文档库 最新最全的文档下载
当前位置:文档库 › 浅谈起重机抗倾覆稳定性分析

浅谈起重机抗倾覆稳定性分析

浅谈起重机抗倾覆稳定性分析
浅谈起重机抗倾覆稳定性分析

浅谈起重机抗倾覆稳定性分析

【摘要】起重机械是现代工业、农业等领域不可缺少的设备,而起重机抗倾覆稳定性是起重机安全工作的重要条件之一,因此要提高起重机的抗倾覆稳定性,保证其安全运行。本文通过力矩不等式法和安全系数法对其进行分析,为起重机的抗倾覆稳定性贡献一份力量。

【关键词】起重机抗倾覆;稳定性;不等式;安全系数

前言

在起重机使用的几十年里,起重机倾覆事故时有发生,起重机抗倾覆问题作为起重机基本性能的安全要求突显其重要性,为了更大程度地确保起重机作业时的安全性,防止事故的发生,必须要求起重机有足够的抗倾覆稳定性,这也是起重机设计的基本要求。

1起重机的发展现状

我国从上个世纪五十年代引进苏联技术生产出第一台起重机以来,起重机的自主生产已有五十多年的历史。从发展阶段来看,前三十年属于缓慢起步阶段,近二十年为快速发展阶段,未来十年将会是起重机行业的技术革命阶段。在上个世纪八十年代初,我国成立了起重机械行业协会,做了切合实际的发展规划,编写了国家标准及行业标准,使起重机械的研发有章可循,这是我国起重机械发展的转折点,从此进入了高速发展时期。截止到2014年底,我国已有了上千家起重机械生产厂家,年生产各类起重机械几十万台,年产值两千多亿,从业人员已达三十多万人,生产各种规模起重机械达上百种。在今后的一段时期里,起重机械仍将处于稳健发展时期。产品将向着超大型化、智能化、高可靠性发展,在安全性方面将最大程度的降低起重机事故率,降低事故造成的经济损失和死亡率。

2起重机抗倾覆稳定性简介

起重机的抗倾覆稳定性指起重机在自重和外载荷作用下抵抗翻倒的能力,它是影响起重机安全性能最重要的参数,也是起重机安全运行的基础。起重机抗倾覆稳定性能始终贯穿起重机的设计生产安装试验的全过程,它决定着起重机的倾覆风险,控制着起重机的安全性能。起重机抗倾覆稳定性不足,会发生倾覆事故,造成重大的人身和设备事故,所以保证起重机具有足够的抗倾覆稳定性,是设计和制造工作中最基本的要求之一。影响起重机抗倾覆稳定性的因素主要包括载荷的作用性质和现场作业条件。

3起重机抗倾覆稳定性分析的必要性

起重机抗倾覆稳定性是起重机安全工作的重要条件之一,通过刚性稳定性承载能力设计计算可以保证其整体抗稳定性,对于室外工作的起重机,还需要计算

起重机计算说明书

2/1615) 8.06.0(1328762101501.296267cm N x =+?=τ 主梁在水平面内受水平惯性力和风力引起的剪应力一般较小,可略去不计 对于单主梁箱形门式起重机,其主梁截面除承受自由弯曲应力 外,还了在受约束弯曲应力、约束扭转正应力(以增大15%的自由弯曲应力计入)和剪应力。此外,主梁截面还了在受纯扭转剪应力,现验算如下: ①弯心的位置发中图8-32所示,主梁截面弯心位置: cm b Q Q Q e 87.387.906 .08.06.00212=?+=?+= 图8-32 主梁截面弯心计算简图 小车各部分重量如下: G 1=4509kg ——小车上机械部分重量; G 2=16322kg ——吊重及吊钩组重量; G 3=2490kg ——小车架及防雨罩重量。 ②外扭矩 Mn=G 1l 1+G 2l 2+G 3l 3 =[(4509×122)+(16322×130)+(2490×155)]×9.8=299674.98N ·m ③ 主腹板上的剪应力 e=38.87cm Mn=299674.98N ·m τ1=1369.37N/c ㎡ τ2=1641N/c ㎡

2)支腿平面内的支腿内力计算τ1= 1 2Q Mn π 式中π=b0h0=90.7×150.8=13677.56c㎡ τ1= 8.0 56 . 13677 2 29967498 ? ? =1369.37N/c㎡≤[τ] 盖板厚度与主腹板厚度相同 ④副腹板上剪应力 τ2= 6.0 56 . 13677 2 26933999 2 2 ? ? = Ωδ Mn =1641N/c㎡≤[τ] 计算支腿内力时,可分别取门架平面和支腿平面的门架作为平面刚架进行计算,门架平面的刚架为一次超静定结构,支腿平面的刚架为静定结构。 ①由主梁均布自重产生的内力(图8-33)由[1]表11-4可知, 有县臂时的侧推力为: ② 图8-33 支腿由自重引起的内力图

浅谈起重机抗倾覆稳定性分析

浅谈起重机抗倾覆稳定性分析 【摘要】起重机械是现代工业、农业等领域不可缺少的设备,而起重机抗倾覆稳定性是起重机安全工作的重要条件之一,因此要提高起重机的抗倾覆稳定性,保证其安全运行。本文通过力矩不等式法和安全系数法对其进行分析,为起重机的抗倾覆稳定性贡献一份力量。 【关键词】起重机抗倾覆;稳定性;不等式;安全系数 前言 在起重机使用的几十年里,起重机倾覆事故时有发生,起重机抗倾覆问题作为起重机基本性能的安全要求突显其重要性,为了更大程度地确保起重机作业时的安全性,防止事故的发生,必须要求起重机有足够的抗倾覆稳定性,这也是起重机设计的基本要求。 1起重机的发展现状 我国从上个世纪五十年代引进苏联技术生产出第一台起重机以来,起重机的自主生产已有五十多年的历史。从发展阶段来看,前三十年属于缓慢起步阶段,近二十年为快速发展阶段,未来十年将会是起重机行业的技术革命阶段。在上个世纪八十年代初,我国成立了起重机械行业协会,做了切合实际的发展规划,编写了国家标准及行业标准,使起重机械的研发有章可循,这是我国起重机械发展的转折点,从此进入了高速发展时期。截止到2014年底,我国已有了上千家起重机械生产厂家,年生产各类起重机械几十万台,年产值两千多亿,从业人员已达三十多万人,生产各种规模起重机械达上百种。在今后的一段时期里,起重机械仍将处于稳健发展时期。产品将向着超大型化、智能化、高可靠性发展,在安全性方面将最大程度的降低起重机事故率,降低事故造成的经济损失和死亡率。 2起重机抗倾覆稳定性简介 起重机的抗倾覆稳定性指起重机在自重和外载荷作用下抵抗翻倒的能力,它是影响起重机安全性能最重要的参数,也是起重机安全运行的基础。起重机抗倾覆稳定性能始终贯穿起重机的设计生产安装试验的全过程,它决定着起重机的倾覆风险,控制着起重机的安全性能。起重机抗倾覆稳定性不足,会发生倾覆事故,造成重大的人身和设备事故,所以保证起重机具有足够的抗倾覆稳定性,是设计和制造工作中最基本的要求之一。影响起重机抗倾覆稳定性的因素主要包括载荷的作用性质和现场作业条件。 3起重机抗倾覆稳定性分析的必要性 起重机抗倾覆稳定性是起重机安全工作的重要条件之一,通过刚性稳定性承载能力设计计算可以保证其整体抗稳定性,对于室外工作的起重机,还需要计算

