文档库 最新最全的文档下载
当前位置:文档库 › 数学建模论文--物流与选址问题

数学建模论文--物流与选址问题

数学建模论文--物流与选址问题
数学建模论文--物流与选址问题

物流预选址问题 (2)

摘要............................................................................................................. 错误!未定义书签。

一、问题重述 (2)

二、问题的分析 (3)

2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (3)

2.2 问题二:建立合理的仓库选址和建造规模模型 (3)

2.3 问题三:工厂向中心仓库供货的最佳方案问题 (3)

2.4 问题四:根据一组数据对自己的模型进行评价 (4)

三、模型假设与符号说明 (4)

3.1条件假设 (4)

3.2模型的符号说明 (4)

四、模型的建立与求解 (5)

4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (5)

4.1.1模型的建立 (5)

4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (7)

4.2.1 基于重心法选址模型 (8)

4.2.2 基于多元线性回归法确定中心仓库的建造规模 (10)

4.3 问题三:工厂向中心仓库供货方案 (10)

4.4 问题四:选用一组数据进行计算 (11)

五、模型评价 (16)

5.1模型的优缺点 (16)

5.1.1 模型的优点 (16)

5.1.2 模型的缺点 (16)

六参考文献 (16)

物流预选址问题

摘要

在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。

本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。问题四我们选用了一组数据通过求解多元线性规划对问题进行了实例化分析。为中心仓库的选址问题做了合理说明。最后我们对模型进行了评价和分析。

关键词:物流网络重心法选址模型多元线性规划

一、问题重述

某公司是生产某种商品的省知名厂家。该公司根据需要,计划在本省建设两个生产工厂和若干个中心仓库向全省所有城市供货。根据市场调研,全省有m个城市,每个城市单位时间需要该公司的物资量是已知的,有关运费的信息也是确定的,工厂和中心仓库

的单位面积的建设费用和运营费用已知,请你建立数学模型,回答以下问题:

1、如何为两个生产工厂选址?(建多大规模?)

2、建多少个中心仓库?分别建在什么地方?(分别建多大规模?)

3、生产工厂如何向中心仓库供货?

4、请你自己选用一组数据进行计算(可以根据假设、地图和铁路、公路、水路等

信息选择有关数据),并对你的模型和结果作出评价。

二、问题的分析

物流配送中心,是为了在供应到消费过程中实现调节跟踪服务的主体机构,是满足订货、储存、包装、加工、配送、运输、结算和信息处理等需要的手段和设施。而配送中心布局和选址,对其功能发挥和综合效益影响极大,应进行定性与定量因素综合分析。

在物流系统的运作中,配送中心的选址决策发挥着重要的影响。配送中心是连接工厂与客户的中间桥梁,其选址方式往往决定着物流的配送距离和配送模式,进而影响着物流系统的运作效率,因此,研究物流配送中心的选址具有重要的理论和现实应用意义。

工厂是生产商品的源头,商品的需求量往往决定了工厂的建造规模,而运输费用则是衡量工厂选址的标准,对公司的收入有着及其密切的联系。

本文旨在通过对城市布局和对商品需求量的分析,通过模型的建立解决三个有关工厂和仓库选址及建造规模的问题,并通过数据对所建模型进行评价。

2.1 问题一:分析确定合理的模型确定工厂选址和建造规模

考虑到工厂生产的商品直接运往中心仓库,所以工厂的建立由中心仓库的位置决定。本题中公司计划在本省建设两个生产工厂和若干个中心仓库,所以允许我们先行

确定中心仓库的位置,再由中心仓库的位置确定工厂的位置,而工厂的建造规模可以

由城市对商品的需求量决定。

在确定效益函数中各指标值权重时,考虑到层次分析法是一种能有效解决比较、判断、评价和决策问题的实用方法,因此选用层次分析法确定各个指标在效益函数中权重。将值带入效益函数,再参照优劣等级表,即可对模型进行评价。

2.2 问题二:建立合理的仓库选址和建造规模模型

问题二要求建立合理的仓库选址和建造规模模型,考虑到考虑到工厂生产的商品直接运往中心仓库,所以工厂的建立由中心仓库的位置决定。本题中公司计划在本省建设两个生产工厂和若干个中心仓库,所以允许我们先行确定中心仓库的位置,再由问题2确定的中心仓库位置确定工厂的位置,而工厂的建造规模可以由城市对商品的需求量决定。

2.3 问题三:工厂向中心仓库供货的最佳方案问题

我们将问题实例化,假设两个工厂向四个中心仓库供货,工厂的生产量和中心仓库的容纳量均已知,利用优化指派模型对问题进行分析得到供货的最佳方案。

2.4 问题四:根据一组数据对自己的模型进行评价

我们通过对某公司的一组数据进行分析利用自己建立的模型计算解决以三个问题,并以此初步评价本模型的优劣。

三、模型假设与符号说明

3.1条件假设

(1)工厂和仓库的选址是任意的,不受政治、地理、环境等因素的影响;

(2)各地交通条件相同,运输过程中不受交通条件的影响;

(3)工厂运输费率是一定的;

3.2模型的符号说明

四、模型的建立与求解

4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模

问题一要求确定合理的模型确定工厂选址和建造规模。

考虑到工厂生产的商品直接运往中心仓库,所以工厂的建立由中心仓库的位置决定。本题中公司计划在本省建设两个生产工厂和若干个中心仓库,所以允许我们先行确定中心仓库的位置,再由问题2确定的中心仓库位置确定工厂的位置,而工厂的建造规模可以由城市对商品的需求量决定。 4.1.1模型的建立

重心法是将物流系统中的需求点和资源点看成是分布在某一平面围的物流系统,各点的需求量和资源量分别看成是物体的重量,物体系统的重心作为物流网点的最佳设置点,利用求物体系统重心的方法来确定物流网点的位置。

假设中心仓库的个数和位置已确定,将K 个中心仓库按照地理位置及物质需求量合理均匀的划分为两个区域。每个区域建一个工厂位置由重心法确定。

假设某个区域有b 个城市,其坐标分别为(X i,Y i ),(i=1,2,……b );在该区域建一个工厂,坐标是(X 0 ,Y 0),设运输费用为E g ;总费用为C g (x),则有

E g =∑=n

1

i g g gi d a i i ω (4.1.1)

其中a gi 表示单位物资从工厂到中心仓库i 运输单位距离的费用;ωgi 表示工厂到中心仓库i 的运输量(即第i 个中心仓库的需求量);dg i 表示从工厂到中心仓库i 的距离;

g 3g gi 2g g 1g g )x (P V E C βββ++= (4.1.2)

其中βg 1、βg 2、βg 3表示权重系数,可以根据决策者的需求来定,且βg 1+βg 2+βg 3=1;

i g V 表示工厂总的运营费用;g P 表示工厂的建设费用。

式1.1中

d gi =2

i 02i 0y -y x x )

