文档库 最新最全的文档下载
当前位置:文档库 › 生长激素对鱼类的影响及其在水产养殖中的应用

生长激素对鱼类的影响及其在水产养殖中的应用

生长激素对鱼类的影响及其在水产养殖中的应用
生长激素对鱼类的影响及其在水产养殖中的应用

光照对植物生长发育的影响

光照对植物生长发育的影响 光作为环境信号作用于植物,是影响植物生长发育的众多外界环境(光、温度、重力、水、矿物质等)中最为重要的条件。其重要性不仅表现在光合作用对植物体的建成的作用上,光还是植物整个生长和发育过程中的重要调节因子。我在这里主要讨论的是光对植物生长发育的影响,即光作为调节因子的影响;但实际上光合作用是贯穿植物体后期生长发育的整个过程的,是生长发育的基础,通过在植物体幼苗分化、营养生长中起作用而影响植物生长发育。 植物“生长发育”实际上是指植物的生长、分化和发育。其中生长是指体积、重量、数目等方面的增加,分化是指细胞在结构、功能和生理生化性质方面的变化,而发育则是生长和分化的总和。植物生长分化的基本单位是细胞,细胞的分裂、生长和分化是植物体生长和发育的基础。我先从细胞水平大概阐述一下光照对细胞分裂生长、分化的影响,再从植物体形态建成过程中逐一论述光的作用,然后是光照对植物营养生长的作用。 一、光照对细胞生长分化的影响 I.所有细胞都能进行分裂、生长和分化。细胞分裂增加细胞数目,细胞伸长增加细胞体积。从表面上看似乎与光照没有什么直接联系。但其实当幼苗长成到能进行一定光合作用的时候,光合作用便为细胞分裂与伸长提供所需的物质和能量。分裂中的细胞的细胞质浓厚,合成代谢旺盛,可以将无机盐和有机物同化为细胞质,为细胞分裂提供物质基础;当细胞体积伸长时,细胞生长需要的能量主要是来自于呼吸作用,但光合作用也作了一定的能量供应源,光合作用与细胞生长并不是完全没有联系的。 II.光对植物细胞分化的影响可能要更大一些。这表现在光诱导、改变细胞极性等方面。细胞极性是细胞不均等分裂的基础,而不均等分裂或分化分裂(即细胞分裂产生的两个子细胞在形态、生理生化上具有不同的性质)又是植物组织极性结构分化产生的基础。有实验说明,墨角藻的大小孢子结合生成的合子在最初无细胞壁,是一个完全无极性的球形细胞,但是在由上而下的单向光线照射下,合子形成后的几个小时之内便形成了以细胞内单向钙离子流为特征的极性,此时改变光线照射方向可以改变细胞极性的方向。不过在细胞壁形成之后,细胞的极性便固定住了。这说明在细胞未完全定极性之前,光照对细胞极性是有影响的,影响其分裂方向和分化方向。 二、光照在植物生长发育各个阶段的作用 I.种子的成熟过程。种子的形成和成熟过程实质上是指胚由小变大,营养物质在种子中变化和积累的过程。主要是把葡萄糖、蔗糖和氨基酸等小分子物质合成为淀粉、蛋白质和脂肪等高分子有机物质,并积累在子叶和胚乳中。这些物质由光合作用产生,因此光照强度直接影响种子内有机物质的积累。如小麦籽粒2/3的干物质来源于抽穗后叶片及穗子本身的光合产物,此时光照强,叶片同化物多,输入到籽粒的多,产量就高。在小麦灌浆期一遇到连着好几天阴天,籽粒重明显地减小而导致减产。此外,光照也影响籽粒的蛋白质含量和含油率。 II.种子萌发过程。种子萌发必须有适当的外界条件,即足够的水分、充足的氧气和适当的温度。这三者是同等重要、缺一不可的。光对一般的植物种子萌发没有什么他特别的影响,但有些植物的种子的萌发是需要光的,这些种子叫做需光种子,如莴苣、烟草等的种子。还有一些萌发时不需要光的种子称为

转生长激素基因鱼的研究与进展

转生长激素基因鱼的研究进展 摘要: 本文主要介绍了非“全鱼”、“全鱼”以及“同种”生长激素基因重组体的构建,对比分析相应转基因鱼的生长,同时介绍了显微注射法、电脉冲法、精子载体法、基因枪法等常用的鱼类基因转移技术,分析了转生长激素基因鱼的安全性、遗传稳定性和发展前景。 关键词:生长激素基因重组体;转基因鱼;基因转移; Abstract:This paper mainly introduces the of non - "all fish", fish and the same growth hormone gene recombinant construction, comparison and analysis of the corresponding transgenic fish growth, at the same time, it introduces the micro injection method, electroporation ,sperm vector method,Particle gun method commonly used fish gene transfer technology, analysis of the growth hormone gene fish safety, genetic stability and development prospects. Key words: Growth hormone gene recombinant; transgenic fish; gene transfer; 0前言 1985年,世界上第一批转基因鱼的诞生,开辟了鱼类遗传育种的新领域,同时也揭开了转基因鱼研究的序幕[1]。过去的20 余年,转基因鱼研究取得了长足发展。目前,世界上已经有超过35 种的鱼用于转基因研究,绝大多数鱼类的转基因研究以培育具有优良生产性状的新品系为目的[2]。其中,生长激素转基因鱼由于具有生长速度快、饵料转化效率高等特点而备受关注。近日,美国食物药品管理局(FDA)在确认转基因三文鱼食用安全性五年、环境安全性三年之后,批准了水恩公司(AquaBounty)的转基因三文鱼品牌“AquAdvantage”上市,从而使之成为首个获批的供食用转基因动物,快速生长转基因鱼在转基因动物中率先实现市场化[2]。 在对转生长激素基因鱼的研究中,先后经历了转非全鱼生长激素基因鱼,转全鱼生长激素基因鱼以及同种生长激素基因鱼的研究,采用了显微注射法、电脉冲法、精子载体法、基因枪法等常用的基因转移技术,本文主要分析不同转基因元件构建的转基因鱼生长状况,介绍几种基本的基因转移方法,转基因鱼的安全性、遗传稳定性分析以及其发展前景。 1生长激素基因重组体与转基因鱼 1.1 非“全鱼”生长激素转基因鱼 非“全鱼”生长激素转基因重组体指转植基因的构成元件(调控序列和生长激素编码序列)中至少有一部分来自鱼类以外的其他物种。通过转移此类转植基因所获得的转基因鱼即为非“全鱼”生长激素转基因鱼。转基因鱼研究的初期,所使用的重组生长激素基因来自哺乳动物,如人、牛等的生长激素基因,调控顺序有小鼠金属硫蛋白基因(mMT)启动子、病毒SV40启动子等。部分非“全鱼”生长激素转基因鱼的快速生长效应是令人振奋,60 日龄转入生长激素基因银鲫(Carassius auratus gibelio Bloch)的平均体重是对照组的 1.82 倍[4]。135日龄转入生长激素基因泥鳅(Misgurnus anguillicaudatus)体重较对照鱼增加3—4.6 倍[5,6]。F2 代转入生长激素基因鲤鱼(Cyprinuscarpio L.)最大个体体重是对照鱼的8.7 倍[7]。除此之外,尽管其他非“全鱼”生长激素转基因鱼的生长速率或体重增加较对照鱼有一定优势,但一般不超过 50%。F2 和 F4代转入生长激素基因红鲤(Cyprinus carpio L. red var.)的生长率分别比对照鱼高出13%—25%[8,9]。转虹鳟生长激素基因鲤鱼P0 代个体的平均体重比对照鱼高 22%,F1 代杂合个体平均体重比对照鱼高50%[10,11]。嵌合体转基因沟