起重机杆长计算

起重机得选择 起重机得选择包括起重机类型得选择、起重机型号得选择与起重机数量得确定。?1,起重机类型得选择 起重机类型应综合考虑下列诸点进行选择:?(1)结构得跨度、高度、构件重量与吊装工程量等; (2)施工现场条件;?(3)本企业与本地区现有起重设备状况; (4)工期要求; (5)施工成本要求。?一般情况下,吊装工程量较大得普通单层装配式结构宜选用履带式起重机,因履带式起重机对路面要求不太高,变幅、行驶方便,可以负荷行驶。汽车式起重机对路面得破坏性小,开赴吊装地点迅速、方便,适宜选用于吊装位于市区或工程量较小得装配式结构。位于偏僻地区得吊装工程,或路途遥远,或道路状况不佳,则选用独脚拔杆或人字拔杆、桅杆式起重机等简易起重机械,往往可提早开工,能满足进度要求,且成本低。?对于多层装配式结构由于上层构件安装高度高,常选用大起重量履带起重机或普通塔式起重机(轨道式或固定式)。对于高层或超高层装配式结构,则需选用附着式塔式起重机或内爬升式塔式起重机。内爬升式塔式起重机得优点就是自重轻,不随建筑物高度得增加而接高塔身,机械多安装在结构中央,需吊装得构件距塔身近,因而可选用较小规格得起重机;其缺点就是施工荷载(含塔机自重、风荷载、起吊构件重等)需建造中得结构负担,工程结束后,需另设机械设备进行拆除,立塔部位得构件须在塔机爬升或拆除后补装。附着式塔式起重机安装在建筑物外侧,可避免内爬升式塔式起重机得上述缺点,但起吊作业中需安装许多距塔身较远得构件,工作幅度大,要求选用较大规格得起重机,同时占用场地多,需随建筑物得升高安装附着杆,且起重机得塔身接高也较复杂。 2.起重机型号得选择?选择起重机得原则就是:所选起重机得三个工作参数,即起重量Q、起重高度H与工作幅度(回转半径)R均必须满足结构吊装要求。 当前,塔式起重机多采用水平臂小车变幅装置,故根据上述须满足结构吊装要求得三个工作参数与各种塔式起重机得起重性能很容易确定其型号。 下面,以履带起重机为例(汽车起重机、轮胎起重机类似)叙述起重机型号得选择方法: (1)起重量计算?1)单机吊装起重量按下列公式计算: Q≥Q1+Q2 (14-45) 式中 Q——起重机得起重量(T);Q1——构件重量(T);Q2——索具重量(T)。?2) 双机抬吊起重量按公式(14-46)计算:?K(Q 主+Q 副 )≥Q1+ Q2(14-46)?式中 Q主——主机起重量;Q副——副机起重量;K——起重量降低系数,一般取0、8;?Q 1 、Q2——含义与公式(14-45)相同。 (2)起重高度计算(图14-125)?起重机得起重高度按公式(14-47)计算:? H≥H1+H2+H3+H4 (14-47)?式中 H——起重机得起重高度(M),停机面至吊钩得距离; H1——安装支座表面高度(M),停机面至安装支座表面得距离; H2——安装间隙,视具体情况而定,一般取0、3~0.5M;?H3——绑扎点至构件起吊后底面得距离(M); H4——索具高度(M),绑扎点至吊钩得距离,视具体情况而定。 ?起重高度计算图?(3)起重臂(吊杆)长度计算 1)起重臂不跨越其她构件得长度计算 起重机吊装单层厂房得柱子与屋架时,起重臂一般不跨越其她构件,此时,起重臂长度按公式(14-48)计算(图14-12

