击数:1419 更新时间:2005-1-24 摘要:本文提出一种移动机器人路径规划最短切线路径算法。依据此算法,机器人能顺利地避开障碍物到达目标位置,其原理简单,计算快捷,容易实现。仿真结果验证了它的有效性和实用性。 关键词:移动机器人;路径规划;机器人避障 1引言 移动机器人路径规划问题是指在有障碍物的工作环境中寻找一条恰当的从给定起点到终点的运动路径,使机器人在运动过程中能安全、无碰撞地绕过所有的障碍物[1]。 障碍环境中机器人的无碰撞路径规划[2]是智能机器人研究的重要课题之一,由于在障碍空间中机器人运动规划的高度复杂性使得这一问题至今未能很好地解决。路径规划问题根据机器人的工作环境模型可以分为两种,一种是基于模型的路径规划,作业环境的全部信息都是预知的;另一种是基于传感器的路径规划,作业环境的信息是全部未知或部分未知的。 对机器人路径规划的研究,世界各国的专家学者们提出了许多不同的路径规划方法,主要可分为全局路径和局部路径规划方法。全局路径规划方法有位形空间法、广义锥方法、顶点图像法、栅格划归法;局部路径规划方法主要有人工势场法。这些方法都各有优缺点[3],也没有一种方法能够适用于任何场合。 本文提出一种最短切线路径的规划方法,其涉及的理论并不高深,计算简单,容易实现,可供侧重于应用的读者参考。下面将详细介绍该算法的基本原理,最后给出仿真实现的结果。 2最短切线路径算法 2.1算法基本原理 (1)首先判断机器人和给定的目标位置之间是否存在障碍物。如图1所示,以B代表目标位置,其坐标 为(x B,y B ),以R、A分别代表机器人及障碍物,坐标为(x R ,y R )、(x A ,y A )。Rr和Ra表示机器人和障 碍物的碰撞半径,也就是说在其半径以外无碰撞的危险。这里对碰撞半径的选择作出一点说明,碰撞半径越小,发生碰撞的危险度越大,但切线路径越短;碰撞半径越大,发生碰撞的危险度越小,但同时切线路径越长。要根据实际情况和控制要求来确定碰撞半径。若机器人与目标位置之间不存在障碍物,机器人可走直线直接到达目标位置,此时的直线方程可由两点式确定:

移动机器人路径规划技术综述

第25卷第7期V ol.25No.7 控制与决策 Control and Decision 2010年7月 Jul.2010移动机器人路径规划技术综述 文章编号:1001-0920(2010)07-0961-07 朱大奇,颜明重 (上海海事大学水下机器人与智能系统实验室,上海201306) 摘要:智能移动机器人路径规划问题一直是机器人研究的核心内容之一.将移动机器人路径规划方法概括为:基于模版匹配路径规划技术、基于人工势场路径规划技术、基于地图构建路径规划技术和基于人工智能的路径规划技术.分别对这几种方法进行总结与评价,最后展望了移动机器人路径规划的未来研究方向. 关键词:移动机器人;路径规划;人工势场;模板匹配;地图构建;神经网络;智能计算 中图分类号:TP18;TP273文献标识码:A Survey on technology of mobile robot path planning ZHU Da-qi,YAN Ming-zhong (Laboratory of Underwater Vehicles and Intelligent Systems,Shanghai Maritime University,Shanghai201306, China.Correspondent:ZHU Da-qi,E-mail:zdq367@https://www.wendangku.net/doc/375180978.html,) Abstract:The technology of intelligent mobile robot path planning is one of the most important robot research areas.In this paper the methods of path planning are classi?ed into four classes:Template based,arti?cial potential?eld based,map building based and arti?cial intelligent based approaches.First,the basic theories of the path planning methods are introduced brie?y.Then,the advantages and limitations of the methods are pointed out.Finally,the technology development trends of intelligent mobile robot path planning are given. Key words:Mobile robot;Path planning;Arti?cial potential?eld;Template approach;Map building;Neural network; Intelligent computation 1引言 所谓移动机器人路径规划技术,就是机器人根据自身传感器对环境的感知,自行规划出一条安全的运行路线,同时高效完成作业任务.移动机器人路径规划主要解决3个问题:1)使机器人能从初始点运动到目标点;2)用一定的算法使机器人能绕开障碍物,并且经过某些必须经过的点完成相应的作业任务;3)在完成以上任务的前提下,尽量优化机器人运行轨迹.机器人路径规划技术是智能移动机器人研究的核心内容之一,它起始于20世纪70年代,迄今为止,己有大量的研究成果报道.部分学者从机器人对环境感知的角度,将移动机器人路径规划方法分为3种类型[1]:基于环境模型的规划方法、基于事例学习的规划方法和基于行为的路径规划方法;从机器人路径规划的目标范围看,又可分为全局路径规划和局部路径规划;从规划环境是否随时间变化方面看,还可分为静态路径规划和动态路径规划. 本文从移动机器人路径规划的具体算法与策略上,将移动机器人路径规划技术概括为以下4类:模版匹配路径规划技术、人工势场路径规划技术、地图构建路径规划技术和人工智能路径规划技术.分别对这几种方法进行总结与评价,展望了移动机器人路径规划的未来发展方向. 2模版匹配路径规划技术 模版匹配方法是将机器人当前状态与过去经历相比较,找到最接近的状态,修改这一状态下的路径,便可得到一条新的路径[2,3].即首先利用路径规划所用到的或已产生的信息建立一个模版库,库中的任一模版包含每一次规划的环境信息和路径信息,这些模版可通过特定的索引取得;随后将当前规划任务和环境信息与模版库中的模版进行匹配,以寻找出一 收稿日期:2009-08-30;修回日期:2009-11-18. 基金项目:国家自然科学基金项目(50775136);高校博士点基金项目(20093121110001);上海市教委科研创新项目(10ZZ97). 作者简介:朱大奇(1964?),男,安徽安庆人,教授,博士生导师,从事水下机器人可靠性与路径规划等研究;颜明重(1977?),男,福建泉州人,博士生,从事水下机器人路径规划的研究.

机器人路径规划

机器人路径规划 摘要:机器人路径规划是机器人技术的重要分支之一,路径规划技术的研究是研究机器人技术不可或缺的技术之一。本文首先介绍了当前研究人员热衷的ROS 系统是如何进行路径规划的,接着论述了作为群智能算法的蚁群算法应用于机器人的路径规划中。研究表明,可以将蚁群算法和ROS系统结合,进一步的进行机器人的路径规划。 关键词:路径规划,ROS系统,蚁群算法,机器人 1.引言 智能移动机器人技术是机器人技术的重要组成部分,应用前景十分广阔:工业,农业,国防,医疗,以及服务业等[1]。文献提出,未来数年内,中国服务机器人发展将超过传统的工业机器人[2],机器人路径规划技术是服务机器人研究的核心内容之一[3]。可见,研究机器人的路径规划问题十分必要。 随着机器人领域的快速发展和复杂化,代码的复用性和模块化的需求原来越强烈,而已有的开源机器人系统又不能很好的适应需求。2010年Willow Garage 公司发布了开源机器人操作系统ROS(robot operating system),很快在机器人研究领域展开了学习和使用ROS的热潮。ROS系统是起源于2007年斯坦福大学人工智能实验室的项目与机器人技术公司Willow Garage的个人机器人项目(Personal Robots Program)之间的合作,2008年之后就由Willow Garage来进行推动。ROS的运行架构是一种使用ROS通信模块实现模块间P2P的松耦合的网络连接的处理架构,它执行若干种类型的通讯,包括基于服务的同步RPC(远程过程调用)通讯、基于Topic的异步数据流通讯,还有参数服务器上的数据存储。ROS系统以其独特优点引起了研究人员的兴趣。 近年来,各国学者致力于机器人路径规划的研究且取得了相当丰硕的研究成果。目前已有多种算法用于规划机器人的路径,文献【4】将其主要分为经典方