鱼类激素

.肾机能的调节 (一)肾小球滤过作用的调节 肾小球通透性一般不会发生太大变化。肾小球滤过作用调节主要通过肾血流量调节而实现。 肾血流量具有自动调节机制,即肾内存在血流阻力随动脉血压而改变以维持血流量相对稳定的机制。 另一方面,肾血流量也受神经-体液因素的调节。支配肾脏的传出神经包括内脏神经(交感神经)和迷走神经(副交感神经)两种。前者有缩血管的作用,特别对入球小动脉和出球小动脉作用尤为显著;迷走神经的作用尚待研究。 体液因素中,肾上腺素和去甲肾上腺素都是促进肾血管收缩的主要激素。 (二)肾小管活动的调节 1.自身调节 (1)小管液的溶质浓度:小管液的溶质所形成的渗透压是对肾小管重吸收水分的力量。(渗透性利尿); (2)球管平衡:肾小管重吸收率与肾小球滤过率之间保持一定的平衡; 2.神经调节:肾的血管和肾小管主要受交感神经的支配。 3.体液调节: (1)抗利尿激素:增加远球小管和集合管对水分的通透性,使尿量较少; (2)醛固酮(肺鱼):保Na+、排K+;醛固酮的分泌受肾素-血管紧张素系统调节,血管紧张素II能y引起强烈而持久的醛固酮分泌。但除肺鱼外,鱼类都缺。 15. 甲状腺激素的生理作用 1.代谢 。甲状腺激素的作用在高等脊椎动物主要是增加机体的代谢活动。 ?甲状腺激素对变温动物的代谢活动也起重要作用。 2.调节渗透压 ?例:硬骨鱼类处于渗透压变化的环境中,甲状腺素能促使渗透压调节所需的能量代谢增强。 3. 对生长、发育、变态和行为的影响 ?甲状腺激素的主要作用是促进生长和发育成熟。(例:甲状腺素处理鱼受精卵和鱼苗能明显地提高孵化率和成活率) ?甲状腺激素能改变鱼类的运动行为。 胰岛素的生理作用(降低血糖,合成脂肪,合成蛋白质) 答:1. 对糖代谢的影响 促进葡萄糖转运,加速葡萄糖的氧化,增加糖元生成,抑制糖异生; 2.对脂肪代谢的影响 促进脂肪合成,抑制其水解,减少脂肪酸的释放和酮体的生成; 3.对蛋白质代谢的影响 促进氨基酸进入细胞,加速蛋白质合成。 17. 肾间组织激素的作用和调节 答:(一)作用 1.调节水盐平衡