起重机抗倾覆稳定性分析

【摘要】进入21世纪以来,在经济和技术发展的推动下,为我国相关行业的发展带来了极大的推动作用,在很多施工建设中离不开起重机设备的支撑。如何确保起重机装置的稳定运行,就需要高度关注起重机的抗倾覆性。在工程施工中,起重机装置发挥着重要的作用,在不断提升了建筑施工机械化水平之后,将越来越高的要求抛向了起重机的安全性和稳定性。所以,必须要对其抗倾覆稳定进行着重的分析与谈探究。 【关键词】起重机抗颠覆稳定性 1 分析稳定性的重要性 在吊装时,明确的给出起重机的额定载荷:通常在坚实的支撑表面上设置所列额定值,在要求的范围之内控制起重机的水平偏差,这样起重机不会因为支撑物不稳定而歪斜和摇晃。为了确保起重机在施工的时候可靠、安全,需要认真的分析其支撑面的受力情况。 2 起重机的构成与参数分析 2.1 机械构成 以履带式起重机为例进行论述。首先,动臂结构。多节的组装桁结构即动臂,对节数进行调节后,臂的长度可以被改变,在转台前部设置安装其端部,通过钢丝变幅滑轮组支撑悬挂其顶端,这样其倾斜角就可以被改变。可以将副臂加在动臂的顶端,动臂和副臂会构成一个夹角。主、幅卷扬系统是起升机结构的主要构成,在动臂吊重时主要会应用到主卷扬系统,副臂吊重主要由副卷扬系统完成。其次,底盘。行走机构与行走装置是底盘的主要构成部分,起重机的左右转弯和向前行走主要是由前者来进行掌控的,由导向轮、支撑轮、履带轮、托链轮、履带架和驱动轮一同构成了行走装置,通过水平轴、链条传动和垂直轴来带动动力装置运行,从而将支撑轮与导向轮带动起来,确保机器主体可以顺着履带行走。 2.2 分析技术参数 起重力矩和起重量是履带式起重机的主要技术参数。其中在进行选择的时候,工作半径、起吊高度和起重量在其中发挥着重要的作用。而且经常被称之为可以进行起重的三个重要因素。这三个要素彼此间也是互相牵制、互相影响的。 2.3 分析及计算受力情况 {gb+lbcosa)+qr-gbxo}cosp=mf 总垂直荷载: gb+c1+q=p 侧向力矩: sinp{gb(a+lbcosa)―g1xo}=ms 履带下面的压力在垂直很在下可以这样计算: 前方力矩的压力影响可以用一根横梁来模拟:能够将此式子得出来: 这样在履带中心的前方力矩上会作用这样的压力: 叠加p1和p2,一旦p1比p2要大,这样叠加到一起的压力就会构成梯形,一旦p1比p2小,这样叠加到一起的压力就会构成三角形, 当呈现出梯形的压力图时,这样p1+p2为履带前面的压力,p1-p2为后面的压力。当呈现出三角形的压力图时,pmax为最大压力,并且,顺着履带底部长度l压力三角形不断的发挥着自己的作用。这样力矩mf和垂直荷载p必然会出现在其中。 3 计算与分析稳定性 很多起重机的纵向稳定性要比横向强,因此,一般只按照纵向对起重机的稳定性进行计算分析。当具备k≥1.4的稳定系数条件时,就可以说具备稳定的吊装。 ro{f1+n/2+m/2}/m1+m2+m3+m4≥1.4 其中,作用倾覆边缘的力矩用m1表示,因为惯性力所生成过的倾覆力矩由m2表示,离

起重机数据及公式

一、有关数据 1、起重机用钢丝绳的强度一般为1400~1700N/mm2之间 2、园弧齿轮传动效率可达0.99~0.995 3、减速器的轴承温度不应超过80℃ 4、减速机用50-150号工业齿轮油灌注式飞溅润滑 5、起重量在Q≥0.7 Q 额 属于重载起升 6、吊钩的扭转变形不得超过10度 7、摇表(兆欧表)在使用过程中手摇的速度为120转/分 8、调整CJ12-100/3接触器的触头,动静触头的距离为9-11毫米 9、在集中运行高速大车机构中,一般要求传动轴在每米长度的径向跳动不大于0.5毫米。 10、作为升降载客电梯,应采用特号钢丝绳 11、桥式起重机用钢丝绳作起升机构常采用 Ⅰ号钢绳 12、正转接触器的文字代号是KMF 13、ZSC表示是立式减速器 14、运行机构中齿轮磨损达原厚度的25% 时应报废 15、制动器与闸衬的接触面积不应小于75% 16、联接轨道用的鱼尾板联接螺栓最少应不 少于4个 17、集电器的瓷瓶绝缘电阻不得少于1 兆欧 18、当滑轮轮槽的底部直径减少达绳径的 50%时应报废 19、齿轮联轴器的间隙以4毫米为合格 20、起重量在Q≥0.7 Q 额 属于重载起升 21、使用凸轮控制器轻载起升操作,控制器 在每挡停留时间为1秒 22、吊钩的扭转变形不得超过10度 23、摇表(兆欧表)在使用过程中手摇的速度 为120转/分 24、调整CJ12-100/3接触器的触头,动静 触头的距离为9-11毫米 25、调整CJ12-400/3接触器触头断开距离 为13-15毫米 26、桥式起重机用钢丝绳作起升机构常采用 Ⅰ号钢绳 27、用作司索绳,张紧绳等次要场合,应选

塔式起重机抗倾覆计算及基础设计

塔式起重机抗倾覆计算及基础设计 一、基础的设置:根据塔式起重机说明书基础设置要求的技术参数及对地基的要求 选用基础设计图,基础尺寸采用5.5m ×5.5m ×1.2m ,基础砼标号为C35(7天和28天 期龄各一组),要有砼检测报告,基础表面砼平整度要求≤1/1000,塔式起重机预埋螺 栓材料选用40Cr 钢,承重板高出基础砼面5~8㎜左右,要有排水设施。 二、塔式起重机抗倾覆计算 ①、塔式起重机的地基为天然地基,必须稳妥可靠,在表面上平整夯实,夯实后的 基础的承压能力不小于200kPa ,基础的总重量不得小于80T ,砼 标 号 不 得 小 于 C35,砼的捣 制应密实,塔式起重机采用预埋螺栓固定式。 ②、参数信息:塔吊型号:QTZ5510,塔吊起升高度H :37.50m ,塔身宽度B :1.7m , 自重F K :453kN ,基础承台厚度h :1.2m ,最大起重荷载Q :60kN ,基础承台宽度b :5.50m , 混凝土强度等级:C35。 ③、塔式起重机在安装附着前,处于非工作状况时为最不利工况,按此工况进行设计 计算。塔式起重机受力分析图如下: 根据《塔式起重机说明书》,作用在塔吊底座荷载标准值为:M K =1654kn ·m , F K = 530KN ,Fv K =74.9KN ,砼基础重量 G K = 835KN ④、塔式起重机抗倾覆稳定性验算: 为防止塔机倾覆需满足下列条件: 式中e----- 偏心距,即地基反力的合力至基础中心的距离; M K ------ 相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的力矩值; Fv K ------相应于荷载效应标准组合时,作用于矩形基础顶面短边方向的水平荷 载; F K -------塔机作用于基础顶面的竖向荷载标准值; h ---------基础的高度(h=1.2m ); G K ----------基础自重; b---------矩形基础底面的短边长度。(b=5.5m) 将上述塔式起重机各项数值M K 、Fv K 、F K 、h 、G K 、b 代入式①得: e =1.28< b/3=1.83m 偏心距满足要求,抗倾覆满足要求。 三、塔式起重机地基承载力验算:根据岩土工程详细勘察报告资料,1#塔吊 基础底板处承载力特征值为372Kpa 。取塔式起重机基础底土层的承载力标准值为 372Kpa ,根据《TCT5613塔式起重机使用说明书》,采用塔式起重机基础:长× 宽×高=5500×5500×1200的形式,塔吊采用预埋螺栓固定式,塔式起重机对地 面压应力为170Kpa <372Kpa 满足要求,直接按说明的大样图施工,不再做另外