()(+- (4.1.3) 将式1.3代入式1.1中并对等号两边同时求偏导即

∑=-=??b i i

i i i d x x a E x 1g 0g g 0)

(ω (4.1.4)

∑=-=??b

10g g 0g )

(i i

i i i d x x a y E ω (4.1.5) 由2.4解得

∑∑===b

i gi gi

gi b

i gi i

gi gi d a d x a x 1

1

0ωω ,

∑∑===b

i gi gi

gi b

i gi gi

gi gi d a d y a y 1

1

0ωω (4.1.6)

考虑到两个方程右边均含有x 0,y 0而消去x 0,y 0较为麻烦,因此我们采用迭代法进行计算,

其计算的方法如下:

(1)以所有城市的重心坐标作为中心仓库的初始位置坐标(x 0

0,y 0

0);

(2)利用方程式(5.1.1)和(5.1.3)计算与(x 0

0,y 0

)相应的总的运输费用E 0;

(3)把(x 0

0,y 0

)分别代入方程式(5.1.3)和(5.1.6)中,计算中心仓库的改善地点

(x 1

0,y 1

);这样反复计算下去,直到计算出所有重心点。

(4)利用方程式(5.1.1)和(5.1.3)计算各个地点相对应的总的运输费用E ; 由此可确定该区域工厂的坐标(x 0,y 0),同理运用此法也可确定另一个工厂的坐标。b 个中心仓库的位置布局及工厂选址如下草图:

考虑到各个城市所需商品量不同,以物资量及运输费用来确定工厂规模。我们认为工厂的建造规模与城市所需物资量及运输费用呈线性相关,则有

S= V C E 321ααα++ (4.1.7)

其中S 表示工厂的建造规模,E 表示总的运输费用,C 表示建设费用V 表示经营费用,α1,α2,α3分别表示对应的权系数,且α1+α2+α3=1。

设1?α

,2?α,3?α分别作为α1,α2,α3的估计量,得到样本回归方程为: 332211????i i i x x x y

ααα++=(i=1,2,3…n ) (4.1.8) 用Excel 辅助计算可得到3个待估参数1?α

,2?α,3?α的估计值。 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模

问题二要求建立合理的模型确定中心仓库的位置及建造规模。查阅资料,我们决定

用重心法选址模型对中心仓库进行合理选址。考虑到重心法是一种布置单个设施的方法,而本问题中中心仓库有多个,我们先对其中一个仓库选址,再根据城市对商品的需求量确定仓库的个数及规模。

这种方法要考虑现有设施之间的距离和要运输的货物量,不考虑在不满载的情况下增加的特殊运输费用。

4.2.1 基于重心法选址模型

将本省n 个城市按照地理位置及物质需求量合理的划分为K 个区域,现设某个区域有m 个城市,坐标为(X i,Y i ),(i=1,2,……m );在该区域建一个中心仓库,坐标是(X 0 ,Y 0),设运输费用为E ;总费用为C,则有

E=i i i i μωd n

1

i a ∑= (4.2.1)

其中a i 表示单位物资从中心仓库到城市i 运输单位距离的费用;ωi 表示中心仓库到城市i 的运输量(即第i 个城市的需求量);d i 表示从中心仓库到城市i 的距离;μi 表示由重心法得到的中心仓库的备选状态(μi =1表示被选中,μi =0表示不被选中)。

i 3i 2i 1)x (μμμβββC V E C ++= (4.2.2)

其中β1、β2、β3表示权重系数,可以根据决策者的需求来定,且β1+β2+β3=1;i μE 表示备选中心仓库μi 总的运输费用;i μV 表示各个被选中心仓库μi 总的运营费用;i μC 表示各个备选中心仓库μi 的建设费用。 式2.1中

d i =2

i 02i 0y -y x x )

()(+- (4.2.3) 将式2.3代入式2.1中并对等号两边同时求偏导即

∑=-=??n i i

i i i d x x a E x 100)

(ω (4.2.4)

∑=-=??n i i

i i i d x x a y E 100)

(ω (4.2.5) 由2.4解得

∑∑===n

i i i

i n

i i i

i i d a d x a x 1

1

0ωω ,

∑∑===n

i i i

i n

i i i

i i d a d y a y 1

1

0ωω (4.2.6)

考虑到两个方程右边均含有x0

,y0而消去x0,y0较为麻烦,因此我们采用迭代法进行计算,其计算的方法如下:

(1)以所有城市的重心坐标作为中心仓库的初始位置坐标(x00,y00);

(2)利用方程式(5.2.1)和(5.2.3)计算与(x00,y00)相应的总的运输费用E0;

(3)把(x00,y00)分别代入方程式(5.2.3)和(5.2.6)中,计算中心仓库的改善地点(x10,y10);这样反复计算下去,直到计算出所有重心点。

(4)利用方程式(5.2.1)和(5.2.3)计算各个地点相对应的总的运输费用E;

由此可确定该区域中心仓库的坐标(x0

,y0),同理运用此法也可确定其他中心仓库的坐标。K个城市的位置布局及中心仓库选址如下:

4.2.2 基于多元线性回归法确定中心仓库的建造规模 在式4.2.2中

i 3i 2i 1)x (μμμβββC V E C ++=

令 y=C(x),x i1=i μE ,x i 2=i μV ,x i3=i μC

对于一个实际问题,如果我们获得n 组观测数据(x i1,x i2,x i3)(i=1,2,3……n )

???

?

?

?

??

?++=?

??++=++=332211n 233222211213

31221111x x x y y y n n n x x x x x x βββββββββ (4.2.6) 设1?β

,2?β,3?β分别作为1β,2β,3β的估计量,得到样本回归方程为: 332211????i i i x x x y

βββ++=(i=1,2,3…n ) (4.2.7) 用Excel 辅助计算可得到3个待估参数1?β

,2?β,3?β的估计值。

4.3 问题三:工厂向中心仓库供货方案

我们根据工厂和中心仓库的位置及规模来确定最佳供货方案,考虑到两个工厂,多个中心仓库,每个工厂需对多个中心仓库供货,为了方便我们采用模型实例化方案来解决这个问题。

设两个工厂为A 1,A 2, K 个中心仓库分别为B 1,B 2,……B k ,其中每个工厂的产量为a 1,a 2,每个中心仓库对城市的供货量为b 1,b 2,……b k ,从工厂A i 到中心仓库B j 的单位运费为C ij (i=1,2,j=1,2,……k )。建立目标函数如下,

ij 2

1i k

1j ij min ∑∑==d C

(4.3.1)

s.t.

j b x

≤∑=2

1

i ij

(j=1,2,……k )

i k

a y

≥∑=1

j ij

(i=1,2)

x ij ≥0 ,ij y ≥0 (i=1,2,j=1,2,……k )