转生长激素基因鱼的生物能量学研究进展

第34卷第l期2010年1月 水生生物学报 ACTAHYDROBl0LOGICASINICA Vbl.34.No.1 Jan..20lO 厝司 2、,..、一DOI:10.3724,SP.J.1035.2010.00204 转生长激素基因鱼的生物能量学研究进展 李德亮1傅萃长2胡炜2朱作言2 (1.湖南农业大学动物科学技术学院。长沙4lOl28;2.中国科学院水生生物研究所,淡水生态与生物技术国家重点实验室.武汉430072)ADVANCEONBIOENERGETICSoFGROWTHHoRMONETRANSGENICFISHES LIDe—Lian91,FUCui.Zhan92,HUWei2andZHUZuo.Y柚2 (1-cDf妇P巧A一咖口f&f棚cP口脚乃幽^DfDg),,胁n4n^g—c口hm,踟fVP"慨∞删gJ妇4lOl28;2.跏即聊L口6D甩fo秽D,,陀曲w舸Ecology矾dBtotechoto甜.InsmHte可bdrobtolo时,chineseAcⅡde”搿埘scicnces.w“妇n430m∞ 关键词:生长激索:转基因鱼:生物能量学 KeywOrds:Growthhomone:Transgenicfish;Bioenergctics 中图分类号:Q413文献标识码:A文章编号:l000-3207(2010)01-0204一06 1985年,世界上第一批转基因鱼的诞生,开辟了鱼类遗传育种的新领域。同时也揭开了转基因鱼研究的序幕【11。过去的20余年,转基因鱼研究取得了长足发展。目前,世界上已经有超过35种的鱼用于转基因研究,绝大多数鱼类的转基因研究以培育具有优良生产性状的新品系为目的【2l。其中,生长激素转基因鱼由于具有生长速度快、饵料转化效率高等特点而备受关注。目前,美国食品与药物管理局(FDA)正在对转生长激素基因大西洋鲑鱼(勋f,加jd肠r)的市场化资格进行最后审查【3l,快速生长转基因鱼有望在转基因动物中率先实现市场化【2l。 生长激素转植基因在受体鱼类体内的过量表达表现出明显的多重效应,除显著提高受体鱼类生长速率外,还对受体鱼类的摄食与消化、排粪与排泄、代谢、生化组成与能量含量及能量收支情况产生了重要的影响。本文着重从上述方面入手,对转生长激素基因鱼生物能量学的研究进展进行综述。 1转生长激素基因鱼的生长 1.1非“全鱼”生长激素转基因鱼的生长 非“全鱼”生长激素转植基因指转植基因的构成元件(调控序列和生长激素编码序列)中至少有一部分来自鱼类以外的其他物种。通过转移此类转植基因所获得的转基因鱼即为非“全鱼”生长激素转基因鱼。部分非“全鱼”生长激素转基因鱼的快速生长效应是令人振奋的。60日龄转人生长激素基因银鲫(C口馏jjf“j口“阳mj譬f扫e肋Bloch)的平均体重是对照组的1.82倍14J。135日龄转入生长激素基因泥鳅(Mfjg“m“s口n朋棚cn“出胁s)体重较对照鱼增加 3一.6倍15一。F2代转入生长激素基因鲤鱼(cyprf以“sc口伊如L.)最大个体体重是对照鱼的8.7倍【71。除此之外,尽管其他非“全鱼”生长激素转基因鱼的生长速率或体重增加较对照鱼有一定优势,但一般不超过50%。F2和F4代转入生长激素基因红鲤(C砌一nHsc口巾如L.redv札)的湿重特定生长率分别比对照鱼高出13%一25%【8.9J。转虹鳟生长激素基因鲤鱼Po代个体的平均体重比对照鱼高22%,F1代杂合个体平均体重比对照鱼高50%【loJll。嵌合体转基因沟鲶(尼幻缸九ljp“,lc矧眦s)平均体重与对照鱼之间没有显著性差异,尽管其F1代转基因个体表现出一定的快速生长效应,但其平均体重仅仅高出对照鱼23%一 26%【1 21。 1.2“全鱼”生长激素转基因鱼的生长 “全鱼”生长激素转基因鱼指通过转移构成元件来自鱼类,但又不完全来自于受体鱼类本身的转植基因所获得的转基因鱼。转“全鱼”生长激素基因鱼的生长情况根据“全鱼”转植基因不同可分为如下4种情况。 收稿日期:2008.10.27.修订日期:2009.06.29 基金项目:国家973计划(2007cBl09205)资助 作者简介:李德亮(1980一)。男。汉族,河南安阳人:博士:主要从事鱼类遗传育种与生理生态学研究。 E—mail:lidelian980@yahoo.com.cn 通讯作者:朱作言。E-哪il:zyzhu@ihb.ac.cn 万方数据

光照对植物生长发育的影响

光照 光照对植物生长发育的影响主要表现在:光照强度、光照时间(光周期)和光的组成(光质)三个方面。 (一)光照强度 1.光强对植物生长发育的影响 ?光照不足,光合作用减弱;植株徒长或黄化;抑制根系; ?植物受光不良,花芽形成和发育不良;果实发育受阻,造成落花落果; ?光照过强,发生光抑制(光破坏);日烧; ?光强对蔬菜品质的双向调节作用:果菜类强光、叶菜类弱光;软化栽培嫌光。 2.光形态建成 由低能量光所调控的植株器官的形态变化称为光形态建成。 ?马铃薯植株在黑暗中抽出黄化的枝条(匍匐茎),但其每天只要在弱光下照射5~ 10 min,就足以使黄化现象消失,变为正常地上茎。 ?消除在无光下植物生长的异常现象,是一种低能反应,它与光合作用有本质区别。 3.需光度 植物对光强的需求,与植物的种类、品种、原产地的地理位置和长期对自然条件的适应性有关。 ?原产于低纬度、多雨地区的热带、亚热带植物,对光的需求一般略低于高纬度植物。 ?原生在森林边缘和空旷山地的植物多为喜光植物。 ?同一植物的不同器官需光度不同。 ?不同的生育时期需光度也不相同。 (1)根据蔬菜生长发育对光强的要求,可将蔬菜分为: ?强光照蔬菜:饱和光强1500μmol·m-2·s-1左右,西瓜、甜瓜、番茄、辣椒、茄子等。 ?中光照蔬菜:饱和光强800~1200 μmol·m-2·s-1,白菜类、根菜类、黄瓜等。 ?弱光照蔬菜:饱和光强600~800 μmol·m-2·s-1,绿叶菜类、葱蒜类等。 (2)根据种子萌发对光的需求不同,将蔬菜种子分为: 需光种子:伞形花科、菊科 嫌光种子:百合科、茄果类、瓜类 中光种子:豆类 4.影响光照强度的因素 ?气候条件:如降雨、云雾等。 ?地理位置:纬度、海拔。 ?栽培条件:如栽植密度、行向、植株调整以及间作套种等,会影响田间群体的光强分布。 ?栽培设施: (二)光质 1.太阳光谱 太阳辐射的波长范围150-3000nm,其中400-700nm的可见光约占52%,红外线占43%,而紫外线只占5%。 ?光质随着地理位置和季节的变化而变化; ?光质因天气及其它遮挡材料而变化。如散射光强度低,但红、黄光比例可达50%左右,而直射光只有37%的红、黄光。 2.光质作用

不同光照条件对绿豆苗生长的影响(实验设计及报告模板)