基于路径规划的智能机器人控制实验

I SSN C N 1 0 - 0 2 - 3 4 9 / 5 6 实验技术与管理 第27卷第12期201年1 2月 1 1 2 0 4 T E x p e r i m e n t a l T e c h n o l o g ya n d Ma n a g e m e n t Vo l .27N o .12D e c .201 基于路径规划的智能机器人控制实验 张佳,陈杰,窦丽华 ( 北京理工大学自动化学院,北京1081) 摘 验教学平台。在此平台上设计并开发了分别适用于本科生及硕士研究生的系列实验 规划、全区域覆盖路径规划以及多机器人队形控制等项实验内容。该实验能够让学生接触到先进的智能机 器人增强学生对自动化专业的学习兴趣提高了学生的动手能力和创新能力。 关键词智能机器人路径规划全区域覆盖队形控制 文献标志码文章编号 要 : 针对自动化专业学生 , 以 P i o n e e r 3 A T 系列的机器人为对象 , 搭建了基于路径规划的智能机器人实 , , 包括基于模型的路径 3 , , : ; ; ; 中图分类号 : T P 2 4 2 3 3 : A : 1 0 0 2 4 9 5 6 ( 2 0 1 0 ) 1 2 0 0 4 4 0 4 I n t e l l i g e n t r o b o t c o n t r o l e x p e r i m e n t s b as e d o n p a t h p l a n n i n g Zha n g J i a , Ch e n J i e , D o uL i hua ( S c h o o l o f A u t o m r a t i za t i o n , B e i e j i n g I n s t i t u t e o f T e c h n o l o g y , B e i j i r n g 1 0 0 0 8 1 r , Ch i n a ) A b s t r a c t : A i e m t i n g a t s t r ud e n n n i T t m o t t t s o f au t o e m a t i za m t e i o n m a j o r i , t h p i s p a p e m r t ak e s r o b n o o t s o r o f P i o n e e n 3 A T S e r i n e e sas o b p j e c t t a n d m c o n s t r u c sa n i x n t e l l i m g e o b o t x p o e r o e i n n t t o e a c h n e g l a t f o r , b as e d o p a t h p l a n t n i g .Bas ud e d e o n t h i s l a f o r b , as e r n i s e o x f p e p t e i e swh i c ha p p i n t d t u n d r p g r adua t i e t s c t ud e n t sa n d g adua e s t e n t s r g s p c t i v e l l ya r o n e d e s t i g n e da d l o e i r e m d. I t t n c l ud e s m d e l b as e d r p a t h p l p a o n n i n g o m p l t e t e c n v e a g e p a t h p t l a n n i n a e d m u l t c i r e b o f t o r m a t i e o n e x n p i e n . h e e x p e r i m t o f f e sa n o r t u n y f o r s ud e t s t w o r kw i hadva n c d i n t t e l i g t r b K o o s . I t n ha c e ss t t ud e n i s i n t e r e s t s t o l e a r n au t o m a t i za t i o n m a j o r . A l s o , s t ud e n t s i n n o va t i o n a b i l i y o u l d e i m p r o v e d b y e t h e e x p e o r e n t p . e y w o r d s : i n t l l i g e n r b t ; a t h p l a n n i n g ; c o m p l e t e c o v e r a g e ; f o r m a t i o n 自动化技术是一门涉及学科较多、应用广泛的综 1 实验平台的搭(智械科技) 合性科学技术。实验教学是自动化专业教学过程中 [1] 非常重要的一环。随着目前机器人技术的不断发展, 本课程选用的机器人是美国先锋(P i o n e r 3A T ) 系列机器人[。该系列机器人是目前世界上最成熟的 4] 机器人控制实验已逐步进入各个高校。机器人教学对 于培养和提高学生的创新精神和动手能力具有极其重 轮式移动机器人研究平台之一。通常科研人员对此系 要的作用[。在自动化专业开设机器人控制实验课 2 ] 列机器人的开发与研究都在控制台程序上运行,但需 要对v M a 机器人技术应用接口a 有较 深的了解因此需要花费大量时间阅读繁多的程序代 熟悉研究环境。由于实验学时有限为了能让学生 在最短的时间内最大程度地掌握机器人的有关知识 首先搭建了一个简单实用的实验平台。该平台的建立 能使学生在最短时间内熟悉各种底层动作在实验课 程中掌握基础理论和系统深入的专门知识。 整个平台系统包括个功能模块用户操作管理 模块、通信模块、控制模块、数据分析处理模块和显示 程, 不仅可以让学生接触到国际先进的机器人们的眼界还可以让学生学习先进的控制方法 些方法运用于机器人的实际控制上 提高学生的创新能力和动手能力 域的继续发展奠定坚实的基础。为此 重点实验室项目中购买了数台机器人 , , 开阔他 并将这 A c t i e d i A r i , , ,扩展他们的思维 , 码, , [ 3 ] , 为将来在控制领 , , 本校在北京市 , 针对自动化专 , 业的教学内容及要求,开设了机器人控制实验,取得了 良好的教学效果。 5 : 收稿日期 : 2 0 0 9 1 2 2 1 修改日期 : 2 0 1 0 0 3 1 5 管理模块。各模块所组成的功能结构如图 们之间通过数据信号和控制信号联系在一起 个统一的整体。在控制模块中为学生的实验操作 1 所示,它 基金项目 : 北京市教育委员会共建重点实验室资助项目 (CSYS ,构成一 1 0 0 0 (7 0417) 作者简介 : 张佳 1 9 8 0 ) , 女 ,北京市人 , 硕士 ,实验师 , 研究方向为机器 [ 5 ] , 人控制、智能控制和图像处理.