汽车起重机倾覆事故分析及其抗倾覆能力研究 黄小民

汽车起重机倾覆事故分析及其抗倾覆能力研究黄小民 发表时间:2018-01-24T21:01:04.647Z 来源:《基层建设》2017年第32期作者:黄小民 [导读] 摘要:本文介绍了一起发生在宁波环城高架建设工地的汽车起重机倾覆事故,总结了汽车起重机发生倾覆事故的原因和其在使用中存在的安全隐患,并对汽车起重机的抗倾覆能力进行了研究,通过对这起事故的分析可以提高汽车起重机操作人的安全意识,并能对类似事故的事故鉴定工作提供一定的帮助,对特种设备检验检测人员对汽车起重机抗倾覆能力的判别提供参考。 神华哈尔乌素露天煤矿设备维修中心内蒙古鄂尔多斯市 010300 摘要:本文介绍了一起发生在宁波环城高架建设工地的汽车起重机倾覆事故,总结了汽车起重机发生倾覆事故的原因和其在使用中存在的安全隐患,并对汽车起重机的抗倾覆能力进行了研究,通过对这起事故的分析可以提高汽车起重机操作人的安全意识,并能对类似事故的事故鉴定工作提供一定的帮助,对特种设备检验检测人员对汽车起重机抗倾覆能力的判别提供参考。 关键词:汽车起重机;倾覆;力矩限制器;抗倾覆能力;支腿 汽车起重机是一种安装在一般汽车底盘或者特殊汽车底盘上的特殊起重机械,它的驶驾驶室与起重操纵室是分开设置的。优点是流动性能好,能够在不同施工场地快速移动,提高工作效率。缺点是作业时须打开支腿,且不能带载行驶,也不适合在松软或泥泞的场地上工作。其起重量的范围也很大,可从8~1600t不等,是工程建设使用最广泛的起重机械之一。近年来由于城市建设的迅速发展特别是轨道交通,城市高架项目的不断增加,促进各种流动式起重机被大量使用,但是由于现场使用环境复杂,作业人员安全意识薄弱,因此由汽车起重机造成的事故数量也逐年上升。事故包括“倾覆(翻车)”“坠臂”“折臂”等,在这些事故中倾覆的事故出现概率最高。 一、汽车起重机倾覆的原因 倾覆事故:该类事故在流动式工程起重机中占有相当高的比率,也是最常见的事故。“倾覆”事故的根本原因就是起重机丧失了整体稳定性,起重机在施工作业中最重要的一点就是要保证其在作业中的整体稳定性,稳定性是指设备在某种状态下保持平衡不倾翻的能力。抗倾覆稳定性是指起重机在自重和外载荷的作用下抵抗翻倒的能力。汽车起重机在作业中的稳定性,是指在最不利的载荷组合条件下,完成预定起重功能时抗倾翻的能力。 1.1倾覆线.汽车起重机作业时的倾覆线是指其最外侧支腿的连接线。如果起重机发生倾翻,一般都是沿其起重臂所在方向的倾覆线倾覆的。 1.2抗倾覆稳定条件。根据GB3811-2008起重机设计规范稳定性条件是对倾覆边的起重力矩代数和大于零。即汽车起重机自重和各项载荷对倾覆边的力矩中,稳定力矩代数和大于倾翻力矩代数和。在计算时,每个载荷力矩等于载荷与该项载荷到倾覆线之间距离的乘积。 1.3起重作业区。以起重机的回转中心为原点,以通过其支腿中心的射线为界限,起重作业区可划分为前、后、左、右四侧,驾驶室所在区域为前侧。对汽车起重机来说,起重作业区是一般为左右两侧和后侧,除非有特殊情况,前侧一般不作为起重作业区;通常正常作业的情况下,后侧的稳定性大于左侧和右侧,而左侧和右侧的稳定性要大于前侧。 1.4影响稳定性的因素。影响稳定性的因素有很多,包括有起重量的大小、其重力作用的方向,作业区域地面的情况、天气、风的影响等。操作人员的违章操作,以及各种原因引起的超载,判断失误都有可能引起汽车起重机发生倾覆事故。 1.5造成汽车起重机倾覆的可能原因①地基不平整或地面不实,支腿下没有铺设专用的枕木。②起重机的四个支腿未能完全伸出或虽然全部伸出但四个支腿并未完全支撑在地面上。③不同原因引起的超负荷起升作业。④起重量限制器、力矩限制器、幅度限制器等安全保护装置的失效。⑤起重作业时受大风的影响。⑥支腿油缸或变幅油缸发生泄漏,导致起重机整体不稳定。⑦驾驶员违规的带载行驶。⑧天色较暗对作业环境估计不明,没有听从相应指挥人员违规操作。⑨起升钢丝绳突然断裂或松散造成起重机整体失稳。了解了有可能造成倾覆的各种原因。下面本人就通过介绍一起前几年发生在宁波的一起汽车起重机倾覆事故,希望能够从这起事故中得到启发。 二、事故介绍 2.1设备概况。该设备系徐州工程机械集团有限公司制造,QY25K-1型汽车起重机。 2.2事故经过。2012年12月,一台车牌号为浙J52143的QY25K-1型的汽车起重机在宁波北外环在建高架工地进行吊装作业。当日晚上19点左右,当汽车起重机侧方作业吊起一捆重量约2.5t的钢筋到高架另一侧距离约20m左右的桥面上时,突然失稳,该汽车起重机立即向车体左侧倾翻,致使吊臂及上车其它部分严重损坏,司机从驾驶室逃离不急死亡 2.3事故原因①由于路面情况限制起重机左侧支腿未完全伸展开。由于起重机停靠作业的场地一侧需要保证机动车辆的正常行驶,两侧支腿不能完全伸展开造成起重时不稳。②驾驶员超载作业。当时驾驶员准备将一捆重量约2.5T吨的钢筋吊往另一侧桥面,测量两者间的距离约20m左右,当时起升倍率为4倍率,根据QY25K型汽车起重机主臂起重性能,我们可以看到幅度为20m时该工况下全伸支腿侧方作业时的最大起重量为2t,而实际情况吊装的钢筋超过了这一最大起重量,可以说是造成这一倾覆事故的最直接原因。③力矩限制器失效。力矩限制器是起重机上的重要安全保护装置,它是能自动检测出起重机所吊载荷重量及起重臂的角度,并能显示出其额定载重量和实际载荷、工作半径、起重臂所处的角度等参数实时监控检测起重机工况。当实际起重力矩接近相应工况设计值时,力矩限制器主机上蜂鸣器开始间断鸣叫预警,当实际起重力矩超过相应工况设计值时力矩限制器主机上蜂鸣器长鸣报警,继电器动作,起升及起重臂增大工作半径的操作将会自动停止,防止司机误错操作造成的事故。现场调查发现由于力矩限制器的失效当司机超载作业时,力矩限制器没有给出警报提示,更不可能自动停止司机的错误操作是造成倾覆事故的间接原因。④吊装人员和司机安全意识不够在日常检验中发现,汽车起重机司机和工地吊装人员往往追求速度而忽视了安全,汽车起重机的起重量是随着幅度和起升倍率的变化而变化的,设备理论的最大起重量不能反映实际工况下的起重量,例如事故中的这台起重机在主起升四倍率的工况下最大的起重量只能达到11t远远小于设备理论的最大起重量,而且在四倍率的工况下,随着幅度的增大它的起重量也会不断的减小,很多对该类设备不熟悉的操作人员使用时会存在安全隐患。⑤起重机上的额定起重量标识有误在汽车起重机的明显位置都会标有该设备的型号,例如:QY25K,表示该设备的理论起重量为25t,而在这次事故的调查中发现该车的型号被改为QY40。这种改动出于什么原因呢?我们知道施工单位租赁汽车起重机的费用是根据起重机吨位的大小决定了,吨位越大租赁费用越高,一些不正规的汽车起重机租赁单位往往会把设备的型号做改动增加设备的最大起重量以此获得更高的利润,同时也会造成操作人员在使用中超载作业。也可能造成倾覆的事故。 结语 汽车起重机被广泛应用于各类施工,吊装的作业中,由于其作业场所和作业的特点,决定了汽车起重机在使用过程中容易出现倾覆的