不同颜色的光对绿豆幼苗生长的影响 作者:XXX XXX实验学校中学部指导老师:XX 摘要:本实验通过观察绿豆幼苗在不同光照射下的生长发育的情况,探索了不同颜色的光对绿豆光合作用的影响。证实不同的光会对绿豆生长造成不同程度的影响,进而提出:合理利用不同颜色的光将有利于温室农作物产量的提高。 关键词:绿豆光颜色生长影响 一、实验的提出 生物课第三单元第一节光合作用提到了光与光合作用的关系以及光合作用的产物,引起了我及小组成员的兴趣。我们想,绿色植物进行光合作用的能量来源是太阳光,然而,太阳光是由红、橙、黄、绿、蓝、靛、紫这七色光组合而成的。那么,植物进行光合作用是否七色光都需要?不同颜色的光对绿色的植物的光合作用是否会造成不同影响呢? 二、实验材料的选取 鉴于绿豆生育期短,生长迅速,属于短日照植物,易于培植也利于观察等优点,所以我们选用绿豆作为该次实验的研究对象,探讨不同颜色的光对植物生长的影响。 三、研究步骤: 一)、假设:不同顏色的光对植物的光合作用有影响。(因此用不同光來照射绿豆幼苗) 二)、材料准备: 1、蛭石、水培专用营养液、培养皿、绿豆种子、两个500毫升的烧杯、温度计、能换灯泡的台灯、各种颜色(红色、橙色、黄色、绿色、蓝色、靛色、紫色)的灯泡。 2、照相机(用于关键记录实验过程) 3、电脑(用于撰写论文) 三)、研究过程: 第一天 (1)、在黑暗中培养绿豆幼苗直到长出叶子來,分组备用。 (2)、分别用红、橙、黄、绿、蓝、靛、紫七种颜料将白色电灯(40瓦)涂染上颜色备用。(见照片1、2、)第二天 (1)、以蛭石为基质,将浓缩的水培专用培养液以1:500的比例稀释。分装入培养皿中(见照片3、4)(2)、选长势均匀已发芽的绿豆240棵分别栽入八个不同培养皿中(每皿30棵) (3)、在暗室中进行不同光的照射,光照时间为早8:00--下午5:00,共9小时。其间除了光照这一变量外,种子数量、水分、品种、时间、受光等定量条件均保持一致,并且让空气保持流通,之后观察其生长情形(见照片5)。 (4)记录每天的生长情况.(见照片6)。

鱼类能量代谢强度及其影响因素

鱼类能量代谢强度及其影响因素 ——体重不同的金鱼呼吸耗氧量之间的差异 (The intensityof energy metabolism in fish and its influencing factors -Differences between the respiratory oxygen consumption of goldfish with different body weight) 摘要生物体呼吸消耗的氧气量和生物体消耗的能量密切相关,本研究通过测定生物呼吸耗氧量的多少来间接的评价生物能量代谢的强度。在不同的身体体重下,生物的能量代谢强度(用耗氧量表示)有所不同。一般情况下,生物的体重越大,生物体的能量代谢强度就越高,相应的,单位时间内的耗氧量也会增加。研究生物的能量代谢强度对研究生物的适应性,濒危野生动物保护,水产、牲畜及禽类养殖等都非常重要。在本研究中,我们利用了碘量法(winker滴定法)测定不同温度下呼吸瓶和对照瓶中的氧含量,得出一段时间内呼吸瓶中动物的耗氧量,进而间接描述不同体长体重的动物能量代谢的强度之间的差异。本研究解释了体重小的个体单位体重耗氧量相较之更大的现象,对于鱼类养殖业有重大的意义。 关键字鱼类金鱼能量代谢强度耗氧量 1 研究背景、设想 鱼类不仅是最为优质蛋白质来源,而且是我国人民最喜爱的食品。我国政府为满足广大人民的需求,长期以来关心、重视并积极发

展鱼类的养殖。改革开放以来,我国的水产品产量迅速增加,2007年人均水产品占有量已经上升到36.4 kg,是世界平均水平的两倍,极大提高了我国人民蛋白质的消费水平和生活质量,为保障国家粮食安全做出了重要贡献(施兆鸿等,2010)。在这一过程中,水产养殖业起到了至关重要的作用,我国渔业的生产模式已经由以前的以捕捞为主快速转变为向以人工养殖为主。这也显示证明了水产养殖业蕴含的巨大经济潜力和重要性。 1.1 鱼类能量代谢强度研究的重要性 能量代谢的研究(能量学)的中心任务是阐明动物能量收支之间的定量关系,研究各种生态因子和不同的生长时期、不同的生理状态对这些关系的影响,探讨动物调节其能量分配的生理生态学机制,并从资源利用对策的角度阐明物种在进化中的适应性问题,为人工增殖养殖及其管理提供理论依据和技术措施;同时能量代谢的研究有助于了解动物的营养需求,能量在生存、生长、生殖及代谢之间的分配,因此能量代谢的研究又是研制和评价人工配合饲料的有效途径(朱小明等,2001)。鱼类能量代谢强度的研究有助于设计鱼类养殖营养问题解决方案,合理的配置营养摄入,并调节其他养殖因素。 1.2 研究鱼类能量代谢强度的常用方法 由于能量代谢较难以直接测定,因此多使用转化的方法,将能量代谢转化为其他指标进行测定。目前主要使用鱼类在一段时间内的耗氧量来评定鱼类在一段时间内的能量代谢强度,耗氧量的测定大多使

鱼类生长激素---结构和生理功能

鱼类生长激素的结构和生理功能 20世纪60年代,人们发现将动物脑垂体匀浆后拌饵料喂鱼可显著提高鱼类的生长速度,自此,生长激素(GH)开始应用于水产养殖。70年代中期,GH分离和活性鉴定技术得到了发展,人们开始尝试给鱼类注射或投喂具有生物学活性的外源性GH来促进鱼类生长。随着基因工程和转基因技术的发胜,GH的产量大大提高更加开拓了(GH)的应用前景。本文现将鱼类(GH)的结构、生理功能等几个方面进行综述。 鱼类生长激素的结构 鱼类GH是鱼类脑垂体前叶嗜酸性细胞分泌的一种由173到188个氨基酸组成、分子量在20000到22000道尔顿之问的单链蛋白类激素,随潜GH分离纯化技术的不断完善,目前,鳗鲡、银大麻哈鱼、虹鳟、斑点叉尾鲴等鱼类GH结构分析工作已经完成,并证实了鱼类(GH)在分子量、氨基酸组成和序列等方面与其他脊椎动物的(GH)存在一定的同源性。其中,硬骨鱼类不同目之间GH结构同源性为53%~55%,硬骨鱼类与其他脊椎动物GH的同源性则较低。。鱼类GH聚丙烯酰胺凝胶电泳(PAGE)分离分析研究发现:某些鱼类的GH存在两种形态,Kawauchi等1986年发现:大麻哈鱼的两种(GH)形态分子量都为22000Da,等电点分别为5.6和6.0,但两者氨基酸组成不同,推测可能存在两种编码基因。随后,在鳗鲡、海鲈等鱼叫一也发现有两种形式的(GH)。 鱼类生长激素的生理功能 促进鱼类生长 GH是在鱼类机体生长发育起关键作用的调节因予,GH几乎可作用jl-机体的所有组织,刺激组织发育,增加体细胞的大小和数目。GH发挥促生长作用一般认为可通过两种方式:一是,认为GH首先作门于肝细胞膜上的GH受体(GHR),机体许多组织细胞,如骨胳系统、 胃肠道、肾脏等均有GHR的存在或GHRmRNA的表达,GH与肝细胞GH受体结合促进肝细胞产生类胰岛素样生长因子一1(IGF一1),再由IGF一1作用于靶细胞从而间接的促进细胞的增殖和生长;二是,认为GH起促进软骨代谢作用时需由IGF一1介导,但当促进骨骼延伸和生长时则不需要TGF—l参与,而是通过直接刺激软骨细胞生长来实现。 调节鱼体代谢 GH促进细胞生K增殖的基础是增强了机体的合成代谢,它可以调节营养物质在不同组织间的分配,在脂肪组织,生长激索表现为抗胰岛索效应,可使脂肪细胞摄取葡萄糖的速度下降,降低机体内葡萄糖转化成脂肪酸的速度,抑制脂肪酸合成酶mRNA的转录和乙酰CoA 羧化酶、脂肪合成酶的活性,同时刺激脂肪的酶解作用,减少脂肪的沉积。在肌肉组织,生长激素不表现抗胰岛素作用,在类胰岛素生长因子一I的介导下加强细胞的合成代谢,加强肌肉细胞蛋白质的合成和氨基酸摄取,蛋白质周转代谢的总量减少,合成量大于降解量,从而提高蛋白质的沉积量。GH对糖代谢的影响比较复杂,不直接参与糖代谢的调节,但可改变组织对糖代谢的敏感性。生长激素