其中d ij 为第i 个工厂到第j 个中心仓库的距离,x ij 表示第j 个中心仓库的最大容货量, ij y 表示第i 个工厂的最小生产量,第j 个中心仓库对城市最大供货量,a i 为第i 个工厂最小生产量。

4.3.1模型实例化

具提问题如下:设有两个工厂,四个中心仓库,其中工厂生产量、中心仓库运输量及单位运费如下表4.3.1所示

由LINGO 软件求解,得到

*11x =20,0*

13*12==x x ,22*14

=x ,0*24*21==x x ,25*22=x ,30*

23=x ,即工厂A 1 运往

中心仓库B 1 的运量为20,运往中心仓库B 2 、B 3 均为0,运往B 4 的运量为22,剩余8个单位,工厂A 2运往中心仓库B 2 的运量为25,运往中心仓库B 3 的运量为30,运往B 1 、B 4 的运量为0,剩余5个单位。由此我们便得到了两个工厂向四个中心仓库具体的运货方案。

4.4 问题四:选用一组数据进行计算

我们根据某公司在省的物流运输数据选用省十二个市进行分析。运输费用及个市坐标如下表5.4.1所示:

表4.4.1

根据该公司提供的数据计算出建设费用及运营费用如表4.4.2所示:

表4.4..2 单位:万元

根据省地图将以上所选城市按地理位置及需求量划分为四个区域如下:

采用迭代法,求出各个重心以及中心点的运输成本,计算结果如下表:

中心仓库μ

i 横坐标X

i

纵坐标Y

i

总的运输费用E i

(元)

总费用(万元)

μ0113.71 34.70 53188.8 2094.46 μ1113.58 34.50 53156.3 2094.00 μ2113.49 34.48 52113.4 2082.45 μ3114.01 33.37 53120.4 2090.90 μ4114.00 33.32 53111.5 2075.55 μ5113.86 33.25 53000.25 2080.24 μ6113.75 33.20 52999.7 2076.62 μ7112.75 33.22 51888.6 2049.55 μ8111.88 33.15 51435.3 2030.44

μ9 112.58 34.86 51003.5 2006.00 μ10 112.53 34.56 50001.5 1960.61 μ11

112.44

34.40

49998.9

1975.56

采用多元线性回归对总成本目标函数的系数进行求解 用spss 辅助计算结果如下:

由上图的输出结果,可以得到本例中的回归系数为1?β=0.038, 2

?β=0.770, 3

?β= -0.424。故所求回归方程为 i 424.0770.0038.0)x (i i μμμC V E C -+= ( 5.4.1)

根据以上求解结果将μ0 ,μ1,μ2……μ11分别代入式5.4.1中,计算出总运费的结果

如下:C (μ0)=2093.45,C (μ1)=2093.80,C (μ2)=2050.46,C (μ3)=2092.95,

C(μ4)=2076.53,C(μ5)=2085.24,C(μ6)=2075.62,C(μ7)=2049.57,C(μ

)=2025.37,C(μ9)=2005.24,C(μ10)=195809,C(μ11)=1973.48 。由此我们8

可以看出本模型计算结果与实际数据符合的很好,较为理想。

四个区域的中心仓库的最佳建造坐标分别为:(113.49,34.48),(113.75,33.20),(111.88,33.15),(112.58,34.86)。

五、模型评价

5.1模型的优缺点

5.1.1 模型的优点

(1)问题一,二,我们选取了重心法对模型进行了合理的构建,方法简单易懂。

(2)问题三我们对模型进行了实例化,用数据进行了精确的计算,并用LINGO对模型进行了求解,给出了工厂对中心仓库的确切的供货方案。

(3)模型四我们选用了一组数据进行了计算,用计算数据充分的说明了我们所见模型的合理性。

5.1.2 模型的缺点

(1)各模型的数据使用前基本上都需要进行标准化处理。

(2)我们只对中心仓库进行了实例化分析,工厂的建立与中心仓库雷同。

六参考文献

[1] J.Korpela, M.Tuominen,1996.“A Decision Aid in Warehouse Site Selection”.

International Journal of Production Economics,45,P169—180.

[2] 龚延成,郭晓汾,蔡团结,卫江,物流配送点选址模型及其算法研究[J],中国公

路学报,2003年,第16卷第2期123-126

[3] 鲁晓春,詹荷生.关于配送中心重心法选址的研究[J].北方交通大学学

报,2000,24(6):108—110

[4] 大立,杜文,易腐物品物流配送中心选址的遗传算法[J].西南交通大学学报,2003,

(2):62-67

[5] 王战权,东援,配送中心选址的遗传算法研究[M].实用物流技术,2001.3:11-14

[6] 忠中,汪定伟.BZC电子商务中配送中心选址优化的模型与算法[J].控制与决策,

2005,(1).

[7] 戴更新,于龙振,常菊.基于混合遗传算法的多配送中心选址问题研究[J].物

流技术,2006:6 40-42

[8] 吴兵,罗荣桂,伟华.基于遗传算法的物流配送中心选址研究[J].理工大学学报: 信

息与管理工程版, 2006, 25(2): 89- 91.

[9] 程继红,马颖亮,高鹏.基于混合整数规划模型的物流中心选址方法[J].海军航空

工程学院学报.2007,22(2):292- 294.

[10] 方,丙午.基于混合整数规划模型的物流配送中心选址优化[J].物资学院,2007,

(8).

部分程序代码如下:

model:

! A 2 Warehouse,4 Customer

Transportation Problem;

sets:

Warehouse/1..2/:a;

Customer/1..4/:b;

Routes(Warehouse,Customer):c,x;

endsets

! The objective;

[OBJ] min = sum(Routes:c*x);

!The demand constraints;

for(Customer(j):[DEM]

sum(Warehouse(i):x(i,j))>=b(j));

!The supply constraints;

for(Warehouse(i):[SUP]

sum(Customer(j):x(i,j))<=a(i));

! Here are the parameters;

data:

a=50,60;

b=20,25,30,22;

c=110,130,236,145,

142,125,186,169;

ENDDATA

end

数学建模 学校选址问题模型

学校选址问题 摘 要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: ∑==16 1i i x s 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab 进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数 最小花费 固定成本 规模成本 灵敏度分析