起重机计算公式

起重机计算公式 绞车选型方法 1):拉力计算 本公司各型绞车技术参数中给出的是卷筒第一层钢丝绳的额定拉力.用户往往需要最外层拉力,此时可以按以下方法来换算 a).设定:卷筒的底径D 0(mm)为已知., 钢丝绳直径d( mm)O 为已知.. 绕绳层数X (1.2.3.4….)为已知, 钢丝绳第一层拉力F 1(KN)为已知. b).求X 层拉力 F X =d X D d D )12(00-++·F 1 (KN) 2) 容绳量L 理论计算.d 为推荐. 1: L=3.14B(d D 0+X)·X (m)2:L= 1000 n ?π(D+nd)·d L 1 式中,B 卷筒两档板之间的容绳宽度(m). D 0(D )—卷筒底径(mm). D---钢丝绳直径(mm) X (n )---绕绳层数 实际可用的容绳量L 1应该考虑到防止绳头脱出,要将理论容 绳量L 减去3卷的长度,即 L 1=3.14B(d D 0+X) ·X-0.0094(D 0+d) (m) 布带卷筒形计算公式 带总长计算:L=π(D+B)×n + 2)1(B n n ??-π mm D=卷筒底径mm B=带厚mm N=层数 π·B 积分差 3) 供油泵理论流量的计算 当用户需要绞车X 层的绳速为Vx 已知时,供给该绞车泵的理论流量Q 为

Q= d X D q X 3210·· ·])12([·ηηηπ-+∑∨(L/min) 式中,Vx--第X 层的绳速(m/min) D0—卷筒底径(mm) X-----层数 d------钢丝绳直径(mm) ∑q---绞车总排量(ml/rev) η1----泵的容积效率, η1=0.88~0.97(视泵不同品种) η2----系统中阀件容积效率, η2=0.985~0.995 η3---液压马达容积效率, η3=0.97~0.98(INM 和HGM 系列马达) 液压传动装置选型 本产品实际尺寸相同的同一种液压马达有多种排量,尺寸相同的行星减速器也有几种传动比,它们之间适当组合,就可得到很多种总排量,(即液压马达排量乘以传动比)因此为了满足机器工况(牵引力及行走速成度),在液压系统流量Q,链轮分度圆直径D. 行走速度V.已经给定的条件下总排量的计算公式为. ∑q=0.1882·Q ·D ·η1·η2·η3/V (ml/rev )? 式中:Q=泵的理论流量 (L/min ) D=车轮或链轮分度圆直径 (mm ) V=车轮或履带行走速度 (km/h ) η1----泵的容积效率, 对柱赛泵 η1=0.96~0.97,对齿轮泵η1=0.88~0.90, η2----系统中阀件容积效率, η2=0.985~0.995 η3---液压马达容积效率, η3=0.97~0.98(INM 系列马达) η3=0.98~0.98(IGM 系列马达) 根据?式中计算所得的总排量,可以适当选择液压马达和行星减速器的规格,它们可以有多种组合,为了选取择出最合适的组合,此时考虑: 首先液压马达的速度不能超出液压马达允许的最高转速,传动装置的转速 n=5300V/D (r/min )2 式中,V---行走速度(km/h ) D---车轮或链轮分度圆直径(mm ) 液压马达的转速 n 1=n ·i (r/min )3 式中: i —行星减速机传动比 由式3可见,为了使n 1小于液压 马达所允许的最高转速,i 值取小值较好, 但另一方面液压马达的排量. Q 1=∑q/i(ml/rev) 4 由式4可见.i 值取小值时,在∑q 不变情况下,马达的排量q 1值就增大,对同一种尺寸的液压马达,q 1值是有限制的,不能任意增大,而且当q 1值选大值时,在相同工作压力和工作转速条件下,随着q 1值增大,液压马达的工作寿命与q 1值成3.3次方比例减小,为此在满足液压马达最高转速的条件下,i 值应该尽量选取大值,以使q 1值变小,这样有利于提主高液压马达的寿命。由计算所得到的∑q 值应该按液压