鱼类性腺发育的内分泌调节

一、鱼类性腺发育的内分泌调节(一)脑垂体鱼类脑垂体位于间脑腹面,嵌藏在副蝶骨背面、耳骨内侧缘的小凹窝内,借脑组织构成的柄与下丘脑相接。它是最重要的内分泌腺之一。它分泌的激素不仅作用于身体各种组织,而且能调节其他内分泌腺体的活动。 1.脑垂体的构造鱼类的脑垂体包括腺垂体和神经垂体两大部分。腺垂体由前腺垂体(前叶)、中腺垂体(间叶)和后腺垂体(后叶)组成。这三部分分别相当于哺乳动物腺垂体的结节部、前叶和中间部。前腺垂体距间脑最近,细胞排列较密,细胞的组成很一致。它主要由促肾上腺激素分泌细胞和催乳素分泌细胞组成。前一类细胞多呈长形或椭圆形,邻近神经部,核位于细胞一端,形状不规则,细胞质稀疏、粗糙,内质网多膨胀成囊状或泡状,分泌颗粒少。后一类细胞紧密相连,核一般位于中央,多为圆形或近圆形。细胞质内具有许多颗粒和空泡,边缘具有高电子密度分泌颗粒。中腺垂体位于垂体中央部分,相当于高等脊椎动物的前叶,有许多神经分枝伸入,控制中腺垂体的分泌机能。中腺垂体由3种分泌细胞组成:①促甲状腺分泌细胞,常为多边形或长形,有大型、不规则的核,细胞质稀,粗糙内质网多膨胀,分泌颗粒小而少,有很多核糖体;②促生长激素分泌细胞的细胞核不规则,有时位于细胞边缘,有明显的核仁,粗糙内质网常在核周围呈环形,分泌颗粒丰富;③促性腺激素分泌细胞位于中腺垂体的腹面,细胞多为圆形或椭圆形,中央有一圆形或椭圆形的核,核仁不明显,细胞质内有大小不等的分泌颗粒,粗糙内质网常呈囊状,边缘有电子密度高的核糖体。后腺垂体神经纤维丰富,有数层细胞,分为两种类型:M1型呈椭圆形,分泌颗粒大而密,直径1770~2700?;M2型长形,分泌颗粒小而少,长棒状颗粒居多。神经垂体主要由神经纤维、血管及神经胶质细胞组成。神经纤维无髓鞘,起源于下丘脑,呈网状分散在神经垂体内,包围神经胶质细胞,与微血管网紧密相连。这样能使调节垂体分泌机能的神经分泌物很容易从神经纤维末梢进入血管。2、生理机能鱼类的脑垂体分泌多种激素,对鱼的生长、性腺发育、甲状腺和肾上腺的发育以及体色等方面都有重要作用。生长激素是一种非糖蛋白激素,其N-端的氨基酸为生物活性所必需,而C-端氨基酸起着保护生长激素在循环中不被破坏的作用。除神经组织外,生长激素几乎对所有组织都有刺激作用,使其增加细胞数量和体积。生长激素促进组织生长的作用主要是通过影响蛋白质、糖和脂肪代谢,增加细胞内氨基酸的积累和蛋白质的合成来实现的。催乳素对鱼类的主要作用是调节渗透压。它能防止鱼类体内离子通过鳃和肾脏而丢失,而促进水分从肾脏排出,从而在低渗环境中维持血液中无机离子浓度,这一机能对那些交替生活在海、淡水中的鱼类十分重要。促性腺激素(GtH)是一种糖蛋白激素,由α和β两个亚基组成,亚基间以共价键结合在一起,分子量约为30 000。从机能上讲,哺乳动物的促性腺激素有两种:促卵泡激素(FSH)和促黄体激素(LH),它们分别由不同的细胞合成和分泌。FSH能促进雌体卵泡成熟及分泌雌激素;能促进雄性精子成熟。LH能促进雌体排卵、卵黄生成和黄体分泌雌激素和孕激素;促进雄体间质细胞增生和分泌雄激素。关于硬骨鱼类的GtH分泌细胞是否也像哺乳动物一样,具有两种类型,看法不一。有些学者对草鱼和鲮等脑垂体超微结构的研究证明,只有一种。在多种硬骨鱼类中已分离纯化出两种GtH,即GtHⅠ和GtHⅡ。这两种GtH都是糖蛋白,但化学结构不同。GtHⅠ能促进卵母细胞吸收卵黄和磷蛋白的生成;GtHⅡ能促进卵母细胞成熟和排卵、精子生成及性类固醇激素的合成。尽管这两种GtH在离体情况下都能刺激类固醇生成,但GtHⅡ才是卵母细胞最后成熟的主要调节者。硬骨鱼类排卵前GtH有一个高峰,尽管不同鱼类高峰的形式不同,但这个高峰对卵母细胞最后成熟是重要的。在离体情况下,各种GtH制剂对滤泡完整的卵具有刺激作用而发生胚泡破裂。GtH受体存在于鞘膜层和颗粒层。银大麻哈和马苏大麻哈至少存在两种GtH受体:I型受体和Ⅱ型受体,前者与GtH Ⅰ和GtHⅡ均能结合,但同GtHⅠ亲和性高,而II 型受体只与GtH II特异性地结合。I型受体存在于鞘膜层和颗粒层,II型受体只存在于颗粒层。GtH II对受体的特性与哺乳动物FSH 受体相似。由于哺乳动物的GtH与鱼类的GtH具有相同的生理功能,水产养殖中常用从