1. 问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表 备选校址 1 2 3 4 5 6 7 8 覆盖小区 1,2,3, 4,6 2,3,5,8, 11,20 3,5,11,20 1,4,6,7, 12 1,4,7,8,9,11,13, 14 5,8,9,10 11,16,20 10,11,1516,19, 20 6,7,12, 13,17, 18 备选校址 9 10 11 12 13 14 15 16 覆盖小区 7,9,13, 14,15, 17,18, 19 9,10,14,15,16, 18,19 1,2,4,6, 7 5,10,11, 16,20, 12,13,14,17, 18 9,10,14, 15 2,3,,5, 11,20 2,3,4,5,8 1.2 问题提出: 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 ?? ???-??+=, 否则, 若学生人数超过学生人数0600 )600(50 1002000i i i c βα 其中i α和i β由表1-2给出: 表1-2 学校建设成本参数表(单位:百万元) 备选校址 1 2 3 4 5 6 7 8 i α 5 5 5 5 5 5 5 3.5 i β 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.1 备选校址 9 10 11 12 13 14 15 16 i α 3.5 3.5 3.5 3.5 2 2 2 2 i β 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表1-3: 表1-3.各小区1到6年级学龄儿童数平均值(样本均值) 小区 1 2 3 4 5 6 7 8 9 10 学龄儿童数 120 180 230 120 150 180 180 150 100 160

数学建模学校选址问题

学校选址问题 摘要 本文为解决学校选址问题,建立了相应的数学模型。 针对模型一 首先,根据已知信息,对题目中给出的数据进行处理分析。在保证每个小区,学生至少有一个校址可供选择的情况下,运用整数规划中的0-1规划法,列出建校方案的目标函数与其约束条件,通过LINGO软件,使用计算机搜索算法进行求解。得出建立校址的最少数目为4个。再运用MATLAB软件编程,运行得到当建校的个数为4个时,学 首先,对文中给出的学校建设成本参数表和各校区1到6年级学龄儿童的平均值(样本均值)进行分析,可知20个小区估计共有4320个学龄儿童,当每个学校的平均人数都小于600时,至少需要建设8个学校;其次,模型一得到最少的建校数目为4个,运用MATLAB软件编程,依次列出学校个数为4、5、6、7、8时的最优建校方案,分别算出其最优建校方案下的总成本;最后,通过对比得出,最低的建校总成本为1650万,即选取校址10、11、13、14、15、16建设学校。 最后,我们不但对模型进行了灵敏度分析,,保证了模型的有效可行。 关键词:MATLAB灵敏度 0-1规划总成本选址 1 问题重述

当代教育的普及,使得学校的建设已成为不得不认真考虑的问题。 1.1已知信息 1、某地新开发的20个小区需要建设配套的小学,备选的校址共有16个,各校址覆盖的小区情况如表1所示: 2、在问题二中,每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i 个备选校址的建校成本i c 可表示为 (单元:元)学生人数)600-(50100200010? ?? ???+=i i i c βα,若学生人数超过600人,其中 i α和i β由表2给出: 并且考虑到每一小区的学龄儿童数会随住户的迁移和时间发生变化,当前的精确数据并不能作为我们确定学校规模的唯一标准,于是我们根据小区规模大小用统计方法给出每个小区的学龄儿童数的估计值,见表3: 1.2提出问题 1、要求建立数学模型并利用数学软件求解出学校个数最少的建校方案。 2、求出总成本最低的建校方案。 2 问题假设与符号说明

机场选址问题数学建模优秀论文

机场选址问题 摘要 针对机场选址问题,文章共建立了三个模型用以解决该类问题。为了计算出任意两城市之间的距离,我们利用公式(1)将利用题目中所给的大地坐标得出了任意两点之间的距离,见附录2。 对于问题1,我们主要利用0-1变量法,从而对问题进行了简化。我们设了第i个 y以及第i个城市是否是以第j个支线机场为最近机场的()j i x,。城市是否建支线机场的 i 然后将任意两点之间的距离与该城市的总人数之积,再乘以0-1变量()j i x,,最后得出每一个所有城市到最近机场的距离与该城市人口的乘积,然后利用LINGO进行编写程序,进行最优化求解,最后得出的结果见表1和表2,各大城市以及支线机场的分布见图2。 对于问题2,该问题是属于多目标规划的问题,目标一是居民距离最近机场的距离最短,目标二是每个机场覆盖人口数尽可能相等。我们在第一题的基础上,又假设了一些正、负偏差变量,对多个目标函数设立优先级,把目标函数转化为约束条件,进而求得满足题目要求的结果。 对于问题3,我们分析到影响客流量的因素是GDP跟居民人数,所以通过所搜集的资料分析我们给予这两个因素以不同的权重。然后同样采取问题2中所给的反求机场覆盖的方法,求的各个机场所覆盖的客流量,再让其在平均客流量水平上下浮动。通过LINGO程序的运行得到的六个机场的坐标见表6,六个机场的分布见图7。 针对论文的实际情况,对论文的优缺点做了评价,文章最后还给出了其他的改进方向,以用于指导实际应用。 关键词:选址问题;多目标规划;LINGO;0-1变量法;加权

1.问题的重述 近年来,随着我国经济社会的迅猛发展,公共交通基础设施日趋需要进一步完善与提高。支线机场作为我国交通运输体系的有机组成部分,对促进欠发达地区经济社会的发展具有基础性的作用。现某区域有30个城市,本区域计划在未来的五年里拟建6个支线机场。 任务1,确定6个支线机场的所在城市,建立居民到最近机场之间的平均距离最小的数学模型。 任务2,在任务一基础上,确定6个支线机场的所在城市,建立使得每个支线机场所覆盖的居民人数尽可能均衡的数学模型。 任务3,在任务一基础上,根据近一年每个城市的GDP 情况,确定6个支线机场的所在城市,建立使得每个支线机场的客流量尽量均衡的数学模型。 2.问题的分析 2.1 问题1 题目要求是建立居民到最近机场之间的平均距离最小的数学模型,该问题其实就是利用的0-1变量建立的模型。首先我们设两个0-1变量,一个是控制某个城市是否为支线机场的i y ,一个是控制某个城市的最近机场是哪一个的ij x 。针对于上述两个0-1变量,我们分别设立了约束条件。同时又为了满足问题所要求的使局面平均距离最小,我们将某一个城市到离它最近的机场的距离与该城市的人口乘积作为目标函数,在LINGO 软件中,通过设立一约束条件,最后将目标函数进行最优化求解。 2.2 问题2 该问题可以归结为多元目标线性规划的问题,所以我们在第一问的基础上又增加了一个目标函数,最后利用加权的方法将两个目标函数转化成了一个目标函数,将另一个目标函数作为约束条件。同时我们又引入了正负偏差变量,通过控制该变量达到覆盖居民人数均衡以及居民到城市之间的平均距离尽量小。 2.3 问题3 该问题要求的是客流量尽量均衡,经过分析可以知道,城市的GDP 越高,说明该城市经济越繁荣,货币流通越快,从而反映出客流量越大。另一方面城市越大、人口越多,也在一定程度上反映出了该城市客流量越大。基于上述两点,我们对GDP 跟城市人口分别给予了不同的权重来反映其对客流量的影响大小。按照第二问的方法,我们依然利用多元目标线性规划的只是进行求解。通过LINGO 编写程序,最中求得可行解。