多机器人路径规划研究方法

多机器人路径规划研究方法 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 Abstract:This paper analyzed and concluded the main method and current research of the path planning research for multi robot.Then discussed the criterion of path planning research for multi robot based large of literature.Meanwhile,it expounded the bottleneck of the path planning research for multi robot,forecasted the future development of multi robot path planning. Key words:multi robot;path planning;reinforcement learning;evaluating criteria 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI研究大致可以分为DPS(distributed problem solving)和MAS(multi agent system)两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果[1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、Dempster Shafer 证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划

智能机器人避障路径规划算法研究

龙源期刊网 https://www.wendangku.net/doc/375180978.html, 智能机器人避障路径规划算法研究 作者:张永妮 来源:《中小企业管理与科技·上旬刊》2016年第02期 摘要:智能机器人只有具备自主移动能力才能实现应用价值。路径规划用于决策机器人 在环境中如何行走的问题,是实现机器人智能化的关键技术。为提高机器人路径规划,对未知环境的实时性、适应性和优化性要求越来越高。自主移动机器人是集环境感知、动态策略与规划、行为控制与执行等多功能于一体的综合系统。近几年,移动机器人技术在工业、农业、医学、航天航空等许多领域发挥了重要作用。其中智能避障更是研究领域的难点和热点,智能避障是能够根据采集障碍物的状体信息,按照一定的方法进行有效的避障,最后到达终点。本文主要介绍了动态窗口和Bug2的避障算法和研究与仿真。实现这两种避障算法主要基于Matlab 等语言编程开发,实现对移动机器人避障算法的仿真。Matlab功能强大、编程简单、适用广。 最后,验证基于Bug算法的几种路径规划方法,将避障实时性,环境的适应性、规划路径的优化性作为算法性能指标,进行仿真实验与对比实验分析。结果验证了算法的有效性。 关键词:智能机器人;避障;MATLAB仿真;路径规划 1 绪论 智能机器人避障算法的研究对于推进机器人领域的应用和发展具有重要的意义。随着计算机技术、传感器技术、控制技术的发展,智能机器人的避障技术已经取得了丰硕的研究成果,其应用领域不断的扩大,应用复杂程度也越来越高,因此对其关键技术提出了更高要求,相应的方法也更加成熟。 本文通过查阅文献资料,对目前智能机器人的发展动态有了一定了解。对现阶段机器人避障的一些常用方法做了研究,然后设计了不同算法在未知环境下的避障仿真实验来验证本文所设计的算法的可行性。路径规划要求机器人能够在较短的时间内,感知到范围尽可能大的区域,从而找到最近的路径使机器人能够沿着最优路径运动到终点,并避开障碍物。 2 基于动态窗口的避障算法及仿真 2.1 概述 机器人局部路径规划的方法很多,动态窗口法就是其中的一种,其主要是在速度(v,w)空间中采样多组速度,并模拟机器人在这些速度下一定时间内的轨迹。在得到多组轨迹以后,对这些轨迹进行评价,选取最优轨迹所对应的速度来驱动机器人运动。该算法突出点在于动态窗口这个名词,它的含义是依据移动机器人的及速度性能限定速度采样空间在一个可行的动态图范围内。