轮胎起重机抗倾覆稳定性计算的探讨

轮胎起重机抗倾覆稳定性计算的探讨 长航红光港机厂(宜昌440000) 王旺生武汉交通科技大学(武汉430063) 胡吉全 摘 要 轮胎起重机稳定性主要指行驶稳定性和起重稳定性。稳定性计算时,重点应考虑倾覆轴线和水平 惯性力的确定问题,并要按无风静载、有风动载、突然卸载或吊具脱落、非工作状态4种工况进行稳定性校核。 关键词 轮胎起重机 稳定性 失稳 倾覆 1 引言 收稿日期:1998-10-30 起重机的抗倾覆稳定性是关系到起重机能否安全作业的重要指标。世界各起重机生产国对起重机的抗倾覆稳定性都制定了严格的校核法规。我国起重机设计规范GB 3811283对不同类型起重机的稳定性校核计算作了明确的规定。根据轮胎起重机的工作特点,规范规定应按起重机组别 对4种工况进行校核,并强调每一工况都应考虑最不利的载荷组合。规范对于不同类型起重机的稳定性计算工况作了规定,各验算工况下载荷系数的取值亦不相同。如何正确体现轮胎起重机各工况下最不利的工况组合,这是设计者应根据起重机工作具体情况而考虑的问题。本文根据笔者多年从事轮胎起重机设计的工作经验,对轮胎起重机设计时稳定性的计算进行探讨。 2 轮胎起重机稳定性计算类别 轮胎起重机是一种流动起重机械,其工作情况比一般起重机更复杂。除了定点作业可以带支腿和不带支腿作业外,还要求能带载行驶,并可以在行驶过程中作业。因此轮胎起重机的稳定性应考虑以下几种情况。211 行驶稳定性 [2] 轮胎起重机在行驶过程中,由于受各种外载荷的作用和受各种道路、气候条件的影响,当超过某一限度时,可能发生倾覆失稳。如同一般装卸车辆一样,轮胎起重机的行驶失稳主要有纵向和横向两种。纵向失稳是指行驶中的起重机由于受水平惯性力、纵向坡道力、纵向风力等的作用,使整机绕前轮或后轮接地点连线发生倾覆;横向失稳是指起重 机在弯道上或在直道上转弯行驶时受侧向离心力或横坡力、横风力等的作用,而使起重机发生横向侧滑或横向倾翻。与一般车辆相比,轮胎起重机的轮距和轴距相对较大,行驶速度较低,但一般行驶路面条件较差,整机重心较高。这些是在具体计算中应加以注意的。212 起重稳定性 轮胎起重机在定点作业过程中抵抗倾覆的能力称为起重稳定性。起重机设计规范所规定的稳定性校核主要是指起重稳定性,它包括无风静载、有风动载、突然卸载或吊具脱落、非工作状态4种工况。对于每一种工况,确定起重机的工作状态,选定计算载荷是稳定性校核中应着重考虑的问题。 3 轮胎起重机稳定性计算时应着重考虑的 问题 影响轮胎起重机稳定性计算的因素很多,在实际计算中应着重考虑以下问题:311 倾覆轴线的确定 轮胎起重机实际工作时工况各异,要校核不同工况下的稳定性,首先应正确选定倾覆轴线。带支腿作业时,倾覆轴线应为各支撑中心的连线。用轮胎支承作业或行驶时,应考虑将转向桥和驱动桥均锁定,倾覆轴线为轮子接地点的连线。对装有双胎的车桥,倾覆轴线为外轮着地点的连线。312 水平惯性力的确定31211 行驶水平惯性力 轮胎起重机在直线行驶起、制动时,产生纵向水平惯性力。当起重机的质量为G 0,吊运货物质量为 Q ,起动加速度或制动减速度为a j 时,惯性力的计算 表达式为 港口装卸 1998年第6期(总第120期)

第三章工程起重机计算载荷与计算方法

第三章工程起重机计算载荷与计算方法 第一节作用在起重机上的载荷 主要的有:起升载荷、起重机自重栽荷、风载荷、重物偏摆引起的载荷、惯性和离心力载荷以及振动、冲击引起的动力载荷等 一、自重载荷G (或用P G 表示) 自重载荷指除起升载荷外起重机各部分的总重量(不是质量,在此以N 计),它包括结构、机构、电气设备以及附设在起重机上的存仓等的重力 二、起升载荷P Q (最大额定起重量Q +吊钩自重q ) 起升载荷是指起升质量的重力(以N 计)。起升质量包括允许起升的最大有效物品、 取物装置(下滑轮组、吊钩、吊梁,抓斗、容器、起重电磁铁等)、悬挂挠性件及其它在升降中的设备的质量。 起升载荷动载系数φ2 2=1?+δ——结构质量影响系数 201200=1()() Y m m Y δλ++ 三、水平载荷 1.运行惯性力P H 起重机自身质量和起升质量在运行机构起动或制动时产生的惯性力按质量m 与运行加速度a 乘积的1.5倍计算,但不大于主动车轮与钢轨间的粘着力 2.回转和变幅运动时的水平力P H 臂架式起重机回转和变幅机构运动时,起升质量产生的水平力(包括风力、变幅和回转起、制动时产生的惯性力和回转运动时的离心力)按吊重绳索相对于铅垂线的偏摆角所引起的水平分力计算 四、安装载荷 在设计起重机时,必须考虑起重机安装过程中产生的载荷。特别是塔式起重机,有的类型其安装给局部结构产生的应力大大地大干工作应力。露天工作的起重机安装时风压应加以考虑。 五、坡度载荷 起重机坡度载荷按下列规定计算: 1.流动式起重机需要时按具体情况考虑。 2.轨道式起重机轨道坡度不超过0.5%时不计算坡度载荷,否则按实际坡度计算坡度载荷。 六、风载荷P W 在露天工作的起重机应考虑风载荷并认为风载荷是一种沿任意方向的水平力。 起重机风载荷分为工作状态风载荷和非工作状态风载两类。工作状态风载荷P Wg 起重机在正常工作情况下所能承受的最大计算风力 1.风载荷按下式计算: =W h P CK qA 计算风压q 风压髙度变化系数K h 风力系数C 查表得 七、试验载荷 起重机投入使用前,必须进行超载动态试验及超载静态试验

履带车抗倾覆稳定性计算分析

高空作业车抗倾覆稳定性计算分析 抗倾覆稳定性是高空作业车的基本安全性能之一。由于高空作业车在工作时所受的载荷情况复杂,需要找出一种比较方便计算且能充分考虑到各种载荷作用关系的间接校核方法进行验证。 目前我国对高空作业机械有4种校核方法:高空车国家标准校核方法、起重机校核方法、平台消防车校核方法、ISO国际标准方法。本高空作业车将以流动式起重机的标准 (GB/T19924-2005/ISO4305:1991)为基础,结合其他方法提出一种既合理又实用的分析方法,以满足该高空作业车抗倾覆稳定性的校核条件。 1 高空作业车受力分析 高空作业车的一个或多个受力构件失去保持稳定平衡的能力,称为高空作业车的失稳,产生的原因有工作斗过重、支撑面倾斜或风力等一个或多个因素造成的。在分析本车抗倾覆稳定性之前了解机械本身的受力情况是十分必要的。 图1为本车结构示意图,除了受到本身各个部件的重力、风力(有风工况)及工作人员自重之外还要受到惯性力。为了研究高空作业车的承载能力,获取其极限位置的工况,往往将自身重力视为稳定力,外界受力视为倾覆力。 图1 高空作业车结构示意图 1-工作斗,2-上臂,3-下臂,4-履带地盘