数学建模论文__物流与选址问题

物流预选址问题 (2) 摘要 .............................................................................................. 错误!未定义书签。 一、问题重述 (3) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (4) 2.2 问题二:建立合理的仓库选址和建造规模模型 (4) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (5) 2.4 问题四:根据一组数据对自己的模型进行评价 (5) 三、模型假设与符号说明 (5) 3.1条件假设 (5) 3.2模型的符号说明 (5) 四、模型的建立与求解 (6) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (6) 4.1.1模型的建立 (7) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (10) 4.2.1 基于重心法选址模型 (10) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (12) 4.3 问题三:工厂向中心仓库供货方案 (13)

4.4 问题四:选用一组数据进行计算 (14) 五、模型评价 (21) 5.1模型的优缺点 (21) 5.1.1 模型的优点 (21) 5.1.2 模型的缺点 (21) 六参考文献 (21) 物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用

数学建模 学校选址问题模型

学校选址问题 摘要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。 其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数最小花费固定成本规模成本灵敏度分析 1.问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 1.2 问题一、求学校个数最少的建校方案,并用数学软件求解(说明你所使用的软件并写出输入指令)。 问题二、设每建一所小学的成本由固定成本和规模成本两部分组成,固定成本由学校所在地域以及基本规模学校基础设施成本构成,规模成本指学校规模超过基本规模时额外的建设成本,它与该学校学生数有关,同时与学校所处地域有关。设第i个备选校址的建校成本 c可表示为 i

《数学建模》选题.

《数学建模》选题(一) 1、选址问题研究 在社会经济发展过程中, 经常需要在系统中设置一个或多个集散物质、传输信息或执行某种服务的“中心”。在设计和规划商业中心、自来水厂、消防站、医院、飞机场、停车场、通讯系统中的交换台站等的时候,经常需要考虑将场址选在什么位置才能使得系统的运行效能最佳。选址问题, 是指在指定的范围内, 根据所要求的某些指标,选择最满意的场址。在实际问题中,也就是关于为需要设置的“设施”选择最优位置的问题。选址问题是一个特殊类型的最优化问题,它属于非线性规划和组合最优化的研究范围。由于它本身所具有的特点,存在着单独研究的必要性和重要性。 1.1“中心”为点的情形 如图1,有一条河,两个工厂P 和Q位于河岸L(直线)的同一侧,工厂 P 和 Q 距离河岸L分别为8千米和10千米,两个工厂的距离为14千米,现要在河的工厂一侧选一点R,在R处建一个水泵站,向两工厂P、Q 输水,请你给出一个经济合理的设计方案。 图1 图2 (即找一点 R ,使 R 到P、Q及直线l的距离之和为最小。) 要求和给分标准: 提出合理方案,建立坐标系,分情况定出点R的位置,0分——70分。 将问题引申: (1)、若将直线 L缩成一个点(如向水库取水),则问题就是在三角形内求一点R,使R到三角形三顶点的距离之和为最小(此点即为费尔马点)。 (2)、若取水的河道不是直线,是一段圆弧(如图2),该如何选点? 对引申问题给出给出模型和讨论30分——50分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺点讨论扣10分。 1.2“中心”为线的情形

在油田管网和公路干线的设计中提出干线网络的选址问题: 问题A :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ∑=n i i i L P d w 1 ),( (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题B :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ∑=n i i i L X d w 1 ),( (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 问题C :在平面上给定n 个点n P P P ,,,21 ,求一条直线L ,使得 ),(max 1L P d w i i n i ≤≤ (1) 为最小,其中i w 表示点i P 的权,),(L P d i 表示点i P 到第直线L 的距离。 问题D :平面上给定n 条直线n L L L ,,,21 , 求一点X , 使 ),(max 1i i n i L X d w ≤≤ (2) 为最小,其中i w 表示直线i L 的权,),(i L X d 表示点X 到第直线i L 的距离。 参考文献 【1】林诒勋, 尚松蒲. 平面上的点—线选址问题[J]. 运筹学学报,2002,6(3):61—68. 【2】尚松蒲, 林诒勋. 平面上的min-max 型点—线选址问题[J]. 运筹学学报,2003,7(3):83—91. 要求和给分标准: 选择问题A 和B(或者C 和D)进行研究:根据文献重述模型(10分),提出自己的算法(30分),计算机仿真验证算法的正确性(40分,含如何在平面上随机产生n 个点,对每个点随机赋权,按照算法编程实现求干线的程序,并将寻得的干线和点在平面上图示,建议用MATLAB 编程)。 将问题引申: 如果同时确定两条、三条干线,应该如何讨论?其他情形的讨论? 对引申问题给出给出模型和讨论20分——30分。 抄袭者零分;无模型者不及格;无程序和运行结果扣20-30分;无模型优缺

数学建模论文--物流与选址问题

物流预选址问题 (2) 摘要............................................................................................................. 错误!未定义书签。 一、问题重述 (2) 二、问题的分析 (3) 2.1 问题一:分析确定合理的模型确定工厂选址和建造规模 (3) 2.2 问题二:建立合理的仓库选址和建造规模模型 (3) 2.3 问题三:工厂向中心仓库供货的最佳方案问题 (3) 2.4 问题四:根据一组数据对自己的模型进行评价 (4) 三、模型假设与符号说明 (4) 3.1条件假设 (4) 3.2模型的符号说明 (4) 四、模型的建立与求解 (5) 4.1 问题一:分析确定合理的模型为两个工厂合理选址并确定建造规模 (5) 4.1.1模型的建立 (5) 4.2 问题二:建立合理模型确定中心仓库的位置及建造规模 (7) 4.2.1 基于重心法选址模型 (8) 4.2.2 基于多元线性回归法确定中心仓库的建造规模 (10) 4.3 问题三:工厂向中心仓库供货方案 (10) 4.4 问题四:选用一组数据进行计算 (11) 五、模型评价 (16) 5.1模型的优缺点 (16) 5.1.1 模型的优点 (16) 5.1.2 模型的缺点 (16) 六参考文献 (16)

物流预选址问题 摘要 在物流网络中,工厂对中心仓库和城市进行供货,起到生产者的作用,而中心仓库连接着工厂和城市,是两者之间的桥梁,在物流系统中有着举足轻重的作用,因此搞好工厂和中心仓库的选址将对物流系统作用的发挥乃至物流经济效益的提高产生重要的影响。 本论文在综述工厂和中心仓库选址问题研究现状的基础上,对二者选址的模型和算法进行了研究。对于问题一二,通过合理的分析,我们采用了重心法选址模型找到了工厂和中心仓库的大致位置并给出了确定工厂和中心仓库建造规模的参数和公式,通过用数据进行实例化分析,我们确定了工厂和中心仓库位置和建造规模。对于问题三我们运用LINGO软件简单的解决了工厂对中心仓库的供货情况。问题四我们选用了一组数据通过求解多元线性规划对问题进行了实例化分析。为中心仓库的选址问题做了合理说明。最后我们对模型进行了评价和分析。 关键词:物流网络重心法选址模型多元线性规划 一、问题重述 某公司是生产某种商品的省知名厂家。该公司根据需要,计划在本省建设两个生产工厂和若干个中心仓库向全省所有城市供货。根据市场调研,全省有m个城市,每个城市单位时间需要该公司的物资量是已知的,有关运费的信息也是确定的,工厂和中心仓库