机器人路径规划算法总结

1.自主机器人近距离操作运动规划体系 在研究自主运动规划问题之前,首先需建立相对较为完整的自主运动规划体系,再由该体系作为指导,对自主运动规划的各项具体问题进行深入研究。本节将根据自主机器人的思维方式、运动形式、任务行为等特点,建立与之相适应的自主运动规划体系。并按照机器人的数量与规模,将自主运动规划分为单个机器人的运动规划与多机器人协同运动规划两类规划体系。 1.1单个自主机器人的规划体系 运动规划系统是自主控制系统中主控单元的核心部分,因此有必要先研究自主控制系统和其主控单元的体系结构问题。 自主控制技术研究至今,先后出现了多种体系结构形式,目前被广泛应用于实践的是分布式体系结构,其各个功能模块作为相对独立的单元参与整个体系。随着人工智能技术的不断发展,基于多Agent的分布式体系结构逐渐成为了主流,各功能模块作为独立的智能体参与整个自主控制过程,该体系结构应用的基本形式如图1所示。一方面,主控单元与测控介入处理、姿态控制系统、轨道控制系统、热控系统、能源系统、数传、有效载荷控制等功能子系统相互独立为智能体,由总线相连;另一方面,主控单元为整个系统提供整体规划,以及协调、管理各子系统Agent的行为。测控介入处理Agent保证地面系统对整个系统任意层面的控制介入能力,可接受上行的使命级任务、具体的飞行规划和底层的控制指令;各子系统Agent存储本分系统的各种知识和控制算法,自主完成主控单元发送的任务规划,并将执行和本身的健康等信息传回主控单元,作为主控单元Agent运行管理和调整计划的依据。 图1 基于多Agent的分布式自主控制系统体系结构基本形式示意图 主控单元Agent采用主流的分层递阶式结构,这种结构层次鲜明,并且十分利于实现,其基本结构如图2所示。主控单元由任务生成与调度、运动行为规划和控制指令生成三层基本结构组成,由任务生成与调度层获得基本的飞行任务,经过运动行为规划层获得具体的行为规划,再由控制指令生成层得到最终的模块控制指令,发送给其它功能Agent。各功能Agent发送状态信息给主控单元的状态检测系统,状态检测系统将任务执行情况和子系统状态反馈回任务生成与调度层,以便根据具体情况对任务进行规划调整。当遇到突发情况时,还可启用重规划模块,它可根据当时情况迅速做出反应快速生成行为规划,用以指导控制指令生成层得到紧急情况的控制指令。此外,地面控制系统在三个层次上都分别具有介入能

机器人路径规划

机器人路径规划 冯赟:机器人路径规划方法研究 1绪论 1.1机器人简介 1.1.1什么是机器人 机器人一词不仅会在科幻小说、动画片等上看到和听到,有时也会在电视上看到在工厂进行作业的机器人,在实际中也有机会看到机器人的展示。今天,说不定机器人就在我们的身过,但这里我们要讨论的是什么是机器人学研究的机器人。 robot)一词来源下1920年捷克作家卡雷尔 . 查培克(Kapel Capek)机器人( 所编写的戏剧中的人造劳动者,在那里机器人被描写成像奴隶那样进行劳动的机器。 后来作为一种虚构的机械出现在许多作品中,代替人们去完成某些工作。20世纪60年代出现了作为可实用机械的机器人。为了反这种机器人同虚构的机器人及玩具机器人加以区别,称其为工业机器人。 工业机器人的兴起促进了大学及研究所开展机器人的研究。随着计算机的普及,又积极地开展了带有智能的机器人的研究。到70年代,机器人作为工程对象已经被确认,机器人一词也受到公认。目前,机器人学的研究对象已不仅仅是工业机器人了。 即便是实际存在的机器人,也很难把它定义为机器人,而且其定义也随着时代在变化。这里简单地反具有下述性质的机械看作是机器人: 1. 代替人进行工作:机器人能像人那样使用工具和机械,因此,数控机床和 汽车不是机器人。 2. 有通有性:既可简单地变换所进行的作为,又能按照工作状况的变化相应