2 高空作业车倾翻线的确定 高空作业车失稳倾覆时的倾翻线是由其支腿尺寸确定的,在相邻支腿连线构成的梯形中,离重心距离最短的那一条边即为倾翻线。 图2为高空作业车底盘支腿伸出位置图,支腿支撑点之间的连线为倾翻线。 图2 高空作业车底盘支腿伸出位置图 1-支腿,2-回转支撑 3 高空作业车抗倾覆稳定性的计算 借鉴起重机设计规范中关于流动式起重机稳定性计算的方法对高空作业车的抗倾覆稳定性进行分析计算。根据工作状态的不同,分为无风静载、有风动载、非工作状态3种状态。 3.1无风静载 在无风静载工况下采用“稳定系数法”进行分析,既稳定系数K 等于倾覆线内侧的稳定力矩M s 与倾覆线外侧的倾覆力矩M t 的比值,K=M s /M t 。当K=1时为临界值;当K>1时,为稳定值;当K<1时为失稳值。根据本车情况,本车抗倾覆稳定性计算公式为: d d s s x x z z t s L G L G L G L G M M K ++== (1) 式中 K —稳定性系数; M s —倾覆线内侧的稳定力矩; L zc L zh L zq L c L c L q L c 1 2 L Gc L Gc L Gc L Gc

起重机抗倾覆稳定性分析

起重机抗倾覆稳定性分析 【摘要】起重机是一种广泛运用于工业与建筑业中的机械设备,对社会经济的发展起着非常大的作用。同时,起重机也是一种常见的特种设备,具有较大的危险性,一旦发生事故会造成较大的经济损失甚至人员伤亡。因此,起重机的安全性、可靠性一直是各个起重机设计制造和使用管理单位关注的焦点,也是特种设备监督检验机构监察的重点。对于起重机械的事故来说,倾覆事故是最危险且造成损失最大的一种事故,抗倾覆稳定性是衡量起重机械安全性能的最关键参数。本文简要介绍了国内外起重机的发展现状,重点介绍了在起重机抗倾覆稳定性方面的研究情况。针对不同起重机结构特点及作业环境,分析了典型起重机的抗倾覆稳定性,提出了计算起重机械抗倾覆稳定性的方法。 【关键词】起重机;抗倾覆稳定性;倾覆 引言 起重机作为工业、物流运输业以及建筑业中使用最广泛的特种设备,其安全性和可靠性决定了其在使用过程中发生事故的风险大小,因此需要对起重机的安全性能和事故风险进行重点关注。根据国家质检总局的统计,2013年全年,全国共发生特种设备事故227起、死亡289人、受伤274人,其中起重机械事故61起,所占比重达26.87%,死亡人数占29.07%。在发生的起重机械事故中,人员伤亡大部分是由倾覆事故造成。从2013年特种设备事故统计可见,起重机械事故数量多、损失大,倾覆事故较为突出。因此,需要我们对起重机械进行科学严谨的安全评价,重点研究倾覆事故这种损失较大的事故,从而降低乃至杜绝起重机械倾覆事故的发生,避免经济损失及人身伤亡。 1.起重机的发展现状 我国从上个世纪五十年代引进苏联技术生产出第一台起重机以来,起重机的自主生产已有五十多年的历史。从发展阶段来看,前三十年属于缓慢起步阶段,近二十年为快速发展阶段,未来十年将会是起重机行业的技术革命阶段。在上个世纪八十年代初,我国成立了起重机械行业协会,做了切合实际的发展规划,编写了国家标准及行业标准,使起重机械的研发有章可循,这是我国起重机械发展的转折点,从此进入了高速发展时期。截止到2014年底,我国已有了上千家起重机械生产厂家,年生产各类起重机械几十万台,年产值两千多亿,从业人员已达三十多万人,生产各种规模起重机械达上百种。在今后的一段时期里,起重机械仍将处于稳健发展时期。产品将向着超大型化、智能化、高可靠性发展,在安全性方面将最大程度的降低起重机事故率,降低事故造成的经济损失和死亡率。 2.国内外起重机抗倾覆稳定性研究简介 国内的起重机抗倾覆稳定性研究开展较晚,早起的起重机械一般凭借引进的苏联经验,按照一定的经验公式来选取安全系数进行设计。进入二十世纪八十年