优秀企业文化在团队建设中的作用

优秀企业文化在团队建设中的作用 文化是企业的一部分,它对于企业的发展有着重要的意义。企业文化关系到企业员工对公司业务、产品以及同事相处之间的理解、定位。创建强大的企业文化,可以引导、激励团队的成员团结协作,为共同的目标而努力。 在我的公司发展中,企业文化发挥了很大的作用。企业文化的价值不仅体现在打造产品和业务发展方面——尤其尤其体现在我们的团 队建设上。 公司团队迅速扩大的那几个月内,团队成员从12人增长到30人,不论是在招聘新员工、培训上岗的过程中还是在与经验丰富的员工的日常交流中,企业文化都主导着公司整个氛围,即使是很小的变化都会对员工的态度以及工作造成巨大的影响。 对于新人,要从第一天开始进行企业文化熏陶 要打造企业文化,首先需要从招聘人员上着手。在benchprep,我们把文化契合度看作招聘过程中很重要的考察因素。我们邀请那些有潜力的候选人一起共进午餐,这样他们可以在社交场合中与我们的团队进行交流,并认同我们公司的文化。

是否有着很高的文化契合度是招聘新人时需要考虑的一个最重要 的因素。要知道员工的技能是可以慢慢培训提高的,但是员工本身的价值观等这些问题却是很难通过培训达成一致的。 要让别人从一开始就理解公司的愿景和产品是比较难的。因此,我们会要求我们的新人先使用我们的产品,这样他们可以很快的理解我们的理念。我们会给每一位加入我们公司的新人股票期权,即便他们可能不理解为什么这样做。 那些在公司早期发展中加入的员工已经理解这样的做法对员工有 着很大的激励作用,不仅仅会让员工本身提升,也同时促进了公司的发展。我们每天都要交流我们的目标以及愿景而不仅仅是使命宣言——这基本上就是新员工的每天的工作。 即使是很小的企业文化变动也会给公司带来很大的不同 很多经验都告诉我们,一些微小的因素都会为公司文化的建设带来很大的影响。每天,我们的团队都要在一起共进午餐,而当我们共进午餐时,不会聊与工作相关的问题。 因此,午餐时光就成为促进团队融洽的重要桥梁。这样的午餐时光可以让团队里的新人快速融入集体里,彼此愉悦的交流,可以提振士气,打造一个有凝聚力的团队氛围。就是这样一个简单的分享时间,就可以让团队员工明白,我们之间不分什么资历、职位等等。

鱼类增养殖学复习神题1

鱼类增养殖复习题 一、解释题(共5题,3分一题) 能流渠道(食物链):生态系统中的能量从一个生物体传到另一个生物体的方式。 池塘物质循环:池塘生态系统中的物质运动,首先通过绿色植物吸收各种营养元素,合成植物有机体,进入食物链,转到其他食植物的动物体,最后被分解为各种营养元素回到环境,这些被释放到环境中的物质,再被绿色植物吸收进入食物链;这种物质传递的过程,称为物质循环。 肥水下塘:清塘后,在鱼苗下池前一周左右注水50~60厘米,并立即向池中施放有机肥料以繁殖适量的天然饵料,鱼苗下池后便可吃到足够的适口食物 绝对怀卵量:亲鱼卵巢中的怀卵数,称为绝对怀卵量。 成熟系数:性腺重占鱼体重的百分比 卵细胞的大生长期:卵细胞中卵黄大量累积,卵母细胞的细胞质大量蓄积,卵黄充满细胞质的时期 卵细胞的生理成熟与生长成熟:初级卵母细胞经大生长期结束后其体积不再增大,卵核发生成熟变化。起主要特征为细胞核极化,核膜溶解,处于这种状态的Ⅳ期末的卵母细胞,称为生长成熟。即亲鱼性腺已发育到第Ⅳ期能够进行催产。而发育到生长成熟的卵细胞,在内源或外源促性腺激素的刺激下,进行二次成熟分裂,即减速分裂和均等分裂。在次过程中,初级卵母细胞进行第一次成熟分裂放出第一极体,紧接着成熟卵母细胞又开始进行第二次成熟分裂分裂,并停留在分裂中期,等待受精,称为生理成熟。 性周期:鱼类的性腺成熟随季节的变化而呈规律性周期变化的现象。 相对怀卵量:绝对怀卵数比上体重。 亲鱼游塘:亲鱼达到性成熟后,为了寻找鱼巢,在养殖水体中,成群地沿池塘边缘游动的现象叫做“亲鱼游塘” 鱼类发情:成熟亲鱼在催情剂的作用下,经过一定时间出现雌雄鱼相互追逐的兴奋现象。理论耗氧值:在溶氧充分供应时有机物的耗氧值。 出苗率:下塘鱼苗数占受精卵数的百分比,是判断孵化的指标。 受精率:受精卵数占总卵数的百分比,是判断催产效果的指标。 氧债:是好气性微生物、有机物的中间产物和五级还原物在缺氧条件下,其理论耗氧值受到抑制的那部分耗氧量。 效应时间:指亲鱼最后一次注射催产剂到开始发情高潮的时间。 下塘水花:卵黄消失;能正常的艇游,能垂直运动;腰点出现。 绝对生长:是鱼类在单位时间内长度和体重的增长量。表示鱼类一年、月、日的生长速度。分期注水:鱼苗下塘时,鱼体小,池塘的水深保持在50-60厘米,以后每隔3-5d注水一次,每次10-20厘米,共加水3-4次,最后达到最高水位的养殖方法。 捕大补小:分批捕出成鱼后,同时补防鱼种或夏花。 四定投饵:定质:饲料必须新鲜,不腐败变质。草类须鲜嫩、无根、无泥、鱼喜食。饵料的大小应与鱼的口裂一致,以加强饵料的适口性。 定量:使鱼类吃食均匀,提高鱼类对饵料的消化吸收率,减少疾病,有利于生长。每天的投饵量应根据水温、天气、水质和鱼的吃食情况等灵活掌握。 定时:投饵必须定时进行,以养成鱼类按时吃食的习惯,提高饵料利用率。 定位:就是投饵要有固定的地点,使养成到固定地点吃食的习惯。 流水养鱼:是在水体不断流动的鱼池中,高密度放养鱼类进行人工强度投饵,使鱼类快速生长而获得较高经济效益的养鱼方式。