地进行工作。一般的玩具机器人不能说有通用性。 3. 直接对个界作工作:不仅是像计算机那样进行计算,而且能依据计算结果 对外界结果对外界产生作用。 机器人学把这样定义的机器人作为研究对象。 - 1 - 郑州大学电气工程学院毕业设计(论文) 1.1.2机器人的分类 机器人的分类方法很多,这里我们依据三个有代表性的分类方法列举机器人的 种类。 首先,由天机器人要代替人进行作业,因此可根据代替人的哪一个器官来分类: 操作机器人(手):利用相当于手臂的机械手、相当于手指的手爪来使物体协 作。 移动机器人(腿):虽然已开发出了2足步行和4足步行机器人,但实用的却是 用车轮进行移动的机器人。(本文以轮式移动机器人作为研究对象) 视觉机器人(眼):通过外观检查来除掉残次品,观看人的面孔认出是谁。虽然 还有使用触觉的机器人,但由于它不是为了操作,所以不能说是触觉机器人。 也还有不仅代替单一器官的机器人,例如进行移动操作,或进行视觉和操作的 机器人。 其次,按机器人的应用来分类: 工业机器人:可分为搬送、焊接、装配、喷漆、检查等机器人,主要用于工厂 内。 极限作业器人:主要用在人们难以进入的核电站、海底、宇宙空间等进行作为 的机器人。也包括建筑、农业机器人等。

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor , ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS (distributedproblemsolving )和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术界研究的热点,而路径规划研究又是其核心部分。

机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果 1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi 图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1 多机器人路径规划方法单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi 图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学 习等;其他方法主要有动态规划、最优控制算法、模糊控制等。它们中的大部分都是从单个机器人路径规划方法扩展而来的。 1)传统方法多机器人路径规划传统方法的特点主要体现在基于图论的基础

多机器人路径规划研究方法(一)

多机器人路径规划研究方法(一) 张亚鸣雷小宇杨胜跃樊晓平瞿志华贾占朝 摘要:在查阅大量文献的基础上对多机器人路径规划的主要研究内容和研究现状进行了分析和总结,讨论了多机器人路径规划方法的评判标准,并阐述了研究遇到的瓶颈问题,展望了多机器人路径规划方法的发展趋势。 关键词:多机器人;路径规划;强化学习;评判准则 e,itexpoundedthebottleneckofthepathplanningresearchfor, ; 近年来,分布式人工智能(DAI)成为人工智能研究的一个重要分支。DAI 研究大致可以分为DPS(distributedproblemsolving)和MAS ()两个方面。一些从事机器人学的研究人员受多智能体系统研究的启发,将智能体概念应用于多机器人系统的研究中,将单个机器人视做一个能独立执行特定任务的智能体,并把这种多机器人系统称为多智能体机器人系统(MARS)。因此,本文中多机器人系统等同于多智能体机器人系统。目前,多机器人系统已经成为学术

界研究的热点,而路径规划研究又是其核心部分。 机器人路径规划问题可以建模为一个带约束的优化问题,其包括地理环境信息建模、路径规划、定位和避障等任务,它是移动机器人导航与控制的基础。单个移动机器人路径规划研究一直是机器人研究的重点,且已经有许多成果1~3],例如在静态环境中常见的有连接图法、可视图法、切线图法、Voronoi图法、自由空间法、栅格法、拓扑法、链接图法、证据理论建图等;动态环境中常见的有粒子群算法、免疫算法、遗传算法、神经网络、蚁群算法、模拟退火算法、人工势场法等。然而,多机器人路径规划研究比单个机器人路径规划要复杂得多,必须考虑多机器人系统中机器人之间的避碰机制、机器人之间的相互协作机制、通信机制等问题。 1多机器人路径规划方法 单个机器人的路径规划是找出从起始点至终点的一条最短无碰路径。多个机器人的路径规划侧重考虑整个系统的最优路径,如系统的总耗时间最少路径或是系统总路径最短等。从目前国内外的研究来看,在规划多机器人路径时,更多考虑的是多机器人之间的协调和合作式的路径规划。 目前国内外多机器人路径规划研究方法分为传统方法、智能优化方法和其他方法三大类。其中传统方法主要有基于图论的方法(如可视图法、自由空间法、栅格法、Voronoi图法以及人工势场方法等);智能优化方法主要有遗传算法、蚁群算法、免疫算法、神经网络、强化学

相关文档