数学建模报告选址问题

长沙学院数学建模课程设计说明书 题目选址问题 系(部) 数学与计算机科学 专业(班级) 数学与应用数学 姓名 学号 指导教师 起止日期 2015、6、1——2015、6、5

课程设计任务书 课程名称:数学建模课程设计 设计题目:选址问题 已知技术参数和设计要求: 选址问题(难度系数1.0) 已知某地区的交通网络如下图所示,其中点代表居民小区,边代表公路,边上的数字为小区间公路距离(单位:千米),各个小区的人数如下表所示,问区中心医院应建在哪个小区,可使离医院最远的小区居民人均就诊时所走的路程最近? 各阶段具体要求: 1.利用已学数学方法和计算机知识进行数学建模。 2.必须熟悉设计的各项内容和要求,明确课程设计的目的、方法和步骤。 3.设计中必须努力认真,独立地按质按量地完成每一阶段的设计任务。 4.设计中绝对禁止抄袭他人的设计成果。 5.每人在设计中必须遵守各组规定的统一设计时间及有关纪律。 6.所设计的程序必须满足实际使用要求,编译出可执行的程序。 7.要求程序结构简单,功能齐全,使用方便。 设计工作量: 论文:要求撰写不少于3000个文字的文档,详细说明具体要求。 1v 5

工作计划: 提前一周:分组、选题;明确需求分析、组内分工; 第一天:与指导老师讨论,确定需求、分工,并开始设计;第二~四天:建立模型并求解; 第五天:完成设计说明书,答辩; 第六天:针对答辩意见修改设计说明书,打印、上交。 注意事项 ?提交文档 长沙学院课程设计任务书(每学生1份) 长沙学院课程设计论文(每学生1份) 长沙学院课程设计鉴定表(每学生1份) 指导教师签名:日期: 教研室主任签名:日期: 系主任签名:日期:

4.第17讲 应急设施的优化选址问题(数学建模)

第17讲应急设施的优化选址问题 问题(AMCM-86B题)里奥兰翘镇迄今还没有自己的应急设施。1986年该镇得到了建立两个应急设施的拨款,每个设施都把救护站、消防队和警察所合在一起。图17-1指出了1985年每个长方形街区发生应急事件的次数。在北边的L形状的区域是一个障碍,而在南边的长方形区域是一个有浅水池塘的公园。应急车辆驶过一条南北向的街道平均要花15秒,而通过一条东西向的街道平均花20秒。你的任务是确定这两个应急设施的位置,使得总响应时间最少。 图17-1 1985年里奥兰翘每个长方街区应急事件的数目(I)假定需求集中在每个街区的中心,而应急设施位于街角处。 (II)假定需求是沿包围每个街区的街道上平均分布的,而应急设施可位于街道的任何地方。 §1 若干假设 1、图17-1所标出的1985年每个长方形街区应急事件的次数具有典型代表性,能够反映该街区应急事件出现的概率的大小。 2、应急车辆的响应时间只考虑在街道上行驶时间,其他因纱(如转弯时间等)可以忽略不计。 3、两个应急设施的功能完全相同。在应急事件出现时,只要从离事件发生地点最近的应急设施派出应急车辆即可。 4、执行任何一次应急任务的车辆都从某一个应急设施出发,完成任务后回到原设施。不出现从一个应急事件点直接到另一事件点的情况。(这是因为,每一个地点发生事件的概率都很小,两个地点同时发生事故的概率就更是小得可以忽略不计)。

§2 假定(I )下的模 在假定(I )下,应急需求集中在每个街区中心。我们可以进一步假定应急车辆只要到达该街区四个街角中最近的一个,就认为到达了该街区,可以开始工作了。按假定(I ),每个应急设施选在街角处,可能的位置只有6×11=66个。两个应急设施的位置的可能的组合至多只有66×65/2=2145个。这个数目对计算机来说并不大,可用计算机进行穷举,对每种组合一一算出所对应的总响应时间,依次比较得出最小的响应时间及对应的选址方案。具体算法是: 建立直角坐标系,以该镇的西北角为原点,从北到南为X -轴正方向,从西到东为Y -轴正方向,在南北、东西方向上分别以一个街区的长作为单位长,则街角的坐标),(Y X 是满足条件50,100≤≤≤≤Y X 的整数。而每个街区中心的坐标具有形式)5.0,5.0(++j i ,其中j i ,是满足条件:40,90≤≤≤≤j i 的整数。如果不考虑障碍和水塘的影响,同应急车辆从设在),(Y X 点的应急设施到以)5.0,5.0(++j i 为中心的街区的行驶时间等于 )5.05.0(20)5.05.0(15),,,(---+---=j Y i X j i Y X t )5.17)5.0(20)5.0((15-+-++-=j Y i X 秒 记),(j i p 为以)5.0,5.0(++j i 为中心的街区的事故发生频率(即在图上该街区所标的数字)。如果应急设施设在),(),,(2211Y X Y X 这两点,总不妨设21X X ≤,则该设置方案的总响应时间为 ),,,(2211Y X Y X T ∑∑===904 02211)},,,(),,,,(min{),(i j j i Y X t j i Y X t j i p 让1X 取遍0—10,2X 取遍101-X ,21,Y Y 分别独立地取遍0—4。依次对四数组),,,(2211Y X Y X 的每一个值算出对应的总响应时间的最小值及对应的四数组。 以上算法不难用计算机编程实现。由于数组的个数不算多(只有两千多个),计算机可很快得出答案。答案是: 两个应急设施分别设在点(2,3),(6,3)时最优。 这是在不考虑L 形障碍区域和水塘的影响的假定下得出的最优解,但从这两个点到