光照对植物生长的作用(精)

光照对植物生长的作用 光照对植物生长主要有光合作用和光形态建成作用; (1)光合作用是植物在光照射下通过叶绿素吸收光能,在植物体内将二氧化碳和水合成碳水化合物放出氧气的过程。同时光也是影响叶绿素形成的主要因素,光线过弱,不利于叶绿素的生物合成,所以,作物栽培密度过大,上部遮光过甚,植株下部叶片叶绿素分解速度大于合成速度,叶色变黄。 光照对光合作用的影响:光合作用是一个光生物化学反应,所以光合作用随着光照强度的增减而增减。在暗中叶片不进行光合作用,而呼吸作用不断释放CO2,随着光强的增高,光和速率逐渐增强,逐渐接近呼吸速率,当到达某一光强时,叶片的光合速率等于呼吸速率,即CO2吸收量等于CO2释放量,表观光合速率为零,这时的光强称为光补偿点。植物在光补偿点时,有机物的形成和消耗相等,不能积累干物质,而晚间还要消耗干物质,因此从全天看植物所需的最低光照强度,必须高于光补偿点,才能使植物正常生长。当光照强度在光补偿点以上继续增加时,光合速率就成比率的增加,产生的有机物用于植物的生长。当光照达到一定的量的时候,光合速率就不再增加,而呈现光饱和现象。开始达到光合速率最大值时的光强称为光饱和点。植物的光饱和点与品种、叶片厚度、单位面积叶绿素含量多少有关。强光伤害—光抑制光能不足可成为光合作用的限制因素,光能过剩也会对光合作用产生不利的影响。当光合机构接受的光能超过它所能利用的量时,光会引起光合速率的降低,这个现象就叫光合作用的光抑制。 光质在太阳幅射中,只有可见光部分才能被光合作用利用。用不同波长的可见光照射植物叶片,测定到的光合速率(按量子产额比较)不一样。在600~680nm红光区,光合速率有一大的峰值,在435nm左右的蓝光区又有一小的峰值。可见,光合作用的作用光谱与叶绿体色素的吸收光谱大体吻合。在自然条件下,植物或多或少会受到不同波长的光线照射。例如,阴天不仅光强减弱,而且蓝光和绿光所占的比例增高。树木的叶片吸收红光和蓝光较多,故透过树冠的光线中绿光较多,由于绿光是光合作用的低效光,因而会使树冠下生长的本来就光照不足的植物利用光能的效率更低。“大树底下无丰草”就是这个道理。水层同样改变光强和光质。水层越深,光照越弱,例如,20米深处的光强是水面光强的二十分之一,如水质不好,深处的光强会更弱。水层对光波中的红、橙部分吸收显著多于蓝、绿部分,深水层的光线中短波长的光相对较多。所以含有叶绿素、吸收红光较多的绿藻分布于海水的表层;而含有藻红蛋白、吸收绿、蓝光较多的红藻则分布在海水的深层,这是海藻对光适应的一种表现。 (2)植物种子的发芽、胚轴和茎节间的伸长、叶的展开、花芽的形成和根的生长等生长发育过程中都需要光照称为光形态的建成 幼苗发育是受光控制的 光对茎的伸长有抑制作用(有实验证明,在光照下生长的玉米苗其生长速率比黑暗处理降低30%左右,自由生长素含量也降低40%左右,但结合态生长素含量上升,因为其中的蓝紫光有抑制生长的作用,在农业生产中常因植物群体过密,株间郁闭遮光,茎干细胞生长素含量多,生长迅速,茎干纤细,机械组织不发达,造成倒伏而导致减产。因此要合理密植,加强水肥管理,使株间通风透光,茎干粗壮不倒伏) 庇荫反映:当植物受到周围植物的遮荫时,阳生植物在这养的条件下,茎向上伸长速度加快,以获取更多阳关,这就叫做庇荫反映 光对花的形成影响很大,在植物完成光周期诱导的基础上,花开时分化后,自然光照时间越长,光强度越大,形成有机物越多,对花形成越有力 茎的趋光性,一般植物的地上部分都是朝向光的方向生长称为趋光性(在保持植株的株型上光具有引导作用,这个就是为什么要经常性的给植株转动方向)

光谱成分对植物生长的影响

光谱成分对植物生长的影响 太阳辐射是以光谱、光照强度、日照时间、影响植物生长发育的,太阳辐射是影响植物生长发育最直接和最重要的气象要素。到达地面上的太阳辐射包括紫外线、可见光和红外线三部分。而光谱成分是植物重要的一个生态因子,在太阳光谱中,对于植物生活其最重要的是可见光部分(波长0.04μm~0.76μm),但紫外线(波长0.01μm~0.4μm)和红外线(波长0.76μm~1000μm)也有一定的意义。不同波段对植物的生长发育,刺激和支配植物组织和器官的分化的影响也不同。因此,太阳光谱在某种程度上决定着植物器官的外部形态和内部结构,有形态建成的作用。 太阳辐射不同光谱对植物的影响如下:1)波长大于1.00μm的辐射,被植物吸收转化为热能,影响植物体温和蒸腾情况,可促进干物质的积累,但不参加光合作用2)波长为1.00~0.72μm的辐射,只对植物伸长起作用,其中波长为0.72~0.80μm的辐射称为远红外光,对光周期及种子的形成有重要作用,并控制开花与果实的颜色3)波长为0.72~0.61μm的红光、橙光可被叶绿素强烈吸收,某种情况下表现为强的光周期作用4)波长为0.61~0.51μm 的光,主要为绿光,表现为的光合作用与弱成形作用5)波长为0.51~0.40μm的光,主要为蓝紫光,被叶绿素和黑色素强列吸收,表现为强的光合作用与成形作用6)波长为 0.40~0.32μm的光,外辐射起成形和着色作用,如使植物变矮,颜色变深,叶片变厚等7)波长为0.32~0.28μm紫外线对大多数植物有害8)波长小于0.28μm的远紫外辐射可立即杀死植物。 此外,有科学实验证明,不同波长的光对植物生长有不同的影响。可见光中的蓝紫光与青光对植物生长及幼芽的形成有很大作用,这类光能抑制职务的伸长,而是其形成粗矮