塔吊抗倾覆验算

一,工程概况 夏威夷·碧水春城工程位于长沙天心区桂花坪。为地下二层,主楼 12层,框剪力墙结构,长约180 米 ,宽约 65 米, 建筑面积约 1040 平方米。 二、塔吊选型: 该工程面积大,作业面宽,给塔吊选型定位带来了一定难度。根椐生产厂家产品规格、型号以及工程的特点和现场的实际情况,本工程采用 QTZ63 系列D5610型塔吊 3台,负责施工现场材 料、设备的垂直和水平运输,此型号的塔吊性能可靠、安全且操作方便,系建设部长沙建机研究 设计院设计,湖南南方建筑机械总厂制造。本标段布置三台。基本能覆盖整个施工面,满足高度、幅度。 三、塔吊平面位置的确定塔吊位置确定原则:塔吊能旋转 3600;覆盖最大使用面积;施工现场 尽量无盲区;不影响周边建筑;与塔吊间无碰触、安全。 1、布置要求: 确保安全生产、质量可靠、运行方便,垂直运输用料,成品和半成品在起吊幅度和旋转半径范围内覆盖最大工作面,并略有余地,达到最佳的使用效率和最好的经济效益,经方案比较、研究决定。 2、基座位置: 2#塔吊 D5610 塔吊基座中心点设置在(2-A)轴南 3.6m 交(2-21)轴东 3.3m,南 3.6m。基 座平行于(2-A)轴线。(详见平面位置附图)。中心点坐标位置:X=88055.728,Y= 49579.670。塔吊基座置于已剥露的地质为强风化岩,承载力特征值 fak为 400Kpa。 3#塔吊T5610 塔吊设置在(I-21)轴东 4.0m交( I-X)轴北4.0m。塔吊中心坐标 X= 88126.581, Y=49660.627。(详见平面位置附图)。基座地质为粘土,承载力特征值 fak为 240Kpa(原始土)。 1#塔吊 T5610 塔吊设置基坑北边边坡台阶上,位于(I-Y3)轴线北5.5m 交(I—13)轴线东 4.0m。原始地质为粉质粘土,fak 为 240Kpa。塔吊工作时本设计不考虑其地耐力。 3 、按以上位置安装,可利用 1#栋与 2#栋之间地下室外顶场地做地上主楼施工用场,配合 1#栋材料加工场吊运材料。但必须对如下内容进行施工处理: 12#、3#塔吊须安装在地下室,其塔吊需穿过地下室顶板及地下室底板,必将增加地下室底板和顶板预留洞口防水和第二次处理预留楼板洞口施工增加费用。具体施工措施:防水采用镀锌 4 ㎜厚铁板作止水带,砼按后浇带方法要求施工,底板筋加密一倍并焊接。 22#、3#塔吊基础与地下室底板防水有影响,塔基顶面标高比钢筋砼底板下置 0.45m,不与地下室底板相碰。底板施工时四边伸进塔吊基座 1.0米,做止水带,塔吊基座台面四周铺 4㎜厚油膏 1 米宽,其他均按地下室底板防水要求施工。 3 增加塔吊安装临时道路,从基坑南向基坑中挖斜向坡道至 2 台塔吊位置。基坑场内采用干铺狗

起重机械计算的基本原则及 安全系数

起重机械计算的基本原则及安全系数(图文) 1.计算的基本原则 为保证起重机安全、正常地工作,其金属结构和机构的零部件应满足强度、稳定性和刚度的要求。强度和稳定性要求是指结构构件在载荷作用下产生的内力不应超过许用的承载能力(指强度、疲劳强度和稳定性方面的许用承载能力);刚度要求是指结构在载荷作用下产生的变形量不应超过许用的变形值,以及结构的自振周期不应超过许用的振动周期。 (最专业的安全生产管理-风险世界网) 起重机的零部件和金属结构应进行以下计算:①疲劳、磨损或发热的计算;②强度计算;③强度验算。与这三类计算相适应,起重机的计算载荷有下列三种组合: (1)寿命(耐久性)计算载荷--第Ⅰ类载荷。该载荷是用来计算零部件或金属结构的耐久性、磨损或发热的。按正常工作时的等效载荷进行计算,不仅计算载荷大小,还要考虑它们的作用时间。 对于受变载荷作用的机构零件和金属结构,当应力变化循环次数足够多时,应进行疲劳计算;当应力变化循环次数较少或很少时,就不必进行疲劳计算。工作级别是A6,A7,A8级起重机的金属结构构件和机构零件应验算疲劳。 (2)强度计算载荷--第Ⅱ类载荷。该类载荷是用来计算零部件或金属结构的强度、受压和平面弯曲构件的稳定性、结构件的刚度、起重机的整体稳定性与轮压的,按工作状态最大载荷进行强度计算。确定强度计算载荷时,应选取可能出现的最不利的载荷组合。

(3)验算载荷--第Ⅲ类载荷。该类载荷是用来验算起重机的某些装置(如夹轨器)、变幅机构、支承旋转装置的某些零件和金属结构的强度和构件的稳定性,以及起重机的整体稳定性的,按非工作状态最大载荷及特殊载荷(安装载荷、运输载荷及冲击载荷等)进行强度验算。 在起重机事故处理时,由金属结构和机构的零部件破坏导致的事故,应进行必要的验算。验算时,按实际工况的实际载荷进行。 2.计算方法 目前起重机的计算采用许用应力法,即在强度计算中以材料的屈服极限,在稳定性计算中以稳定临界应力,在疲劳强度计算中以疲劳强度极限除以一定的安全系数,分另得到强度、稳定性和疲劳强度的许用应力。结构构件的计算应力不得超过其相应的许用值。 许用应力法计算的步骤是:根据相应的计算载荷确定计算应力、根据所用材料的机械特性确定强度极限,然后进行比较,使强度极限与计算应力的比等于或大于安全系数。强度验算应满足不等式: 3.安全系 强度计算与疲劳计算的基本条件是零件危险截面的计算应力不得大于许用应力,即比材料极限应力小一个倍数,这个倍数即为安全系数。

通用桥式起重机主梁计算

一、通用桥式起重机箱形主梁强度计算(双梁小车型) 1、受力分析 作为室内用通用桥式起重机钢结构将承受常规载荷G P 、Q P 和H P 三种基本载荷和偶然载荷S P ,因此为载荷组合Ⅱ。 其主梁上将作用有G P 、Q P 、H P 载荷。 主梁跨中截面承受弯曲应力最大,为受弯危险截面;主梁跨端承受剪力最大,为剪切危险截面。 当主梁为偏轨箱形梁时,主梁跨中截面除了要计算整体垂直与水平弯曲强度计算、局部弯曲强度计算外,还要计算扭转剪切强度,弯曲强度与剪切强度需进行折算。 2、主梁断面几何特性计算 上下翼缘板不等厚,采用平行轴原理计算组合截面的几何特性。

图2-4 注:此箱形截面垂直形心轴为y-y 形心线,为对称形心线。因上下翼缘板厚不等,应以x ’— x ’为参考形心线,利用平行轴原理求水平形心线x —x 位置c y 。 ① 断面形状如图2-4所示,尺寸如图所示的H 、1h 、2h 、B 、b 、0b 等。 ② 3212F F F F ++=∑ [11Bh F =,02bh F =,23Bh F =] ③ Fr q ∑= (m kg /) ④ 3 21232021122.)21(2)2(F F F h F h h F h H F F y F y i i c +++++- =∑?∑= (cm ) ⑤ 2 233 22323212113 112 212)(212y F Bh y F h h H b y F Bh J x ?++?+--+?+= (4cm ) ⑥ 202032231)2 2(21221212b b F h b B h B h J y ++++= (4cm ) ⑦ c X X y J W /=和c X y H J -/(3cm ) ⑧ 2 B J W y y = (3cm ) 3、许用应力为X ][σ和X ][τ。

相关文档
相关文档 最新文档