选址问题数学模型

选址问题数学模型 摘要 本题是用图论与算法结合的数学模型,来解决居民各社区生活中存在三个的问题:合理的建立3个煤气缴费站的问题;如何建立合理的派出所;市领导人巡视路线最佳安排方案的问题。通过对原型进行初步分析,分清各个要素及求解目标,理出它们之间的联系.在用图论模型描述研究对象时,为了突出与求解目标息息相关的要素,降低思考的复杂度。对客观事物进行抽象、化简,并用图来描述事物特征及内在联系的过程.建立图论模型是为了简化问题,突出要点,以便更深入地研究问题 针对问题1:0-1规划的穷举法模型。该模型首先采用改善的Floyd-Warshall 算法计算出城市间最短路径矩阵见附录表一;然后,用0-1规划的穷举法获得模型目标函数的最优解,其煤气缴费站设置点分别在Q、W、M社区,各社区居民缴费区域见表7-1,居民与最近的缴费点之间平均距离的最小值11.7118百米。 针对问题2:为避免资源的浪费,且满足条件,建立了以最少分组数为目标函数的单目标最优化模型,用问题一中最短路径的Floyd算法,运用LINGO软件编程计算,得到个社区之间的最短距离,再经过计算可得到本问的派出所管辖范围是2.5千米。最后采用就近归组的搜索方法,逐步优化,最终得到最少需要设置3个派出所,其所在位置有三种方案,分别是:(1)K区,W区,D区;(2)K区,W区,R区;(3)K区,W区,Q区。最后根据效率和公平性和工作负荷考虑考虑,其第三种方案为最佳方案,故选择K区,W区,Q区,其各自管辖区域路线图如图8-1。 针对问题3:建立了双目标最优化模型。首先将问题三转化为三个售货员的最佳旅行售货员问题,得到以总路程最短和路程均衡度最小的目标函数,采用最短路径Floyd算法,并用MATLAB和LINGO软件编程计算,得到最优树图,然后按每块近似有相等总路程的标准将最优树分成三块,最后根据最小环路定理,得到三组巡视路程分别为11.8km、11km和12.5km,三组巡视的总路程达到35.3km,路程均衡度为12%,具体巡视路线安排见表9-1和图9.2 。 关键词Floyd-Warshall算法穷举法最小生成树最短路径 1问题重述 1.1问题背景 这是一个最优选址问题,是一种重要的长期决策,它的好坏直接影响到服务方法,服务质量,服务效率,服务成本,所以选址问题的研究有着重大的经济社

数学建模物流配送中心选址模型

数学建模物流配送中心 选址模型 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

物流配送中心选址模型 姓名:学号:班级: 摘要:在现代络中,配送中心不仅执行一般的职能,而且越来越多地执行指挥调度、信息处理、作业优化等神经中枢的职能,是整个络的灵魂所在。因此,发展现代化配送中心是现代业的发展方向。文章首先使用重心法计算出较为合适的备选地,再考虑到各项配送中心选址的固定成本和可变成本,从而使配送中心选址更加优化和符合实际。 关键词:物流选址;选址;重心法;优化模型; 1.背景介绍 1.1 研究主题 如下表中,有四个零售点的坐标和物资需求量,计算并确定物流节点的位置。 1.2 前人研究进展 1.2.1国内外的研究现状:

国外对物流配送选址问题的研究已有60余年的历史,对各种类型物流配送中心的选址问题在理论和实践方面都取得了令人注目的成就,形成了多种可行的模型和方法。归纳起来,这些配送中心选址方法可分为三类: (1)应用连续型模型选择地点; (2)应用离散型模型选择地点; (3)应用德尔菲(Delphi)专家咨询法选择地点。 第一类是以重心法为代表,认为物流中心的地点可以在平面取任意点,物流配送中心设置在重心点时,货物运送到个需求点的距离将最短。这种方法通常只是考虑运输成本对配送中心选址的影响,而运输成本一般是运输需求量、距离以及时间的函数,所以解析方法根据距离、需求量、时间或三者的结合,通过坐标上显示,以配送中心位置为因变量,用代数方法来求解配送中心的坐标。解析方法考虑影响因素较少,模型简单,主要适用于单个配送中心选址问题。解析方法的优点在于计算简单,数据容易搜集,易于理解。由于通常不需要对进行整体评估,所以在单一设施定位时应用解析方法简便易行。 第二类方法认为物流中心的各个选址地点是有限的几个场所,最适合的地址只能按照预定的目标从有限个可行点中选取。 第二类方法的中心思想则是将专家凭经验、专业知识做出的判断用数值形式表示,从而经过分析后对选址进行决策。 国内在物流中心选址方面的研究起步较晚,只有10余年历史,但也有许多学者对其进行了较深入的研究,在理论和实践上都取得了较大的成果。北方交通大学鲁晓春等对配送中心的重心法地址做出了深入的研究,认为原有的重心法存在着问题,并把原有的计算公式用流通费用偏微分方程来取代。中国矿业大学周梅

选址问题及最佳巡视路线的数学模型 (1)

本科14组 许泽东,邹志翔,陈佳成 选址问题及最佳巡视路线的数学模型 摘 要 本文解决的问题是缴费站、派出所选址和最佳巡视路线的确定。合理设置缴费站,可以为居民缴费节省大量时间和精力。派出所位置和数量的不同选择,会产生不同的建设成本和管理经费。而最佳巡视路线的确立,可以让领导在最短时间内巡视完所有社区。为解决以上问题,我们建立的三个最优化模型。 针对问题一,我们先用floyd 算法求出各社区间的最短路,然后用计算机枚举出所有选址方案。对每一种选址方案都会产生一个平均距离S ,我们以此为指标对方案进行评估。经过合理化推导,我们得出最优解11712S .=(百米),且此时应该在M,Q,W 三社区设置煤气缴费站。 针对问题二,我们在问题一求出的最短路基础上,建立了0-1线性规划模型。然后借助matlab 软件求得最优解3=X (即应该设置3个派出所),并给出了各派出所管辖范围。这样既满足了每个社区在3分钟内至少能得到一个派出所服务,也为派出所的建设管理节省了不少成本。具体结果如下表3: 构建了社区网络的完全图,然后考虑到最优哈密顿圈的求解极其困难,我们连续使用30次模拟退火的方法求得连接各社区的近似最优哈密顿圈。其中,我们对每次求出的哈密顿圈都进行了合理划分,产生了三个子圈,即三组巡视路线。最终得到近似最优解128,见表4。接着,我们还对哈密顿圈划分方法进行了改进,求得近似最优解125(具体结果见表5)。 1.问题重述 问题背景 社区已是现代都市的的基础,随着城市社会经济的飞速发展,社区与人们生活的联系越来越密切,人们需要在社区解决日常生活涉及的各种利益和需要,因而人们对社区社会生活服务提出更高的要求,而政府也希望能够更好的指导和管理城市社区,社区生

数学建模学校选址问题模型

数学建模学校选址问题 模型 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

学校选址问题 摘要 本文针对某地新开发的20个小区建设配套小学问题建立了0-1规划模型和优化模型。为问题一和问题二的求解,提供了理论依据。 模型一: 首先:根据目标要求,要建立最少学校的方案列出了目标函数: 然后:根据每个小区至少能被一所学校所覆盖,列出了20个约束条件; 最后:由列出的目标函数和约束函数,用matlab进行编程求解,从而得到,在每个小区至少被一所学校所覆盖时,建立学校最少的个数是四所,并且一共有22种方案。 模型二: 首先:从建校个数最少开始考虑建校总费用,在整个费用里面,主要是固定费用,由此在问题一以求解的条件下,进行初步筛选,得到方案1,4,8的固定成本最少。 然后:在初步得出成本费用最少时,对每个这三个方案进一步的求解,求出这三个方案的具体的总费用,并记下这三套方案中的最小费用。