鱼类生理学

鱼类生理学 1.— :神经冲动沿神经纤维到达末梢,末梢去极化,神经膜上钙通道开放,细胞外液中一部分Ca2+移入膜内,刺激小泡Ach释放,Ach通过接头间隙向肌细胞膜扩散,并与肌细胞膜表面受体结合,使肌细胞膜通透性改变,可允许Na+、K+甚至Ca2+通过,结果导致终膜处原有静息电位减少,出现膜去极化,产生终板电位。终板电位扩布到领近一般肌细 胞膜,使其去极化,达到阈电位引发肌肉动作电位,导致肌纤维收缩。 2.神经—肌肉接头兴奋传递的特点 答:(1)化学传递。传递的是神经末梢释放的乙酰胆碱。 (2)单向传递。兴奋只能从神经纤维传向肌纤维。 (3)有时间延搁。递质的释放、扩散与受体结合而发挥作用需要时间,比在同一细胞上传导要慢。(4)接点易疲劳。需要依赖胆碱酯酶消除,否则发生持续去极化。 (5)接点易受药物或其他环境因素影响。 3.- 答:(一)兴奋通过横管传导到肌细胞内部 (二)横管的电变化导致终池释放Ca2+ (三)Ca2+扩散到肌球蛋白微丝和肌动蛋白微丝交错区,和肌动蛋白微丝上的肌钙蛋白结合,从而触发收缩机制。 (四)肌肉收缩后Ca2+被回摄入纵管系统。。 4.

答:血液凝固的生化过程,开始于血栓细胞的破裂,血栓细胞释放血小板凝血因子,使凝血致活酶原转变为凝血致活 2+酶;凝血致活酶在Ca的协助下,使血液中的凝血酶原转变为凝血酶;后者促使纤维蛋白原变成纤维蛋白,并逐渐收 缩,形成血凝块。 第一步凝血致活酶原?凝血致活酶(血小板凝血因子) 2+ 第二步凝血酶原?凝血酶(凝血致活酶、Ca) 第三步纤维蛋白原?纤维蛋白(凝血酶) 5. 答: 1机械因素:血液和粗糙面接触,可使血小板迅速解体,释放凝血因子,加速凝血;用木条搅拌,可使纤维蛋 白附着于木条上,血液不会凝固。 2.温度因素:血凝速度随温度降低而延缓。 2+2+ 3.化学因素:Ca和维生素K可以促进凝血,而柠檬酸钠、草酸钠、草酸钾则抑制凝血(除去血液中Ca); 4.生物因素:肝素以及能刺激肝素产生的物质(如肾上腺素)都能使血凝延缓;抗凝血酶?也是抑制凝血的因素。 另外,蛇毒和水蛭素能抵抗凝血酶的作用,从而抑制凝血。(肝素除去凝血酶原) 6. 答:(1)1.绝对不应期和有效不应期 有效不应期:紧接心肌绝对不应期之后存在一个短时期(局部反应期),在此期间内,给以非常强的刺激可使膜

认识团队建设的基本和重要性

认识团队建设 团队要发展,就必须有团队精神和团队凝聚力。团队的领导者要有明确意识,帮助下属完成起步后各阶段的成长,让他们了解公司的产品,销售技巧和营销方案,制定目标,提高学习能力,创造环境,使团队在温馨的气氛中健康发展,因此加强团队的建设就显得十分重要。而且成都大势管理顾问公司在团队建设方面也开设了相关的课程,欢迎关注官网或微信。 1,认识团队 ◇团队的组织结构 团队成员来自不同的行业,每个人都有不同的要求、动机和背景,与传统行业有本质的不同。这种"松散型"团队的领导位置是凭借实力和团队共同努力实现的,因此,位置是由市场决定的,没有限定,也不会因为你来晚了只能做销售员,不能做领导。一个优秀的领导人,可以培养出更多的优秀团队,一个优秀团队的出现,不是失去而是更大的获得,事业发展人气旺盛,形成良性循环。 ◇团队的领导方式 由于团队具有松散型特点,缺少强有力的组织制约,这就决定了领导人属于"非权力型",与传统行业的权力型领导有本质的不同。 ◇团队的组织目标 在传统行业里,组织目标就是集体目标,不提倡个人的目标的实现。而团队的组织目标是通过所有个人目标的实现来完成,团队成员

大多数是社会变革中最受影响的群体,每个人带着强烈的愿望,渴望改变、渴望获得、渴望成功,因此,领导人要顾全团队大局,只有每个人的目标实现,才有团队目标的实现。 2,团队是特殊的企业 销售团队是一种超企业的实体,从某种意义上说,也可看成是一个企业,相当于公司的销售部门。但这个企业与传统企业有着本质的不同,传统企业以管理为中心,以制度为准则,无法从根本上解决雇佣关系、管理与服从的关系、制度与自由的关系等。销售团队这个特殊的企业,以其独有的特点很好地解决了这些矛盾。这个特殊企业的特点有: ◇没有老板,每个人都是自己事业的主人,大家以合作者的身份,用共同的理念集合在一起; ◇没有管理者,只有领导者,领导者就是有经验的团队领导人; ◇没有强制规章制度,但是遵循认同的组织文化,并自觉规范自己的行为。 以上特点,使每位直销人在这个特殊的企业中拥有独立的人格,真正成为具有现代特点的企业家,即自主经营、自负盈亏、自我发展、自我约束。它带来的整体效益之高,凝聚力之大是传统企业无法做到的。 3,团队建设的方法与技巧

相关文档