其次:对这三套方案进行调整,调整的原则是:在保证每个小区有学校覆盖的条件下,用多个固定成本费用低的备选校址替换固定成本费用高的备选校址。在替换后,进行具体求解。 再次:比较各种方案的计算结果,从而的出了如下结论: 选用10,11,13,15,16号备选校址的选址方案,花费最少,最少花费为13378000元。 最后:对该模型做了灵敏度分析,模型的评价和推广。 关键字:最少建校个数最小花费固定成本规模成本灵敏度分析 1.问题重述 1.1问题背景: 某地新开发的20个小区内需要建设配套的小学,以方便小区内居民的的孩子上学。但是为了节省开支,建造的学校要求尽量的少,为此,设备选定的16个校址提供参考,各校址覆盖的小区情况如表1所示: 表1-1备选校址表

数学建模选址问题

摘要 目前,社区的优化管理和最佳服务已经成为一种趋势,并且为城市的发展作出了一定的贡献。本文针对在社区中选址问题及巡视路线问题,分别建立了多目标决策模型、约束最优化线路模型,并分别提供了选址社区和巡视路线。 对于问题一,我们建立了单目标优化模型,考虑到各社区居民到收费站点的平均距离最小,我们使用floyd 算法并通过matlab 编程,算出任意两个社区之间的最短路径,并以此作为工具,使用0-1变量列出了目标函数。在本题中,我们根据收费站数、超额覆盖等确定了约束条件,以保证收费站覆盖每个社区,同时保证居民与最近煤气站之间的平均距离最小,最终利用lingo 软件求得收费站建在M、Q、W三个社区。 对于问题二,同样是单目标优化模型,较之问题一不同的是,问题二不需要考虑人口问题,但需要确定选址的个数。接下来的工作分了两步,第一步,我们通过0-1变量列出目标函数,以超额覆盖等确定约束条件,用lingo 软件编程求出最小派出所站点的个数;第二步,我们利用第一步中求出的派出所个数作为新的约束条件,建立使总距离最小的优化模型,最终利用lingo 软件求得三个派出所分别建在W、Q、K社区。 对于问题三,我们建立了约束最优化线路模型,根据floyd 算法求得的任意两个社区之间的最短路径,建立了以w 点为树根的最短路径生成树,并据此对各点的集中区域进行划分,再利用破圈法得到最短回路。在本题中,我们初定了两种方案,并引入均衡度α对两种方案进行比较,最终采用了方案二。最后,我们用matlab编程求解方案二中各组的巡视路线为113百米,123百米,117百米,均衡度α=8.13%。具体路线见 关键词:最短路径 hamilton圈最优化 floyd算法

数学建模优秀论文范文全国一等奖

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 二级标题设置成段落间距前0.5行后0.25行 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义 公式编号在右边显示

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜ο14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

最佳路径选择方案的优化模型数学建模论文

最佳路径选择方案的优化模型 摘要 本文对乘公交、看奥运这一实际问题进行了深入的研究,首先对公交乘客进行了心理分析,得出影响乘客出行的三个主要因素分别为:换乘次数、出行时间、出行费用,通过调查研究,得出换乘次数最少是乘客出行考虑的最主要因素,其次是出行时间和出行费用。然后利用公交乘客的出行过程抽象为站点—线路的交替转换的思想,建立了站点—线路序列模型,从而确定了出行者对路线的所有选择方案。 针对问题一:仅考虑公汽的情况下,以换乘次数最少为第一目标、出行时间为第二目标建立了优化模型一,再以换乘次数最少为第一目标、出行费用为第二目标建立了优化模型二,从而满足了两类不同乘客的需求。并依靠站点—线路序列模型采用图论中计算方法,分别得到了公交乘客的最少换乘次数,所经过的站点,出行时间、出行费用以及相应的算法。 针对问题二:在问题一的基础上再考虑地铁线路,建立了对应的两组优化模型,并推导出相应的改进算法。 针对问题三:在问题一、二的基础上,考虑出行者可以通过步行到达相邻的公交站点的情况,同样建立了两组相应的优化模型,并给出了相应的计算方法。 然后利用基于换乘次数最少的最优路径改进算法思想,借助MATLAB软件编程分别对问题一和二进行了求解,得到的结果见模型的求解(正文第21、22页)。 最后对所求得的结果进行了对比分析和检验,根据各参数的变化关系,进行了灵敏性分析,本模型主要抓住了乘客的心理需求,实用性强,具有较强的现实意义。 关键词:站点—线路序列最优路径改进算法公交

一、问题的提出 1.1基本情况 我国人民翘首企盼的第29届奥运会明年8月将在北京举行,届时有大量观众到现场观看奥运比赛,其中大部分人将会乘坐公共交通工具(简称公交,包括公汽、地铁等)出行。这些年来,城市的公交系统有了很大发展,北京市的公交线路已达800条以上,使得公众的出行更加通畅、便利,但同时也面临多条线路的选择(包括不同线路上的换乘交通工具的路径选择等)问题。针对市场需求,某公司准备研制开发一个解决公交线路选择问题的自主查询计算机系统。 1.2基本参数设定: 1)相邻公汽站平均行驶时间(包括停站时间):3分钟; 2)相邻地铁站平均行驶时间(包括停站时间):2.5分钟; 3)公汽换乘公汽平均耗时:5分钟(其中步行时间2分钟); 4)地铁换乘地铁平均耗时:4分钟(其中步行时间2分钟); 5)地铁换乘公汽平均耗时:7分钟(其中步行时间4分钟); 6)公汽换乘地铁平均耗时:6分钟(其中步行时间4分钟); 7)公汽票价:分为单一票价与分段计价两种,标记于线路后;其中分段计价的票价为:0~20站:1元;21~40站:2元;40站以上:3元。 地铁票价:3元(无论地铁线路间是否换乘)。 注:以上参数均为简化问题而作的假设,未必与实际数据完全吻合。 1.3相关信息(详见附件) 【附件1】公汽和地铁线路信息数据文件格式说明; 【附件1.1】公汽线路及相关信息; 【附件1.2】地铁线路及相关信息; 【附件2】地铁换乘公汽信息数据文件格式说明; 【附件2.1】地铁T1线换乘公汽信息; 【附件2.2】地铁T2线换乘公汽信息。 1.4需解决的问题 为了设计这样一个公交线路选择的自助查询计算机系统,其核心是线路选择的模型

相关文档
相关文档 最新文档